1
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple mechanisms for licensing human replication origins. Nature 2024; 636:488-498. [PMID: 39604729 DOI: 10.1038/s41586-024-08237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast1-4, the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for-but enhances-human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM-ORC (MO) complexes that are distinct from the yeast MO complex5,6 and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2-7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
Collapse
Affiliation(s)
- Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Polo Rivera C, Deegan TD, Labib KPM. CMG helicase disassembly is essential and driven by two pathways in budding yeast. EMBO J 2024; 43:3818-3845. [PMID: 39039287 PMCID: PMC11405719 DOI: 10.1038/s44318-024-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2∆ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1-family helicases might have mediated CMG disassembly in ancestral eukaryotes.
Collapse
Affiliation(s)
- Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Karim P M Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
3
|
Yang R, Hunker O, Wise M, Bleichert F. Multiple pathways for licensing human replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588796. [PMID: 38645015 PMCID: PMC11030351 DOI: 10.1101/2024.04.10.588796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.
Collapse
Affiliation(s)
| | | | - Marleigh Wise
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Cvetkovic MA, Passaretti P, Butryn A, Reynolds-Winczura A, Kingsley G, Skagia A, Fernandez-Cuesta C, Poovathumkadavil D, George R, Chauhan AS, Jhujh SS, Stewart GS, Gambus A, Costa A. The structural mechanism of dimeric DONSON in replicative helicase activation. Mol Cell 2023; 83:4017-4031.e9. [PMID: 37820732 PMCID: PMC7616792 DOI: 10.1016/j.molcel.2023.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.
Collapse
Affiliation(s)
- Milos A Cvetkovic
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agata Butryn
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Anoop S Chauhan
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
5
|
Pike AM, Friend CM, Bell SP. Distinct RPA functions promote eukaryotic DNA replication initiation and elongation. Nucleic Acids Res 2023; 51:10506-10518. [PMID: 37739410 PMCID: PMC10602884 DOI: 10.1093/nar/gkad765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.
Collapse
Affiliation(s)
- Alexandra M Pike
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Caitlin M Friend
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Kingsley G, Skagia A, Passaretti P, Fernandez-Cuesta C, Reynolds-Winczura A, Koscielniak K, Gambus A. DONSON facilitates Cdc45 and GINS chromatin association and is essential for DNA replication initiation. Nucleic Acids Res 2023; 51:9748-9763. [PMID: 37638758 PMCID: PMC10570026 DOI: 10.1093/nar/gkad694] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.
Collapse
Affiliation(s)
- Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| |
Collapse
|
7
|
Zhang W, Wang Y, Liu Y, Liu C, Wang Y, He L, Cheng X, Peng Y, Xia L, Wu X, Wu J, Zhang Y, Sun L, Chen P, Li G, Tu Q, Liang J, Shang Y. NFIB facilitates replication licensing by acting as a genome organizer. Nat Commun 2023; 14:5076. [PMID: 37604829 PMCID: PMC10442334 DOI: 10.1038/s41467-023-40846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
8
|
Scaramuzza S, Jones RM, Sadurni MM, Reynolds-Winczura A, Poovathumkadavil D, Farrell A, Natsume T, Rojas P, Cuesta CF, Kanemaki MT, Saponaro M, Gambus A. TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells. Nat Commun 2023; 14:5071. [PMID: 37604812 PMCID: PMC10442450 DOI: 10.1038/s41467-023-40695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Cell division is the basis for the propagation of life and requires accurate duplication of all genetic information. DNA damage created during replication (replication stress) is a major cause of cancer, premature aging and a spectrum of other human disorders. Over the years, TRAIP E3 ubiquitin ligase has been shown to play a role in various cellular processes that govern genome integrity and faultless segregation. TRAIP is essential for cell viability, and mutations in TRAIP ubiquitin ligase activity lead to primordial dwarfism in patients. Here, we have determined the mechanism of inhibition of cell proliferation in TRAIP-depleted cells. We have taken advantage of the auxin induced degron system to rapidly degrade TRAIP within cells and to dissect the importance of various functions of TRAIP in different stages of the cell cycle. We conclude that upon rapid TRAIP degradation, specifically in S-phase, cells cease to proliferate, arrest in G2 stage of the cell cycle and undergo senescence. Our findings reveal that TRAIP works in S-phase to prevent DNA damage at transcription start sites, caused by replication-transcription conflicts.
Collapse
Affiliation(s)
- Shaun Scaramuzza
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
- Cancer Research UK - Manchester Institute, Manchester Cancer Research Centre, Manchester, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Martina Muste Sadurni
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Abigail Farrell
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Cyntia Fernandez Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
The human pre-replication complex is an open complex. Cell 2023; 186:98-111.e21. [PMID: 36608662 DOI: 10.1016/j.cell.2022.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.
Collapse
|
10
|
Tarcan Z, Poovathumkadavil D, Skagia A, Gambus A. The p97 segregase cofactor Ubxn7 facilitates replisome disassembly during S-phase. J Biol Chem 2022; 298:102234. [PMID: 35798141 PMCID: PMC9358472 DOI: 10.1016/j.jbc.2022.102234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Complex cellular processes are driven by the regulated assembly and disassembly of large multiprotein complexes. While we are beginning to understand the molecular mechanism for assembly of the eukaryotic DNA replication machinery (replisome), we still know relatively little about the regulation of its disassembly at replication termination. Recently, the first elements of this process have emerged, revealing that the replicative helicase, at the heart of the replisome, is polyubiquitylated prior to unloading and that this unloading requires p97 segregase activity. Two different E3 ubiquitin ligases have now been shown to ubiquitylate the helicase under different conditions: Cul2Lrr1 and TRAIP. Here, using Xenopus laevis egg extract cell-free system and biochemical approaches, we have found two p97 cofactors, Ubxn7 and Faf1, which can interact with p97 during replisome disassembly during S-phase. We show only Ubxn7, however, facilitates efficient replisome disassembly. Ubxn7 delivers this role through its interaction via independent domains with both Cul2Lrr1 and p97 to allow coupling between Mcm7 ubiquitylation and its removal from chromatin. Our data therefore characterize Ubxn7 as the first substrate-specific p97 cofactor regulating replisome disassembly in vertebrates and a rationale for the efficacy of the Cul2Lrr1 replisome unloading pathway in unperturbed S-phase.
Collapse
|
11
|
Schmidt JM, Yang R, Kumar A, Hunker O, Seebacher J, Bleichert F. A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6. Nat Commun 2022; 13:1059. [PMID: 35217664 PMCID: PMC8881611 DOI: 10.1038/s41467-022-28695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
The coordinated action of multiple replicative helicase loading factors is needed for the licensing of replication origins prior to DNA replication. Binding of the Origin Recognition Complex (ORC) to DNA initiates the ATP-dependent recruitment of Cdc6, Cdt1 and Mcm2-7 loading, but the structural details for timely ATPase site regulation and for how loading can be impeded by inhibitory signals, such as cyclin-dependent kinase phosphorylation, are unknown. Using cryo-electron microscopy, we have determined several structures of S. cerevisiae ORC·DNA·Cdc6 intermediates at 2.5-2.7 Å resolution. These structures reveal distinct ring conformations of the initiator·co-loader assembly and inactive ATPase site configurations for ORC and Cdc6. The Orc6 N-terminal domain laterally engages the ORC·Cdc6 ring in a manner that is incompatible with productive Mcm2-7 docking, while deletion of this Orc6 region alleviates the CDK-mediated inhibition of Mcm7 recruitment. Our findings support a model in which Orc6 promotes the assembly of an autoinhibited ORC·DNA·Cdc6 intermediate to block origin licensing in response to CDK phosphorylation and to avert DNA re-replication.
Collapse
Affiliation(s)
- Jan Marten Schmidt
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
- University of Basel, Basel, 4051, Switzerland
- Novartis Institutes for Biomedical Research, Basel, 4033, Switzerland
| | - Ran Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ashish Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Olivia Hunker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Vuković LD, Chen P, Mishra S, White KH, Gigley JP, Levy DL. Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression. Sci Rep 2021; 11:23586. [PMID: 34880267 PMCID: PMC8654834 DOI: 10.1038/s41598-021-02803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
While changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Karen H White
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
13
|
Volpi I, Gillespie PJ, Chadha GS, Blow JJ. The role of DDK and Treslin-MTBP in coordinating replication licensing and pre-initiation complex formation. Open Biol 2021; 11:210121. [PMID: 34699733 PMCID: PMC8548084 DOI: 10.1098/rsob.210121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Treslin/Ticrr is required for the initiation of DNA replication and binds to MTBP (Mdm2 Binding Protein). Here, we show that in Xenopus egg extract, MTBP forms an elongated tetramer with Treslin containing two molecules of each protein. Immunodepletion and add-back experiments show that Treslin-MTBP is rate limiting for replication initiation. It is recruited onto chromatin before S phase starts and recruitment continues during S phase. We show that DDK activity both increases and strengthens the interaction of Treslin-MTBP with licensed chromatin. We also show that DDK activity cooperates with CDK activity to drive the interaction of Treslin-MTBP with TopBP1 which is a regulated crucial step in pre-initiation complex formation. These results suggest how DDK works together with CDKs to regulate Treslin-MTBP and plays a crucial in selecting which origins will undergo initiation.
Collapse
Affiliation(s)
- Ilaria Volpi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
14
|
Villa F, Fujisawa R, Ainsworth J, Nishimura K, Lie‐A‐Ling M, Lacaud G, Labib KPM. CUL2 LRR1 , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Rep 2021; 22:e52164. [PMID: 33590678 PMCID: PMC7926238 DOI: 10.15252/embr.202052164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG-MCM7 subunit during S-phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis-regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.
Collapse
Affiliation(s)
- Fabrizio Villa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Kohei Nishimura
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Michael Lie‐A‐Ling
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Georges Lacaud
- Cancer Research U.K. Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
15
|
Comparative genomic analysis reveals evolutionary and structural attributes of MCM gene family in Arabidopsis thaliana and Oryza sativa. J Biotechnol 2020; 327:117-132. [PMID: 33373625 DOI: 10.1016/j.jbiotec.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022]
Abstract
The mini-chromosome maintenance (MCM) family, a large and functionally diverse protein family belonging to the AAA+ superfamily, is essential for DNA replication in all eukaryotic organisms. The MCM 2-7 form a hetero-hexameric complex which serves as licensing factor necessary to ensure the proper genomic DNA replication during the S phase of cell cycle. MCM 8-10 are also associated with the DNA replication process though their roles are particularly unclear. In this study, we report an extensive in silico analysis of MCM gene family (MCM 2-10) in Arabidopsis and rice. Comparative analysis of genomic distribution across eukaryotes revealed conservation of core MCMs 2-7 while MCMs 8-10 are absent in some taxa. Domain architecture analysis underlined MCM 2-10 subfamily specific features. Phylogenetic analyses clustered MCMs into 9 clades as per their subfamily. Duplication events are prominent in plant MCM family, however no duplications are observed in Arabidopsis and rice MCMs. Synteny analysis among Arabidopsis thaliana, Oryza sativa, Glycine max and Zea mays MCMs demonstrated orthologous relationships and duplication events. Further, estimation of synonymous and non-synonymous substitution rates illustrated evolution of MCM family under strong constraints. Expression profiling using available microarray data and qRT-PCR revealed differential expression under various stress conditions, hinting at their potential use to develop stress resilient crops. Homology modeling of Arabidopsis and rice MCM 2-7 and detailed comparison with yeast MCMs identified conservation of eukaryotic specific insertions and extensions as compared to archeal MCMs. Protein-protein interaction analysis revealed an extensive network of putative interacting partners mainly involved in DNA replication and repair. The present study provides novel insights into the MCM family in Arabidopsis and rice and identifies unique features, thus opening new perspectives for further targeted analyses.
Collapse
|
16
|
Xu N, You Y, Liu C, Balasov M, Lun LT, Geng Y, Fung CP, Miao H, Tian H, Choy TT, Shi X, Fan Z, Zhou B, Akhmetova K, Din RU, Yang H, Hao Q, Qian P, Chesnokov I, Zhu G. Structural basis of DNA replication origin recognition by human Orc6 protein binding with DNA. Nucleic Acids Res 2020; 48:11146-11161. [PMID: 32986843 PMCID: PMC7641730 DOI: 10.1093/nar/gkaa751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.
Collapse
Affiliation(s)
- Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Department of Oral and Maxillofacial Surgery, Peking University ShenzhenHospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Lee Tung Lun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Honglei Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhuming Fan
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rahman Ud Din
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, Shenzhen, 518036, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
17
|
Reduced replication origin licensing selectively kills KRAS-mutant colorectal cancer cells via mitotic catastrophe. Cell Death Dis 2020; 11:499. [PMID: 32612138 PMCID: PMC7330027 DOI: 10.1038/s41419-020-2704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.
Collapse
|
18
|
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr Opin Struct Biol 2019; 59:195-204. [PMID: 31630057 DOI: 10.1016/j.sbi.2019.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The duplication of chromosomal DNA is a key cell cycle event that involves the controlled, bidirectional assembly of the replicative machinery. In a tightly regulated, multi-step reaction, replicative helicases and other components of the DNA synthesis apparatus are recruited to replication start sites. Although the molecular approaches for assembling this machinery vary between the different domains of life, a common theme revolves around the use of ATP-dependent initiation factors to recognize and remodel origins and to load replicative helicases in a bidirectional manner onto DNA. This review summarizes recent advances in understanding the mechanisms of replication initiation in eukaryotes, focusing on how the replicative helicase is loaded in this system.
Collapse
|
19
|
Limas JC, Cook JG. Preparation for DNA replication: the key to a successful S phase. FEBS Lett 2019; 593:2853-2867. [PMID: 31556113 PMCID: PMC6817399 DOI: 10.1002/1873-3468.13619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Successful genome duplication is required for cell proliferation and demands extraordinary precision and accuracy. The mechanisms by which cells enter, progress through, and exit S phase are intense areas of focus in the cell cycle and genome stability fields. Key molecular events in the G1 phase of the cell division cycle, especially origin licensing, are essential for pre-establishing conditions for efficient DNA replication during the subsequent S phase. If G1 events are poorly regulated or disordered, then DNA replication can be compromised leading to genome instability, a hallmark of tumorigenesis. Upon entry into S phase, coordinated origin firing and replication progression ensure complete, timely, and precise chromosome replication. Both G1 and S phase progressions are controlled by master cell cycle protein kinases and ubiquitin ligases that govern the activity and abundance of DNA replication factors. In this short review, we describe current understanding and recent developments related to G1 progression and S phase entrance and exit with a particular focus on origin licensing regulation in vertebrates.
Collapse
Affiliation(s)
- Juanita C Limas
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
20
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
21
|
5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Sci Rep 2019; 9:11065. [PMID: 31363131 PMCID: PMC6667497 DOI: 10.1038/s41598-019-47528-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.
Collapse
|
22
|
Graber-Feesl CL, Pederson KD, Aney KJ, Shima N. Mitotic DNA Synthesis Is Differentially Regulated between Cancer and Noncancerous Cells. Mol Cancer Res 2019; 17:1687-1698. [PMID: 31113828 DOI: 10.1158/1541-7786.mcr-19-0057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Mitotic DNA synthesis is a recently discovered mechanism that resolves late replication intermediates, thereby supporting cell proliferation under replication stress. This unusual form of DNA synthesis occurs in the absence of RAD51 or BRCA2, which led to the identification of RAD52 as a key player in this process. Notably, mitotic DNA synthesis is predominantly observed at chromosome loci that colocalize with FANCD2 foci. However, the role of this protein in mitotic DNA synthesis remains largely unknown. In this study, we investigated the role of FANCD2 and its interplay with RAD52 in mitotic DNA synthesis using aphidicolin as a universal inducer of this process. After examining eight human cell lines, we provide evidence for FANCD2 rather than RAD52 as a fundamental supporter of mitotic DNA synthesis. In cancer cell lines, FANCD2 exerts this role independently of RAD52. Surprisingly, RAD52 is dispensable for mitotic DNA synthesis in noncancerous cell lines, but these cells strongly depend on FANCD2 for this process. Therefore, RAD52 functions selectively in cancer cells as a secondary regulator in addition to FANCD2 to facilitate mitotic DNA synthesis. As an alternative to aphidicolin, we found partial inhibition of origin licensing as an effective way to induce mitotic DNA synthesis preferentially in cancer cells. Importantly, cancer cells still perform mitotic DNA synthesis by dual regulation of FANCD2 and RAD52 under such conditions. IMPLICATIONS: These key differences in mitotic DNA synthesis between cancer and noncancerous cells advance our understanding of this mechanism and can be exploited for cancer therapies.
Collapse
Affiliation(s)
- Cari L Graber-Feesl
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Kayla D Pederson
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Katherine J Aney
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota.
| |
Collapse
|
23
|
Wang L, Wang Y, Li Q, Tian K, Xu L, Liu G, Guo C. Exopolysaccharide, Isolated From a Novel Strain Bifidobacterium breve lw01 Possess an Anticancer Effect on Head and Neck Cancer - Genetic and Biochemical Evidences. Front Microbiol 2019; 10:1044. [PMID: 31143171 PMCID: PMC6520658 DOI: 10.3389/fmicb.2019.01044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Probiotic bacteria exopolysaccharides (EPS) have been recognized as molecules that regulate immune development and have anti-inflammation and anticancer effects. Yet, these bioactivities are of interspecies diversity; thus, examining the gene clusters of EPS and biosynthesis pathways are essential for selecting the better application of specific EPS. In this study, we isolated a new Bifidobacterium strain, named B. breve lw01. A complete genome of B. breve lw01 was sequenced revealing a circular 2,313,172 bp chromosome. Furthermore, a deep excavation of genome sequence from different database based on the comparison-selected results was performed to explore the gene cluster responsible for EPS synthesis. We found that B. breve lw01 harbors a new EPS-encoding cluster with 14 predicted genes, which could be divided into three groups according to the biosynthesis pathway hypothesis. Using tertiary purification, high purity EPS were obtained. EPS is composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), and mannose (Man) in a molar ratio of 0.35:0.44:1.38:0.67:1.65. With reference to its bioactivity, it showed to possess anticancer activity against Head and Neck Squamous Cell Carcinoma cell line by regulating cell cycle arrest and cell apoptosis promotion. To sum up, this study examined the biosynthesis and bioactivity of EPS using a new isolated B. breve strain, which could be used to clarify its further application in functional food or drug industry.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kaiyue Tian
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
24
|
Priego Moreno S, Jones RM, Poovathumkadavil D, Scaramuzza S, Gambus A. Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Sci Alliance 2019; 2:2/2/e201900390. [PMID: 30979826 PMCID: PMC6464043 DOI: 10.26508/lsa.201900390] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Analysis of the mitotic replisome disassembly pathway in X. laevis egg extract shows that any replisomes retained on chromatin past S-phase are unloaded through formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and p97/VCP activity. We have shown previously that the process of replication machinery (replisome) disassembly at the termination of DNA replication forks in the S-phase is driven through polyubiquitylation of one of the replicative helicase subunits (Mcm7) by Cul2LRR1 ubiquitin ligase. Interestingly, upon inhibition of this pathway in Caenorhabditis elegans embryos, the replisomes retained on chromatin were unloaded in the subsequent mitosis. Here, we show that this mitotic replisome disassembly pathway exists in Xenopus laevis egg extract and we determine the first elements of its regulation. The mitotic disassembly pathway depends on the formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and the activity of p97/VCP protein segregase. Unlike in lower eukaryotes, however, it does not require SUMO modifications. Importantly, we also show that this process can remove all replisomes from mitotic chromatin, including stalled ones, which indicates a wide application for this pathway over being just a “backup” for terminated replisomes. Finally, we characterise the composition of the replisome retained on chromatin until mitosis.
Collapse
Affiliation(s)
- Sara Priego Moreno
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca M Jones
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shaun Scaramuzza
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Kose HB, Larsen NB, Duxin JP, Yardimci H. Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model. Cell Rep 2019; 26:2113-2125.e6. [PMID: 30784593 PMCID: PMC6381796 DOI: 10.1016/j.celrep.2019.01.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022] Open
Abstract
Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
26
|
On KF, Jaremko M, Stillman B, Joshua-Tor L. A structural view of the initiators for chromosome replication. Curr Opin Struct Biol 2018; 53:131-139. [PMID: 30218786 DOI: 10.1016/j.sbi.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Kin Fan On
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Matt Jaremko
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| |
Collapse
|
27
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
28
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
29
|
Mimura S, Kubota Y, Takisawa H. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3. Cell Cycle 2018; 17:492-505. [PMID: 29261034 DOI: 10.1080/15384101.2017.1415681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.
Collapse
Affiliation(s)
- Satoru Mimura
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Yumiko Kubota
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Haruhiko Takisawa
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| |
Collapse
|
30
|
Okada T, Okabe G, Tak YS, Mimura S, Takisawa H, Kubota Y. Suppression of targeting of Dbf4-dependent kinase to pre-replicative complex in G0 nuclei. Genes Cells 2018; 23:94-104. [PMID: 29314475 DOI: 10.1111/gtc.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 12/01/2022]
Abstract
Intact G0 nuclei isolated from quiescent cells are not capable of DNA replication in interphase Xenopus egg extracts, which allow efficient replication of permeabilized G0 nuclei. Previous studies have shown multiple control mechanisms for maintaining the quiescent state, but DNA replication inhibition of intact G0 nuclei in the extracts remains poorly understood. Here, we showed that pre-RC is assembled on chromatin, but its activation is inhibited after incubating G0 nuclei isolated from quiescent NIH3T3 cells in the extracts. Concomitant with the inhibition of replication, Mcm4 phosphorylation mediated by Dbf4-dependent kinase (DDK) as well as chromatin binding of DDK is suppressed in G0 nuclei without affecting the nuclear transport of DDK. We further found that the nuclear extracts of G0 but not proliferating cells inhibit the binding of recombinant DDK to pre-RC assembled plasmids. In addition, we observed rapid activation of checkpoint kinases after incubating G0 nuclei in the egg extracts. However, specific inhibitors of ATR/ATM are unable to promote DNA replication in G0 nuclei in the egg extracts. We suggest that a novel inhibitory mechanism is functional to prevent the targeting of DDK to pre-RC in G0 nuclei, thereby suppressing DNA replication in Xenopus egg extracts.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Gaku Okabe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Engineering Integration Department, Air Water Inc., Osaka, Japan
| | - Yon-Soo Tak
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satoru Mimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Haruhiko Takisawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yumiko Kubota
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
31
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
32
|
Perez-Arnaiz P, Bruck I, Colbert MK, Kaplan DL. An intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly and the recruitment of Pol-α to Mcm2-7. Nucleic Acids Res 2017; 45:7261-7275. [PMID: 28510759 PMCID: PMC5499591 DOI: 10.1093/nar/gkx438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Mcm10 is an essential eukaryotic factor required for DNA replication. The replication fork helicase is composed of Cdc45, Mcm2–7 and GINS (CMG). DDK is an S-phase-specific kinase required for replication initiation, and the DNA primase-polymerase in eukaryotes is pol α. Mcm10 forms oligomers in vitro, mediated by the coiled-coil domain at the N-terminal region of the protein. We characterized an Mcm10 mutant at the N-terminal Domain (NTD), Mcm10-4A, defective for self-interaction. We found that the Mcm10-4A mutant was defective for stimulating DDK phosphorylation of Mcm2, binding to eighty-nucleotide ssDNA, and recruiting pol α to Mcm2–7 in vitro. Expression of wild-type levels of mcm10-4A resulted in severe growth and DNA replication defects in budding yeast cells, with diminished DDK phosphorylation of Mcm2. We then expressed the mcm10-4A in mcm5-bob1 mutant cells to bypass the defects mediated by diminished stimulation of DDK phosphorylation of Mcm2. Expression of wild-type levels of mcm10-4A in mcm5-bob1 mutant cells resulted in severe growth and DNA replication defects, along with diminished RPA signal at replication origins. We also detected diminished GINS and pol-α recruitment to the Mcm2–7 complex. We conclude that an intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly, and the recruitment of pol α to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Max K Colbert
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
33
|
Gardner NJ, Gillespie PJ, Carrington JT, Shanks EJ, McElroy SP, Haagensen EJ, Frearson JA, Woodland A, Blow JJ. The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chem Biol 2017; 24:981-992.e4. [PMID: 28781123 PMCID: PMC5563080 DOI: 10.1016/j.chembiol.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.
Collapse
Affiliation(s)
- Nicola J Gardner
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jamie T Carrington
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Shanks
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart P McElroy
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Haagensen
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Julie A Frearson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Woodland
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
34
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
35
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Abstract
Genomic instability plays a key role in driving cancer development. It is already found in precancerous lesions and allows the acquisition of additional cancerous features. A major source of genomic instability in early stages of tumorigenesis is DNA replication stress. Normally, origin licensing and activation, as well as replication fork progression, are tightly regulated to allow faithful duplication of the genome. Aberrant origin usage and/or perturbed replication fork progression leads to DNA damage and genomic instability. Oncogene activation is an endogenous source of replication stress, disrupting replication regulation and inducing DNA damage. Oncogene-induced replication stress and its role in cancer development have been studied comprehensively, however its molecular basis is still unclear. Here, we review the current understanding of replication regulation, its potential disruption and how oncogenes perturb the replication and induce DNA damage leading to genomic instability in cancer.
Collapse
Affiliation(s)
| | - Batsheva Kerem
- Correspondence: ; Tel.: +972-2-658-5678; Fax: +972-2-658-4810
| |
Collapse
|
37
|
Hizume K, Kominami H, Kobayashi K, Yamada H, Araki H. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry 2017; 56:2435-2445. [DOI: 10.1021/acs.biochem.6b00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohji Hizume
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Hiroaki Kominami
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kei Kobayashi
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hiroyuki Araki
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
38
|
Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K. CUL-2 LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 2017; 19:468-479. [PMID: 28368371 PMCID: PMC5410169 DOI: 10.1038/ncb3500] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2LRR-1 associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2LRR1 as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Priego Moreno
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
39
|
Alver RC, Chadha GS, Gillespie PJ, Blow JJ. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1. Cell Rep 2017; 18:2508-2520. [PMID: 28273463 PMCID: PMC5357733 DOI: 10.1016/j.celrep.2017.02.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/14/2017] [Indexed: 11/27/2022] Open
Abstract
Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation.
Collapse
Affiliation(s)
- Robert C Alver
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
40
|
Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2017; 15:974-85. [PMID: 26919204 PMCID: PMC4889307 DOI: 10.1080/15384101.2016.1152424] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells. However, these cells displayed an about 2-fold diminished fork elongation rate, a pronounced asymmetry of replication fork extension, and an early S phase arrest. This was accompanied by H2AX-phosphorylation and subsequent apoptosis. Unexpectedly, we did not observe increased ATR/Chk1 signaling but rather a mild ATM/Chk2 response. In addition, we detected accumulation of long stretches of single-stranded DNA, a hallmark of replication catastrophe. We conclude that increased origin firing by upregulated Cdc45 caused exhaustion of the single-strand binding protein RPA, which in consequence diminished the ATR/Chk1 response; the subsequently occurring fork breaks led to an ATM/Chk2 mediated phosphorylation of H2AX and eventually to apoptosis.
Collapse
Affiliation(s)
- Carsten Köhler
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Dennis Koalick
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Anja Fabricius
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Ann Christin Parplys
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Kerstin Borgmann
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,c Faculty of Biochemistry and Molecular Medicine, University of Oulu , Finland
| | - Frank Grosse
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,d Centre for Molecular Biomedicine, Friedrich-Schiller University , Jena , Germany
| |
Collapse
|
41
|
Abstract
Cellular DNA replication factories depend on ring-shaped hexameric helicases to aid DNA synthesis by processively unzipping the parental DNA helix. Replicative helicases are loaded onto DNA by dedicated initiator, loader, and accessory proteins during the initiation of DNA replication in a tightly regulated, multistep process. We discuss here the molecular choreography of DNA replication initiation across the three domains of life, highlighting similarities and differences in the strategies used to deposit replicative helicases onto DNA and to melt the DNA helix in preparation for replisome assembly. Although initiators and loaders are phylogenetically related, the mechanisms they use for accomplishing similar tasks have diverged considerably and in an unpredictable manner.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Raspelli E, Falbo L, Costanzo V. Xenopus egg extract to study regulation of genome-wide and locus-specific DNA replication. Genesis 2017; 55. [PMID: 28095613 DOI: 10.1002/dvg.22996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022]
Abstract
Faithful DNA replication, coupled with accurate repair of DNA damage, is essential to maintain genome stability and relies on different DNA metabolism genes. Many of these genes are involved in the assembly of replication origins, in the coordination of DNA repair to protect replication forks progression in the presence of DNA damage and in the replication of repetitive chromatin regions. Some DNA metabolism genes are essential in higher eukaryotes, suggesting the existence of specialized mechanisms of repair and replication in organisms with complex genomes. The impact on cell survival of many of these genes has so far precluded in depth molecular analysis of their function. The cell-free Xenopus laevis egg extract represents an ideal system to overcome survival issues and to facilitate the biochemical study of replication-associated functions of essential proteins in vertebrate organisms. Here, we will discuss how Xenopus egg extracts have been used to study cellular and molecular processes, such as DNA replication and DNA repair. In particular, we will focus on innovative imaging and proteomic-based experimental approaches to characterize the molecular function of a number of essential DNA metabolism factors involved in the duplication of complex vertebrate genomes.
Collapse
Affiliation(s)
- Erica Raspelli
- DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology, Milan, Italy
| | - Lucia Falbo
- DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology, Milan, Italy
| |
Collapse
|
43
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
44
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
O'Driscoll M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 2017; 241:192-207. [PMID: 27757957 DOI: 10.1002/path.4828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
46
|
RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:3431-3442. [PMID: 27543292 PMCID: PMC5068962 DOI: 10.1534/g3.116.033043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint.
Collapse
|
47
|
Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 2016; 6:40464-79. [PMID: 26588054 PMCID: PMC4747346 DOI: 10.18632/oncotarget.6342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022] Open
Abstract
DNA replication is a highly coordinated process that is initiated at multiple replication origins in eukaryotes. These origins are bound by the origin recognition complex (ORC), which subsequently recruits the Mcm2-7 replicative helicase in a Cdt1/Cdc6-dependent manner. In budding yeast, two essential replication factors, Sld2 and Mcm10, are then important for the activation of replication origins. In humans, the putative Sld2 homolog, RECQ4, interacts with MCM10. Here, we have identified two mutants of human RECQ4 that are deficient in binding to MCM10. We show that these RECQ4 variants are able to complement the lethality of an avian cell RECQ4 deletion mutant, indicating that the essential function of RECQ4 in vertebrates is unlikely to require binding to MCM10. Nevertheless, we show that the RECQ4-MCM10 interaction is important for efficient replication origin firing.
Collapse
|
48
|
Chadha GS, Gambus A, Gillespie PJ, Blow JJ. Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle 2016; 15:2183-2195. [PMID: 27327991 PMCID: PMC4993430 DOI: 10.1080/15384101.2016.1199305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.
Collapse
Affiliation(s)
- Gaganmeet Singh Chadha
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Agnieszka Gambus
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Peter J Gillespie
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Julian Blow
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
49
|
Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 2016; 113:E5757-64. [PMID: 27516545 PMCID: PMC5047195 DOI: 10.1073/pnas.1603252113] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle.
Collapse
|
50
|
DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Semin Cancer Biol 2016; 37-38:16-25. [DOI: 10.1016/j.semcancer.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
|