1
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Potter DA, Guo Z, Lei J, Antonarakis ES. Cooling inflammation while potentiating immune checkpoint inhibition: Enhancing the benefit-risk ratio of immuno-oncology therapy. Proc Natl Acad Sci U S A 2024; 121:e2400431121. [PMID: 38354255 PMCID: PMC10907316 DOI: 10.1073/pnas.2400431121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Affiliation(s)
- David A. Potter
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Masonic Cancer Center, Minneapolis, MN55455
| | - Zhijun Guo
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
| | - Jianxun Lei
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
| | - Emmanuel S. Antonarakis
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Masonic Cancer Center, Minneapolis, MN55455
| |
Collapse
|
3
|
Hu B, Zhang X, Zhu S, Wang C, Deng Z, Wang T, Wu Y. Identification and validation of an individualized metabolic prognostic signature for predicting the biochemical recurrence of prostate cancer based on the immune microenvironment. Eur J Med Res 2024; 29:92. [PMID: 38297388 PMCID: PMC10829481 DOI: 10.1186/s40001-024-01672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most prevalent genitourinary malignancy in men, with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. The immune microenvironment and metabolic alterations have crucial implications for the tumorigenesis and progression of PCa. Therefore, identifying metabolic genes associated with the immune microenvironment holds promise for predicting BCR and improving PCa prognosis. METHODS In this study, ssGSEA and hierarchical clustering analysis were first conducted to evaluate and group PCa samples, followed by the use of the ESTIMATE and CIBERSORT algorithms to characterize the immunophenotypes and tumor microenvironment. The differential metabolic genes (MTGs) between groups were utilized to develop a prognostic-related signature. The predictive performance of the signature was assessed by principal component analysis (PCA), receiver operating characteristic (ROC) curve analysis, survival analysis, and the TIDE algorithm. A miRNA-MTGs regulatory network and predictive nomogram were constructed. Moreover, the expression of prognostic MTGs in PCa was detected by RT‒qPCR. RESULTS PCa samples from the TCGA cohort were separated into two groups: the immune-low group and immune-high group. Forty-eight differentially expressed MTGs between the groups were identified, including 37 up-regulated and 11 down-regulated MTGs. Subsequently, CEL, CYP3A4, and PDE6G were identified as the genes most strongly associated with the BCR of PCa patients and these genes were utilized to establish the MTGs-based prognostic signatures. PCA, ROC curves analysis, Kaplan-Meier survival analysis, and the nomogram all showed the good predictive ability of the signature regardless of clinical variables. Furthermore, the MTGs-based signature was indicated as a potential predictive biomarker for immunotherapy response. Nine miRNAs involved in the regulation of prognostic MTGs were determined. In addition to the CEL gene, the PDE6G and CYP3A4 genes were expressed at higher levels in PCa samples. CONCLUSIONS The MTGs-based signature represents a novel approach with promising potential for predicting BCR in PCa patients.
Collapse
Affiliation(s)
- Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Zhang
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqing Zhu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengwei Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Menyhárt O, Fekete JT, Győrffy B. Resistance to Combined Anthracycline-Taxane Chemotherapy Is Associated with Altered Metabolism and Inflammation in Breast Carcinomas. Int J Mol Sci 2024; 25:1063. [PMID: 38256136 PMCID: PMC10816584 DOI: 10.3390/ijms25021063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Approximately 30% of early-stage breast cancer (BC) patients experience recurrence after systemic chemotherapy; thus, understanding therapy resistance is crucial in developing more successful treatments. Here, we investigated the mechanisms underlying resistance to combined anthracycline-taxane treatment by comparing gene expression patterns with subsequent therapeutic responses. We established a cohort of 634 anthracycline-taxane-treated patients with pathological complete response (PCR) and a separate cohort of 187 patients with relapse-free survival (RFS) data, each having transcriptome-level expression data of 10,017 unique genes. Patients were categorized as responders and non-responders based on their PCR and RFS status, and the expression for each gene was compared between the two groups using a Mann-Whitney U-test. Statistical significance was set at p < 0.05, with fold change (FC) > 1.44. Altogether, 224 overexpressed genes were identified in the tumor samples derived from the patients without PCR; among these, the gene sets associated with xenobiotic metabolism (e.g., CYP3A4, CYP2A6) exhibited significant enrichment. The genes ORAI3 and BCAM differentiated non-responders from responders with the highest AUC values (AUC > 0.75, p < 0.0001). We identified 51 upregulated genes in the tumor samples derived from the patients with relapse within 60 months, participating primarily in inflammation and innate immune responses (e.g., LYN, LY96, ANXA1). Furthermore, the amino acid transporter SLC7A5, distinguishing non-responders from responders, had significantly higher expression in tumors and metastases than in normal tissues (Kruskal-Wallis p = 8.2 × 10-20). The identified biomarkers underscore the significance of tumor metabolism and microenvironment in treatment resistance and can serve as a foundation for preclinical validation studies.
Collapse
Affiliation(s)
- Otília Menyhárt
- Oncology Biomarker Research Group, Institute of Molecular Life Sciences, Hungarian Research Network, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (O.M.); (J.T.F.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - János Tibor Fekete
- Oncology Biomarker Research Group, Institute of Molecular Life Sciences, Hungarian Research Network, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (O.M.); (J.T.F.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - Balázs Győrffy
- Oncology Biomarker Research Group, Institute of Molecular Life Sciences, Hungarian Research Network, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary; (O.M.); (J.T.F.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
5
|
Jia Q, Ding Q, Shao K, Dang J, Zhang F. Research progress regarding CYP3A gene family in gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1874-1881. [PMID: 38448381 PMCID: PMC10930750 DOI: 10.11817/j.issn.1672-7347.2023.230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 03/08/2024]
Abstract
Cytochrome P450 family 3 subfamily A (CYP3A), a major member of cytochrome P450 (CYP) family, is one of the most important drug metabolizing enzymes in human. CYP3A includes 4 gene subtypes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43), which is involved in 60% of drug metabolism in the human. It is not only widely distributed in normal tissues, but also significantly overexpressed in various tumor tissues. Recently, CYP3A has attracted great attention due to its involvement in the progression from chronic atrophic gastritis to gastric cancer, as well as the differential metabolism and resistance of chemotherapeutic drugs. Targeting CYP3A gene mediated-prodrug provides new ideas for the treatment of gastric cancer and is expected to become a new target for the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Qi Jia
- Second Clinical Medical School, Lanzhou University, Lanzhou 730030.
| | - Qingsong Ding
- Second Clinical Medical School, Lanzhou University, Lanzhou 730030
| | - Kangmei Shao
- Second Clinical Medical School, Lanzhou University, Lanzhou 730030
| | - Jianzhong Dang
- Department of Surgical Oncology, Second Hospital, Lanzhou University, Lanzhou 730030
| | - Fan Zhang
- Department of Surgical Oncology, Second Hospital, Lanzhou University, Lanzhou 730030.
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Tang H, Kuang Y, Wu W, Peng B, Fu Q. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer. Mol Med 2023; 29:127. [PMID: 37710176 PMCID: PMC10502985 DOI: 10.1186/s10020-023-00720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Recent years have witnessed impressive growth in applying natural medicine in tumor treatment. Saffron is reported to elicit an inhibitory property against BC. Herein, we sought to explore the specific components and mechanistic basis of saffron's anti-breast carcinoma (BC) function. METHODS Bioinformatics analysis was employed to analyze saffron components' anti-BC activity and screen the corresponding target genes involved in BC. Then, the roles of the main saffron ingredient quercetin in the activity of BC cells were examined using CCK-8, MTS, flow cytometry, colony formation, Transwell, and Gelatin zymogram assays. Additionally, the interactions among Quercetin, EET, and Stat3 were assessed by immunofluorescence and Western blot, and LC-MS/MS determined the levels of AA, EETs, and CYP3A. Finally, BC xenograft mouse models were established to verify the anti-BC function of Quercetin in vivo. RESULTS Quercetin, the main active component of saffron, inhibited BC progression. Quercetin suppressed BC cell growth, migration, and invasion and inhibited CYP3A4 expression and activity in BC. Mechanistically, Quercetin down-regulated CYP3A4 to block the nuclear translocation of Stat3 by decreasing the metabolization of AA to EETs, thereby alleviating BC. Moreover, exogenously added EETs counteracted the anti-tumor effect of Quercetin on BC. Quercetin also inhibited the tumor growth of tumor-bearing nude mice. CONCLUSION Quercetin could inhibit the activity of CYP3A to down-regulate AA metabolites EETs, consequently hampering p-Stat3 and nuclear translocation, thus impeding BC development.
Collapse
Affiliation(s)
- Huaming Tang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China
| | - Yuanli Kuang
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Wan Wu
- Department of General Surgery, Chongqing Kaizhou District People's Hospital, Chongqing, 400700, People's Republic of China
| | - Bing Peng
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Sichuan Province, Chengdu, 610000, People's Republic of China.
| | - Qianmei Fu
- Department of Oncology, Chongqing Kaizhou District People's Hospital, No. 8, Ankang Road, Hanfeng Street, Kaizhou District, Chongqing, 400700, People's Republic of China.
| |
Collapse
|
7
|
Wanjari PJ, Rath A, Sathe RY, Bharatam PV. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 2023; 29:156. [PMID: 37097473 DOI: 10.1007/s00894-023-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.
Collapse
Affiliation(s)
- Pravin J Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Asutosh Rath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Rohit Y Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
8
|
MD Investigation on the Interaction between Carbamazepine and Two CYP Isoforms, CYP3A4 and CYP3A5. Int J Mol Sci 2023; 24:ijms24032188. [PMID: 36768510 PMCID: PMC9917107 DOI: 10.3390/ijms24032188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Carbamazepine (CBZ), a commonly prescribed antiepileptic drug, in human liver, is mainly metabolized by two isoforms of cytochrome P450 (CYP), CYP3A4 and CYP3A5. Therefore, the binding of CBZ with these two enzymes plays crucial role in the biotransformation of the drug into its active metabolite. In the present work, classical molecular dynamics (MD) simulation was used to investigate the detailed interaction mechanism between CBZ and these two CYP isoforms at the atomic level. The results revealed that although CBZ can bind with the two proteins, all kinds of the interactions, including hydrogen bonds, salt bridges, hydrophobic interaction, and π-π interaction, are isoform specific. The specificity directly leads to a binding environment difference at the active sites of the two isoforms, as represented by the electrostatic surface potential maps, which further results in the varied dynamic behavior of CBZ in the two isoforms. Our research will help to deepen the understanding of the physiological functions of CYP isoforms and opens the door for the rational design and development of isoform-specific inhibitors.
Collapse
|
9
|
The Role of procollagen type 1 amino-terminal propertied (P1NP) Cytochrome P450 (CYPs) and Osteoprotegerin (OPG) as Potential Bone function markers in Prostate Cancer Bone Metastasis. REV ROMANA MED LAB 2023. [DOI: 10.2478/rrlm-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Background: Procollagen type I amino-terminal propeptide (PINP) is often present during osteoblast development and could be a biomarker of early bone development. Osteoprotegerin (OPG) may protect tumor cells from apoptosis. Cytochrome P450 enzymes help tumor development and treatment (CYPs). Cytochrome P450 activates and deactivates anticancer drugs and procarcinogens.
Objective: The study examined the amounts of a diagnostic marker of bone formation, the amino terminal propeptide of type I procollagen (PINP), Osteoprotegerin (OPG), and P450, in prostate cancer patients at different stages and its ability to detect osteoblastic metastases.
Methods: ELISA was used to measure PINP, OPG, and P450 levels in 30 prostate cancer patients. (n = 32) and healthy men’s serum (n = 36).
Results: Prostate cancer patients had higher blood levels of PINP, OPG, and P450 than healthy persons (301.3±134.9, 980±467.2, and 84.2±28.4 pg/mL, respectively). Compared to I+II prostate cancer patients, III+IV patients showed higher serum PINP, OPG, and P450 levels (P 0.001). OPG, P450, and PINP had statistically significant Area under the ROC curve (0.9467, P= 0.0001, 0.91, P= 0.0001, and 0.6977, P= 0.4035) in prostate cancer patients.
Conclusions: Metastatic prostate cancer patients had greater PINP, OPG, and P450 levels, according to our findings. PINP, OPG, and P450 levels may affect prostate cancer progression. These findings imply that serum PINP, OPG, and P450 levels may predict and diagnose prostate cancer.
Collapse
|
10
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
12
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Cipriani C, Pacheco MP, Kishk A, Wachich M, Abankwa D, Schaffner-Reckinger E, Sauter T. Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals (Basel) 2022; 15:179. [PMID: 35215292 PMCID: PMC8875459 DOI: 10.3390/ph15020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.
Collapse
Affiliation(s)
- Claudia Cipriani
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maria Pires Pacheco
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Ali Kishk
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maryem Wachich
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Thomas Sauter
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| |
Collapse
|
15
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
16
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
17
|
Abstract
To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor β (ERβ) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERβ. ERβ is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERβ+ TNBC patient-derived xenografts in mice and found that the ERβ agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERβ is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERβ functionless on genes involved in proliferation and inflammation.
Collapse
|
18
|
Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implications for human breast cancer. Oncol Lett 2021; 22:548. [PMID: 34093769 PMCID: PMC8170261 DOI: 10.3892/ol.2021.12809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Tauber Z, Cizkova K. The anti-inflammatory role of placental Hofbauer cells is altered in patients with chorioamnionitis: Are CYP2C8 and soluble epoxide hydrolase involved in immunomodulation? BIOMEDICAL PAPERS OF THE MEDICAL FACULTY OF THE UNIVERSITY PALACKY, OLOMOUC, CZECHOSLOVAKIA 2021; 166:267-273. [PMID: 33976432 DOI: 10.5507/bp.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
AIMS Hofbauer cells (HBCs) are placental macrophages playing various roles during normal and complicated pregnancies, and of the latter, chorioamnionitis is the most frequent. METHODS In placenta with chorioamnionitis, we examined immunohistochemical expression profiles of IL-1β, IL-10, and their potential regulators, CYP2C8 and soluble epoxide hydrolase (sEH), in Hofbauer cells and compared the results with our previously published data for normal placenta. RESULTS We found that the expression profiles of the studied proteins in Hofbauer cells in chorioamnionitis differs from normal placenta. In chorioamnionitis, HBCs showed a moderate expression of IL-1β together with a weak expression of IL-10 and CYP2C8. Contrary to normal placenta, HBCs in chorioamnionitis express sEH. We demonstrated a moderate positive correlation between the expression of CYP2C8 and sEH in chorioamnionitis (Spearman r = 0.5654), suggesting enhanced degradation of anti-inflammatory epoxyeicosatrienoic acids. Moreover, the relations of IL-1β and IL-10 to CYP2C8, previously described in normal placenta, disappeared. Furthermore, a weak expression of anti-inflammatory IL-10 in chorioamnionitis was accompanied by change in circularity of HBCs (Spearman r = 0.8193). CONCLUSION Taken together, these findings suggest a possible alteration of the anti-inflammatory role of HBCs and its regulation in chorioamnionitis.
Collapse
Affiliation(s)
- Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
20
|
Moyano P, García JM, García J, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Naval MV, Flores A, Mirat VA, Del Pino J. Chlorpyrifos induces cell proliferation in MCF-7 and MDA-MB-231 cells, through cholinergic and Wnt/β-catenin signaling disruption, AChE-R upregulation and oxidative stress generation after single and repeated treatment. Food Chem Toxicol 2021; 152:112241. [PMID: 33930485 DOI: 10.1016/j.fct.2021.112241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Chlorpyrifos (CPF) biocide, is associated with breast cancer. The processes underlying this association have not been elucidated to date. CPF increases MCF-7 and MDA-MB-231 cell proliferation after acute and long-term treatment, partially through KIAA1363 overexpression and aryl-hydrocarbon receptor activation but also through estrogen receptor-alpha activation after 24 h exposure in MCF-7 cells, suggesting other mechanisms may be involved. CPF induces reactive oxygen species (ROS) generation, acetylcholine accumulation, and overexpression of acetylcholinesterase-R/S (AChE-R/S) variants, while it also alters the Wnt/β-catenin pathway, both in vitro and in vivo, in processes different from cancer. These latter mechanisms are also linked to cell proliferation and could mediate this effect induced by CPF. Our results show that CPF (0.01-100 μM), following one-day and fourteen-days treatment, respectively, induced ROS generation and lipid peroxidation, and acetylcholine accumulation due to AChE inhibition, Wnt/β-catenin up- or downregulation depending on the CPF treatment concentration, and AChE-R and AChE-S overexpression, with the latter being mediated through GSK-3β activity alteration. Finally, CPF promoted cell division through ACh and ROS accumulation, AChE-R overexpression, and Wnt/β-catenin signaling disruption. Our results provide novel information on the effect of CPF on human breast cancer cell lines that may help to explain its involvement in breast cancer.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vega Alejandra Mirat
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
21
|
Kang JG, Lago CU, Lee JE, Park JH, Donnelly MP, Starost MF, Liu C, Kwon J, Noguchi AC, Ge K, Wang PY, Hwang PM. A Mouse Homolog of a Human TP53 Germline Mutation Reveals a Lipolytic Activity of p53. Cell Rep 2021; 30:783-792.e5. [PMID: 31968253 PMCID: PMC7021448 DOI: 10.1016/j.celrep.2019.12.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023] Open
Abstract
The physiological effects of the many germline mutations of TP53, encoding the tumor suppressor protein p53, are poorly understood. Here we report generating a p53 R178C knockin mouse modeling the human TP53 R181C mutation, which is notable for its prevalence and prior molecular characterization. Consistent with its weak cancer penetrance in humans, homozygous p53178C/C mice show a modest increase in tumorigenesis but, surprisingly, are lean with decreased body fat content. They display evidence of increased lipolysis and upregulation of fatty acid metabolism in their inguinal white adipose tissue (iWAT). Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses show that the mutant p53 bound and trans-activated Beta-3-Adrenergic Receptor (ADRB3), a gene that is known to promote lipolysis and is associated with obesity. This study reveals that a germline mutation of p53 can affect fat metabolism, which has been implicated in cancer development. Knockin of the mouse homolog of a human TP53 germline mutation known to cause Li-Fraumeni syndrome, a cancer predisposition disorder, results in a mouse model characterized by lower body fat content. Kang et al. show that enhancing transactivation of the lipolytic gene ADRB3 by mutant p53 contributes to this phenotype.
Collapse
Affiliation(s)
- Ju-Gyeong Kang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Cory U Lago
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Ji-Hoon Park
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Matthew P Donnelly
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Chengyu Liu
- Transgenic Core, NHLBI, NIH, Bethesda, MD, USA
| | - Jaeyul Kwon
- College of Medicine, Chungnam National University, Daejeon, Korea
| | | | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
22
|
Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin Pharmacokinet 2021; 60:585-601. [PMID: 33723723 DOI: 10.1007/s40262-021-01001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
24
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
25
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
26
|
Tauber Z, Chroma K, Baranova R, Cizkova K. The expression patterns of IL-1β and IL-10 and their relation to CYP epoxygenases in normal human placenta. Ann Anat 2021; 236:151671. [PMID: 33440233 DOI: 10.1016/j.aanat.2020.151671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The success of pregnancy depends on the regulation of immunological processes in the placenta. Important mediators of an immune response include pro- and anti-inflammatory interleukins which may be regulated by CYP epoxygenases and their metabolites. The relation between interleukins and CYP epoxygenases expression in human placenta has not yet been studied vastly. MATERIAL AND METHODS We investigated the expression patterns of IL-1β and IL-10 in embryonic (n=8), early foetal (n=16) and term (n=7) human placenta tissue by an immunohistochemical method and evaluated the results by Kruskal-Wallis test. The obtained data was correlated using Spearman's correlation coefficient to our previously published data of CYP epoxygenases expression in the same samples. To confirm that Hofbauer cells express IL-10 and IL-1β as well as CYP2C8 and IL-10 together, and thus there is a relation between proteins of interests, we used multiplex immunofluorescent staining. RESULTS The expression of IL-1β decreased with gestational age in cytotrophoblast, syncytiotrophoblast, as well as in Hofbauer cells whilst IL-10 decreased in cytotrophoblast, remained at the same levels in syncytiotrophoblast and increased in Hofbauer cells. In trophoblast cells, we found a statistically significant positive correlation between the expression of CYP2J2 and CYP2C9 with IL-1β, whereas there was no relation between IL-10 and any of the tested CYP epoxygenases. In Hofbauer cells, we found a significant positive correlation between CYP2C8 and IL-10 and a significant negative correlation between CYP2C8 and IL-1β. CONCLUSION Our results showed that the exact role and relation of interleukins and CYP epoxygenases and their metabolites is dependent on their respective cellular context. Because of IL-10, IL-1β, as well as HBCs play a role in various pathological conditions, further investigation of the exact role of CYP epoxygenase, interleukins and their relations is needed.
Collapse
Affiliation(s)
- Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Romana Baranova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
27
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Luo Y, Liu JY. Pleiotropic Functions of Cytochrome P450 Monooxygenase-Derived Eicosanoids in Cancer. Front Pharmacol 2020; 11:580897. [PMID: 33192522 PMCID: PMC7658919 DOI: 10.3389/fphar.2020.580897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eicosanoids are a class of functionally bioactive lipid mediators derived from the metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by COXs and LOXs pathways in the control of physiological and pathological processes associated with cancer has been well documented. However, the role of CYPs-mediated eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids (EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids (EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer progression have not been fully elucidated yet. Here we summarized the association of polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable insights into cancer therapeutics. We believe that manipulation of CYPs with or without supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent and/or treat cancers.
Collapse
Affiliation(s)
- Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jun-Yan Liu
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Lu J, Chen A, Ma X, Shang X, Zhang Y, Guo Y, Liu M, Wang X. Generation and Characterization of Cytochrome P450 2J3/10 CRISPR/Cas9 Knockout Rat Model. Drug Metab Dispos 2020; 48:1129-1136. [DOI: 10.1124/dmd.120.000114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
|
30
|
Jiang Z, Gu L, Liang X, Cao B, Zhang J, Guo X. The Effect of Selenium on CYP450 Isoform Activity and Expression in Pigs. Biol Trace Elem Res 2020; 196:454-462. [PMID: 31721080 DOI: 10.1007/s12011-019-01945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023]
Abstract
Selenium is an essential nutrient in diets; however, the effects of selenium on enzyme metabolic activation are not currently clear. Cytochromes P450 (CYP450) are major phase I metabolic enzymes involved in the biotransformation of xenobiotics and endogenous compounds to form electrophilic reactive metabolites. To investigate the effect of selenium on CYP450 isoform activity, the Landrace pigs were divided into three groups: the control group (containing Se 0.15 mg/kg), the Se-deficient group (Se 0.03 mg/kg), and the Se-supply group (Se 0.35 mg/kg). After 1 week of administration, a mixed solution (20 mg/kg of dextromethorphan, phenacetin, chlorzoxazone, and 10 mg/kg of testosterone in a CMC-Na solution) was intravenously injected into all pigs. The mixed solution content and pharmacokinetic parameters were assayed by HPLC and DAS, respectively. To investigate the effect of selenium on CYP450 isoform expression, RNA-Seq analysis, Western boltting, and qPCR were used. Results showed that Se-supply group significantly increased the activity and expression of CYP1A2 and CYP2D25, and decreased CYP3A29. Se-deficient group decreased the activity of CYP1A2, CYP2D25, and CYP2E1. These results demonstrated that selenium content affecting the activity or expression of the CYP450 isoform may lead to a food-drug interaction.
Collapse
Affiliation(s)
- Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lingbiao Gu
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiuli Liang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Baorui Cao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jingmiao Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiao Guo
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, 455000, Henan, China.
- College of Food and Biological Engineering, Anyang Institute of Technology, Huang he Road 22, Anyang, 455000, Henan, China.
| |
Collapse
|
31
|
Steinbrecht S, Kiebist J, König R, Thiessen M, Schmidtke KU, Kammerer S, Küpper JH, Scheibner K. Synthesis of cyclophosphamide metabolites by a peroxygenase from Marasmius rotula for toxicological studies on human cancer cells. AMB Express 2020; 10:128. [PMID: 32683510 PMCID: PMC7368878 DOI: 10.1186/s13568-020-01064-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Cyclophosphamide (CPA) represents a widely used anti-cancer prodrug that is converted by liver cytochrome P450 (CYP) enzymes into the primary metabolite 4-hydroxycyclophosphamide (4-OH-CPA), followed by non-enzymatic generation of the bioactive metabolites phosphoramide mustard and acrolein. The use of human drug metabolites as authentic standards to evaluate their toxicity is essential for drug development. However, the chemical synthesis of 4-OH-CPA is complex and leads to only low yields and undesired side products. In past years, fungal unspecific peroxygenases (UPOs) have raised to powerful biocatalysts. They can exert the identical selective oxyfunctionalization of organic compounds and drugs as known for CYP enzymes with hydrogen peroxide being used as sole cosubstrate. Herein, we report the efficient enzymatic hydroxylation of CPA using the unspecific peroxygenase from Marasmius rotula (MroUPO) in a simple reaction design. Depending on the conditions used the primary liver metabolite 4-OH-CPA, its tautomer aldophosphamide (APA) and the overoxidized product 4-ketocyclophosphamide (4-keto-CPA) could be obtained. Using a kinetically controlled approach 4-OH-CPA was isolated with a yield of 32% (purity > 97.6%). Two human cancer cell lines (HepG2 and MCF-7) were treated with purified 4-OH-CPA produced by MroUPO (4-OH-CPAUPO). 4-OH-CPAUPO–induced cytotoxicity as measured by a luminescent cell viability assay and its genotoxicity as measured by γH2AX foci formation was not significantly different to the commercially available standard. The high yield of 4-OH-CPAUPO and its biological activity demonstrate that UPOs can be efficiently used to produce CYP-specific drug metabolites for pharmacological assessment.
Collapse
|
32
|
Moyano P, García J, García JM, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Lobo M, Del Pino J. Chlorpyrifos-induced cell proliferation in human breast cancer cell lines differentially mediated by estrogen and aryl hydrocarbon receptors and KIAA1363 enzyme after 24 h and 14 days exposure. CHEMOSPHERE 2020; 251:126426. [PMID: 32171938 DOI: 10.1016/j.chemosphere.2020.126426] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023]
Abstract
Organophosphate biocide chlorpyrifos (CPF) is involved with breast cancer. However, the mechanisms remain unknown. CPF increases cell division in MCF-7 cells, by estrogen receptor alpha (ERα) activation, although it is a weak ERα agonist, suggesting other mechanisms should be involved. Aromatic hydrocarbon receptor (AhR) activation increases cell division in human breast cancer cells, and CPF strongly activates it. Finally, the KIAA1363 enzyme, which is regulated by CPF, is overexpressed in cancer cells. Accordingly, we hypothesized that CPF or its metabolite chlorpyrifos-oxon (CPFO) could induce cell viability promotion in MCF-7 and MDA-MB-231 cell lines, through mechanisms related to ERα, AhR, and KIAA1363, after 24 h and 14 days treatment. Results show that, after acute and long-term treatment, CPF and CPFO alter differently KIAA1363, AhR, ER and cytochrome P450 isoenzyme 1A1 (CYP1A1) expression. In addition, they induced cell proliferation through ERα activation after 24 h exposure in MCF-7 cells and through KIAA1363 overexpression and AhR activation in MCF-7 and MDA-MB-231 cells after acute and long-term treatment. The results obtained in this work provide new information relative to the mechanisms involved in the CPF toxic effects that could lead to breast cancer disease.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
33
|
Pawłowska M, Kwaśniewska A, Mazerska Z, Augustin E. Enhanced Activity of P4503A4 and UGT1A10 Induced by Acridinone Derivatives C-1305 and C-1311 in MCF-7 and HCT116 Cancer Cells: Consequences for the Drugs' Cytotoxicity, Metabolism and Cellular Response. Int J Mol Sci 2020; 21:ijms21113954. [PMID: 32486425 PMCID: PMC7312182 DOI: 10.3390/ijms21113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023] Open
Abstract
Activity modulation of drug metabolism enzymes can change the biotransformation of chemotherapeutics and cellular responses induced by them. As a result, drug-drug interactions can be modified. Acridinone derivatives, represented here by C-1305 and C-1311, are potent anticancer drugs. Previous studies in non-cellular systems showed that they are mechanism-based inhibitors of cytochrome P4503A4 and undergo glucuronidation via UDP-glucuronosyltranspherase 1A10 isoenzyme (UGT1A10). Therefore, we investigated the potency of these compounds to modulate P4503A4 and UGT1A10 activity in breast MCF-7 and colon HCT116 cancer cells and their influence on cytotoxicity and cellular response in cells with different expression levels of studied isoenzymes. We show that C-1305 and C-1311 are inducers of not only P4503A4 but also UGT1A10 activity. MCF-7 and HCT116 cells with high P4503A4 activity are more sensitive to acridinone derivatives and undergo apoptosis/necrosis to a greater extent. UGT1A10 was demonstrated to be responsible for C-1305 and C-1311 glucuronidation in cancer cells and glucuronide products were excreted outside the cell very fast. Finally, we show that glucuronidation of C-1305 antitumor agent enhances its pro-apoptotic properties in HCT116 cells, while the cytotoxicity and cellular response induced by C-1311 did not change after drug glucuronidation in both cell lines.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
- Correspondence: ; Tel.: +48-58-347-12-97; Fax: +48-58-347-11-44
| | - Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| |
Collapse
|
34
|
Jia Z, Zhou W, Zhang G, Fu J, Li D, Ren L. CYP3A4 genetic variants are associated with susceptibility of non-small cell lung cancer in a Shaanxi Han population. Genomics 2020; 112:3465-3472. [PMID: 32464168 DOI: 10.1016/j.ygeno.2020.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE Lung cancer (LC) is one of the fastest-growing malignant tumors in the world in terms of morbidity and mortality. CYP3A4 plays a crucial role in the occurrence of LC. Little is known about the contribution of CYP3A4 polymorphisms for non-small cell lung cancer (NSCLC) risk. This study aimed to explore the correlation of CYP3A4 genetic variants (rs3735451, rs4646440, rs35564277, and rs4646437) with NSCLC risk. METHODS Four single nucleotide polymorphisms (SNPs) were genotyped by Agena MassARRAY in this case-control study (507 NSCLC patients and 505 controls) among a Shaanxi Han population. Hardy-Weinberg equilibrium (HWE) of each SNP in controls was evaluated by exact test. The association of CYP3A4 polymorphisms with NSCLC risk was explored by calculating odds ratios (OR) and 95% confidence intervals (CI) using logistic regression analysis with adjustment for age and gender. RESULTS Our research revealed that rs4646440 was significantly associated with an increased risk of NSCLC (OR 2.64, p = .005), while rs4646437 played a protective role in NSCLC risk (OR 0.48, p = 4.00 × 10-7). Stratified analyses indicated that rs4646440 significantly enhanced the susceptibility of NSCLC in BMI > 24 kg/m2, non-smokers and non-drinkers (OR 14.29, p = .012; OR 1.56, p = .023; OR 1.67, p = .031, respectively). Besides, we observed that rs3735451 exhibited an increased risk of NSCLC in BMI > 24 kg/m2 (OR 2.47, p = .030), whereas rs4646437 had a reduced risk of NSCLC in BMI ≤ 24 kg/m2 (OR 0.47, p = 5.17 × 10-5). We also found that rs35564277 was considered as a protective factor of NSCLC in non-smokers (OR 0.50, p = .032). CONCLUSION Our study indicated that CYP3A4 genetic variants were associated with NSCLC susceptibility in a Shaanxi Han population.
Collapse
Affiliation(s)
- Zhuoqi Jia
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Weiru Zhou
- Department of Nuclear Medicine, Xi'an Gaoxin Hospital, Xi'an 710075, Shaanxi, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Junke Fu
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Daxu Li
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Le Ren
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
35
|
Kowalski JP, McDonald MG, Pelletier RD, Hanenberg H, Wiek C, Rettie AE. Design and Characterization of the First Selective and Potent Mechanism-Based Inhibitor of Cytochrome P450 4Z1. J Med Chem 2020; 63:4824-4836. [DOI: 10.1021/acs.jmedchem.0c00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- John P. Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Matthew G. McDonald
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Robert D. Pelletier
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children’s Hospital Essen, University of Duisburg−Essen, 45122 Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Allan E. Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
36
|
Development and validation of a rapid, specific and sensitive LC-MS/MS bioanalytical method for eicosanoid quantification - assessment of arachidonic acid metabolic pathway activity in hypertensive rats. Biochimie 2020; 171-172:223-232. [PMID: 32179167 DOI: 10.1016/j.biochi.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 11/23/2022]
Abstract
Lipid mediators such as eicosanoids maintain various physiological processes, and their alterations are involved in the development of numerous cardiovascular diseases. Therefore, the reliable assessment of their profile could be helpful in diagnosis as well as in eicosanoid biomarker-based treatment. Hence, the presented study aimed to develop and validate a new rapid, specific and sensitive LC-MS/MS method for quantification of arachidonic acid-derived eicosanoids in plasma, including lipid mediators generated via COX-, LOX- and CYP450-dependent pathways. The developed method features high sensitivity because the lower limit of quantification ranged from 0.05 to 0.50 ng mL-1 as well as the accuracy and precision estimated within 88.88-111.25% and 1.03-11.82%, respectively. An application of a simple and fast liquid-liquid extraction procedure for sample cleaning resulted in a highly satisfactory recovery of the analytes (>88.30%). Additionally, the method was validated using artificial plasma, an approach that enabled the elimination of the matrix effect caused by an endogenous concentration of studied lipid mediators. Importantly, the presented LC-MS/MS method allowed for simultaneous quantitative and qualitative [quan/qual] analysis of the selected eicosanoids, leading to an additional improvement of the method specificity. Moreover, the validated method was successfully applied for eicosanoid profiling in rat, mouse and human plasma samples, clearly demonstrating the heterogeneity of the profile of studied lipid mediators in those species.
Collapse
|
37
|
Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis. Biochimie 2020; 171-172:147-157. [PMID: 32105813 DOI: 10.1016/j.biochi.2020.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
The importance of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) as tumor growth promotors has already been described in several cancer types. The aim of this study was to evaluate the role of these compounds in the biology of pheochromocytoma/paraganglioma. These tumors originate from chromaffin cells derived from adrenal medulla (pheochromocytomas) or extra-adrenal autonomic paraganglia (paragangliomas), and they represent the most common hereditary endocrine neoplasia. According to mutations in the driver genes, these tumors are divided in two clusters: pseudo-hypoxic and kinase-signaling EETs, but not 20-HETE, exhibited a potent ability to sustain growth in a murine pheochromocytoma cell line (MPC) in vitro, EETs promoted an increase in cell proliferation and a decrease in cell apoptosis. In a mouse model of pheochromocytoma, the inhibition of CYP-mediated AA metabolism using 1-aminobenzotriazol resulted in slower tumor growth, a decreased vascularization, and a lower final volume. Also, the expression of AA-metabolizing CYP monooxygenases was detected in tumor samples from human origin, being their apparent abundance and the production of both metabolites higher in tumors from the kinase-signaling cluster. This is the first evidence of the importance of CYP- derived AA metabolites in the biology and development of pheochromocytoma/paraganglioma tumors.
Collapse
|
38
|
Deregulating the CYP2C19/Epoxy-Eicosatrienoic Acid-Associated FABP4/FABP5 Signaling Network as a Therapeutic Approach for Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12010199. [PMID: 31941087 PMCID: PMC7016875 DOI: 10.3390/cancers12010199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recurrence and metastasis are the main causes of triple-negative breast cancer (TNBC) mortality. On the basis of our clinical cohorts and integrative omics analyses, we hypothesized that understanding the interplay between fatty acid binding protein (FABP) and epoxy-eicosatrienoic acid (EET) driven metastatic progression can uncover a new opportunity for TNBC intervention. In this study, the biological relevance of increased protein expression of CYP2C19, FABP4, and FABP5 in TNBC tumors and in the TNBC cell line (MDA-MB-231), as well as its highly metastatic lung seeking variant (LM6) were delineated from publicly available datasets, shRNA-mediated knockdown, EET supplementation, cancer and stromal cell co-cultures, and an orthotopic and resection xenograft tumor mouse model. We found that the high expression levels of CYP2C19 and FABP4 and FABP5 are critical in TNBC metastatic transformation and stromal cell interactions. Furthermore, EET-associated nuclear translocation of FABP4 and FABP5 and nuclear accumulation of SREBP-2 or PPAR-γ influence TNBC cell proliferation, migratory transformation, and distal metastasis priming. Most notably, we uncovered novel bioefficacy and modes of action of the anticancer drug doxorubicin and a phytogalactolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG), which effectively attenuated TNBC recurrence and lung metastasis through deregulating the FABP/EET dynamics and levels. This study, therefore, introduces a novel approach to combating TNBC by targeting the FABP/EET/CYP-associated metastatic signaling network.
Collapse
|
39
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
40
|
Lee JS, Tabata K, Twu WI, Rahman MS, Kim HS, Yu JB, Jee MH, Bartenschlager R, Jang SK. RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 2019; 15:e1008021. [PMID: 31525236 PMCID: PMC6762199 DOI: 10.1371/journal.ppat.1008021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L. All positive-strand RNA viruses replicate their genomes in distinct membrane-associated compartments designated replication organelles. The compartmentalization of viral replication machinery allows the enrichment and coordination of cellular and viral factors required for RNA replication and the evasion from innate host defense systems. Hepatitis C virus (HCV), a prototype member of the Flaviviridae family, rearranges intracellular membranes to construct replication organelles composed primarily of double-membrane vesicles (DMVs) which are morphologically similar to autophagosomes. Nonstructural protein 5A (NS5A), which is essential for HCV replication, induces DMV formation. Here, we report that NS5A triggers DMV formation through interactions with RACK1 and components of the vesicle nucleation complex acting at the early stage of autophagy. These results illustrate how a virus skews cellular machineries to utilize them for its replication by hijacking cellular proteins through protein-protein interactions. This research sheds light on the molecular basis of replication organelle formation by HCV and possibly other viruses employing organelles with DMV morphology.
Collapse
Affiliation(s)
- Jae Seung Lee
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Hee Sun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Jin Bae Yu
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Min Hyeok Jee
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Sung Key Jang
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- Department of Life Sciences, POSTECH Biotech Center, POSTECH, Nam-gu, Pohang-si, Gyeongsangbuk-do, Rep. of KOREA
- * E-mail:
| |
Collapse
|
41
|
Wang L, Chen W, Zha J, Yan Y, Wei Y, Chen X, Zhu X, Ge L. miR‑543 acts as a novel oncogene in oral squamous cell carcinoma by targeting CYP3A5. Oncol Rep 2019; 42:973-990. [PMID: 31322243 PMCID: PMC6667884 DOI: 10.3892/or.2019.7230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs that can act as oncogenes or tumor-suppressor genes in human cancer. Previous studies have revealed that abnormal expression of miRNAs is closely associated with tumor cell cycle, differentiation, growth and apoptosis. miR-543 is expressed abnormally in a wide variety of cancers and has been associated with cellular proliferation, apoptosis, and invasion; however, the effect of miR-543 remains unknown in oral squamous cell carcinoma (OSCC). In the present study, the expression level of miR-543 in OSCC cell lines and tissues was investigated by RT-qPCR. A series of experiments was then performed to elucidate the functions of miR-543 in OSCC, such as CCK-8 assay, colony formation assay, flow cytometry, cell cycle distribution assay and cell apoptosis assay and Transwell assay. miR-543 expression was significantly upregulated in tumors from patients with OSCC and in OSCC cell lines. Overexpression of miR-543 promoted the proliferation, invasion and migration of OSCC cell lines, and inhibited cell apoptosis. In addition, the present study identified cytochrome P450 family 3 subfamily A member 5 (CYP3A5) as a direct target of miR-543 using software analysis and dual-luciferase reporter assays. In conclusion, the results of the present study suggest that miR-543 acts as a tumor promoter and serves a vital role in OSCC proliferation and invasion. These results confirm that miR-543 may serve as a potential novel target for the treatment of OSCC.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Weihong Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongxiang Wei
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xili Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xinxin Zhu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| |
Collapse
|
42
|
Apaya MK, Shiau JY, Liao GS, Liang YJ, Chen CW, Yang HC, Chu CH, Yu JC, Shyur LF. Integrated omics-based pathway analyses uncover CYP epoxygenase-associated networks as theranostic targets for metastatic triple negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:187. [PMID: 31072371 PMCID: PMC6507159 DOI: 10.1186/s13046-019-1187-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Background Current prognostic tools and targeted therapeutic approaches have limited value for metastatic triple negative breast cancer (TNBC). Building upon current knowledge, we hypothesized that epoxyeicosatrienoic acids (EETs) and related CYP450 epoxygenases may have differential roles in breast cancer signaling, and better understanding of which may uncover potential directions for molecular stratification and personalized therapy for TNBC patients. Methods We analyzed the oxylipin metabolome of paired tumors and adjacent normal mammary tissues from patients with pathologically confirmed breast cancer (N = 62). We used multivariate statistical analysis to identify important metabolite contributors and to determine the predictive power of tumor tissue metabolite clustering. In vitro functional assays using a panel of breast cancer cell lines were carried out to further confirm the crucial roles of endogenous and exogenous EETs in the metastasis transformation of TNBC cells. Deregulation of associated downstream signaling networks associated with EETs/CYPs was established using transcriptomics datasets from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). Comparative TNBC proteomics using the same tissue specimens subjected to oxylipin metabolomics analysis was used as validation set. Results Metabolite-by-metabolite comparison, tumor immunoreactivity, and gene expression analyses showed that CYP epoxygenases and arachidonic acid-epoxygenation products, EET metabolites, are strongly associated with TNBC metastasis. Notably, all the 4 EET isomers (5,6-, 8,9-, 11,12-, and 14,15-EET) was observed to profoundly drive the metastasis transformation of mesenchymal-like TNBC cells among the TNBC (basal- and mesenchymal-like), HER2-overexpressing and luminal breast cancer cell lines examined. Our pathway analysis revealed that, in hormone-positive breast cancer subtype, CYP epoxygenase overexpression is more related to immune cell-associated signaling, while EET-mediated Myc, Ras, MAPK, EGFR, HIF-1α, and NOD1/2 signaling are the molecular vulnerabilities of metastatic CYP epoxygenase-overexpressing TNBC tumors. Conclusions This study suggests that categorizing breast tumors according to their EET metabolite ratio classifiers and CYP epoxygenase profiles may be useful for prognostic and therapeutic assessment. Modulation of CYP epoxygenase and EET-mediated signaling networks may offer an effective approach for personalized treatment of breast cancer, and may be an effective intervention option for metastatic TNBC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1187-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jeng-Yuan Shiau
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Guo-Shiou Liao
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hong Chu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Jyh-Cherng Yu
- Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
43
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Liu X, Huang X, Zhang S, Niu F, Ouyang Y, Shou Z, Liu J. Correlations between CYP3A4 polymorphism and susceptibility to breast cancer in Chinese Han population. Int J Clin Oncol 2018; 24:179-188. [PMID: 30218411 DOI: 10.1007/s10147-018-1346-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND CYP3A4 is a major enzyme catalyzing the metabolism of endogenous steroids that play an important role in the etiology of carcinogenesis. This study was designed to investigate the contribution of CYP3A4 polymorphism to breast cancer in Chinese Han female population. METHODS To examine whether variants of CYP3A4 contribute to breast cancer, 5 single-nucleotide polymorphisms (SNPs) of CYP3A4 were genotyped by Sequenom MassARRAY in 267 breast cancer patients and 302 healthy controls. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression adjusted for age. RESULTS We found that the TT genotype of CYP3A4*1G (rs2242480) polymorphism was associated with increased risk of breast cancer using the fixed effects model (recessive model: OR = 2.34, p = 0.018). Stratified according to age, CYP3A4*1G increased the risk of breast cancer especially in less than 50-year-old group (codominant model OR = 3.68, p = 0.041; recessive model: OR = 3.55, p = 0.012). Furthermore, TT genotype of rs2242480 was associated with Cerb-B2 positive (recessive model: OR = 2.47, p = 0.025) and stage I/II (recessive model: OR = 2.32, p = 0.041). However, no statistically significant associations in other polymorphisms and haploview analysis were observed. CONCLUSIONS This study provides an evidence for polymorphism of CYP3A4 gene associated with the development of breast cancer, also a new insight into etiology of breast cancer. However, the underlying mechanism of the CYP3A4 gene in breast cancer is necessary for further study.
Collapse
Affiliation(s)
- Xu Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, #1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China
| | - Xi Huang
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Shanshan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongri Ouyang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1277, Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei, China.
| | - Jikui Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, #1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
45
|
Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, McGarrah P, Potter DA. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev 2018; 37:409-423. [DOI: 10.1007/s10555-018-9749-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Evangelista EA, Lemaitre RN, Sotoodehnia N, Gharib SA, Totah RA. CYP2J2 Expression in Adult Ventricular Myocytes Protects Against Reactive Oxygen Species Toxicity. Drug Metab Dispos 2018; 46:380-386. [PMID: 29343610 DOI: 10.1124/dmd.117.078840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 2J2 isoform (CYP2J2) is a drug-metabolizing enzyme that is highly expressed in adult ventricular myocytes. It is responsible for the bioactivation of arachidonic acid (AA) into epoxyeicosatrienoic acids (EETs). EETs are biologically active signaling compounds that protect against disease progression, particularly in cardiovascular diseases. As a drug-metabolizing enzyme, CYP2J2 is susceptible to drug interactions that could lead to cardiotoxicity. CYP2J2 has been shown to be resistant to induction by canonical CYP inducers such as phenytoin and rifampin. It is, however, unknown how cellular stresses augment CYP2J2 expression. Here, we determine the effects of oxidative stress on gene expression in adult ventricular myocytes. Further, we assess the consequences of CYP2J2 inhibition and CYP2J2 silencing on cells when levels of reactive oxygen species (ROS) are elevated. Findings indicate that CYP2J2 expression increases in response to external ROS or when internal ROS levels are elevated. In addition, cell survival decreases with ROS exposure when CYP2J2 is chemically inhibited or when CYP2J2 expression is reduced using small interfering RNA. These effects are mitigated with external addition of EETs to the cells. Finally, we determined the results of external EETs on gene expression and show that only two of the four regioisomers cause an increase in HMOX1 expression. This work is the first to determine the consequence of cellular stress, specifically high ROS levels, on CYP2J2 expression in human ventricular myocytes and discusses how this enzyme may play an important role in response to cardiac oxidative stress.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rozenn N Lemaitre
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Nona Sotoodehnia
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Sina A Gharib
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| |
Collapse
|
48
|
McDonald MG, Ray S, Amorosi CJ, Sitko KA, Kowalski JP, Paco L, Nath A, Gallis B, Totah RA, Dunham MJ, Fowler DM, Rettie AE. Expression and Functional Characterization of Breast Cancer-Associated Cytochrome P450 4Z1 in Saccharomyces cerevisiae. Drug Metab Dispos 2017; 45:1364-1371. [PMID: 29018033 PMCID: PMC5697098 DOI: 10.1124/dmd.117.078188] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC50 ∼15 μM). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Sutapa Ray
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Clara J Amorosi
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Katherine A Sitko
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - John P Kowalski
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Lorela Paco
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Byron Gallis
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Maitreya J Dunham
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Douglas M Fowler
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| |
Collapse
|
49
|
Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, Hanse EA, Cuellar RAD, Grinkova YV, Langenfeld VW, Swedien DS, Stamschror JD, Alvarez J, Luna F, Galván A, Bae YK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Norris B, Flory CM, Schumacher RJ, O'Sullivan MG, Cao Q, Chu H, Lipscomb JD, Atkins WM, Gupta K, Kelekar A, Blair IA, Capdevila JH, Falck JR, Sligar SG, Poulos TL, Georg GI, Ambrose E, Potter DA. Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chem Biol 2017; 24:1259-1275.e6. [PMID: 28919040 PMCID: PMC5650512 DOI: 10.1016/j.chembiol.2017.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
The mechanisms by which cancer cell-intrinsic CYP monooxygenases promote tumor progression are largely unknown. CYP3A4 was unexpectedly associated with breast cancer mitochondria and synthesized arachidonic acid (AA)-derived epoxyeicosatrienoic acids (EETs), which promoted the electron transport chain/respiration and inhibited AMPKα. CYP3A4 knockdown activated AMPKα, promoted autophagy, and prevented mammary tumor formation. The diabetes drug metformin inhibited CYP3A4-mediated EET biosynthesis and depleted cancer cell-intrinsic EETs. Metformin bound to the active-site heme of CYP3A4 in a co-crystal structure, establishing CYP3A4 as a biguanide target. Structure-based design led to discovery of N1-hexyl-N5-benzyl-biguanide (HBB), which bound to the CYP3A4 heme with higher affinity than metformin. HBB potently and specifically inhibited CYP3A4 AA epoxygenase activity. HBB also inhibited growth of established ER+ mammary tumors and suppressed intratumoral mTOR. CYP3A4 AA epoxygenase inhibition by biguanides thus demonstrates convergence between eicosanoid activity in mitochondria and biguanide action in cancer, opening a new avenue for cancer drug discovery.
Collapse
Affiliation(s)
- Zhijun Guo
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xia Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ting-Lan Chiu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Dafydd G Thomas
- Department of Pathology and Cancer Center, University of Michigan, Ann Arbor, MN, USA
| | - Eric A Hanse
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Wankhede Langenfeld
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel S Swedien
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin D Stamschror
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Juan Alvarez
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fernando Luna
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, UNAM, Mexico, Mexico
| | - Adela Galván
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, UNAM, Mexico, Mexico
| | | | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Beverly Norris
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Craig M Flory
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, St. Paul, MN, USA
| | - Qing Cao
- Division of Biostatistics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Haitao Chu
- Division of Biostatistics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Kalpna Gupta
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Blair
- Department of Pharmacology, Center for Cancer Pharmacology and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge H Capdevila
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, TN, USA
| | - John R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern, Dallas, TX, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth Ambrose
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - David A Potter
- Department of Medicine Hematology, Oncology and Transplantation Division and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
50
|
Borowa-Mazgaj B, Mróz A, Augustin E, Paluszkiewicz E, Mazerska Z. The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748. Biochem Pharmacol 2017. [DOI: 10.1016/j.bcp.2017.06.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|