1
|
Habibi A, Ruf W, Schurgers L. Protease-activated receptors in vascular smooth muscle cells: a bridge between thrombo-inflammation and vascular remodelling. Cell Commun Signal 2025; 23:57. [PMID: 39891111 PMCID: PMC11786455 DOI: 10.1186/s12964-025-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025] Open
Abstract
Coagulation factors are responsible for blood clot formation yet have also non-canonical functions as signalling molecules. In this context, they can activate protease-activated receptors (PARs) ubiquitously expressed in the vasculature. During vascular repair, vascular smooth muscle cells (VSMCs) will switch from a contractile to a synthetic reparative phenotype. During prolonged vascular stress, VSMCs acquire a pathological phenotype leading to cardiovascular disease. Activated coagulation factors impact on vessel wall permeability and integrity after vascular injury with a key role for PAR activation on endothelial cells. The activation of PARs on VSMCs supports vessel wall repair following injury. Prolonged PAR activation, however, results in pathological vascular remodelling. Therefore, understanding the mechanisms of PAR activation on VSMCs is key to propel our understanding of the molecular and cellular mechanisms to develop novel therapeutic strategies to resolve vascular remodelling.In this review, we discuss recent advances on the role of PAR signalling on VSMCs and specifically their role in vascular remodelling contributing to cardiovascular disease. Additionally, we discuss current therapeutic strategies targeting PAR signalling - indirectly or directly - in relation to cardiovascular disease.
Collapse
Affiliation(s)
- Anxhela Habibi
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes-Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Leon Schurgers
- Department of Biochemistry, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Kespohl M, Goetzke CC, Althof N, Bredow C, Kelm N, Pinkert S, Bukur T, Bukur V, Grunz K, Kaur D, Heuser A, Mülleder M, Sauter M, Klingel K, Weiler H, Berndt N, Gaida MM, Ruf W, Beling A. TF-FVIIa PAR2-β-Arrestin Signaling Sustains Organ Dysfunction in Coxsackievirus B3 Infection of Mice. Arterioscler Thromb Vasc Biol 2024; 44:843-865. [PMID: 38385286 DOI: 10.1161/atvbaha.123.320157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in β-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of β-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS These data provide insights into a TF-FVIIa signaling axis through PAR2-β-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.
Collapse
Affiliation(s)
- Meike Kespohl
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| | - Carl Christoph Goetzke
- Department of Pediatrics, Division of Pulmonology, Immunology and Critical Care Medicine (C.C.G.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Clinician Scientist Program, BIH (Berlin Institute of Health) Academy, BIH, Charité-Universitätsmedizin Berlin, Germany (C.C.G.)
- German Rheumatism Research Center, Leibniz Association, Berlin, Germany (C.C.G.)
| | - Nadine Althof
- German Federal Institute for Risk Assessment, Berlin, Germany (N.A.)
| | - Clara Bredow
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Nicolas Kelm
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Sandra Pinkert
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Thomas Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Valesca Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Kristin Grunz
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Dilraj Kaur
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Arnd Heuser
- Max-Delbrueck-Center for Molecular Medicine, Animal Phenotyping Platform, Berlin, Germany (A.H.)
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry (M.M.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Martina Sauter
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | - Karin Klingel
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | | | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité, Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany (N.B.)
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (N.B.)
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany (N.B.)
| | - Matthias M Gaida
- University Medical Center Mainz, Institute for Pathology, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- University Medical Center Mainz, Research Center for Immunotherapy, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University of Mainz, Germany (M.M.G.)
- TRON, Mainz, Germany (M.M.G.)
| | - Wolfram Ruf
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Antje Beling
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| |
Collapse
|
3
|
O’Hehir ZD, Lynch T, O’Neill S, March L, Xue M. Endothelial Protein C Receptor and Its Impact on Rheumatic Disease. J Clin Med 2024; 13:2030. [PMID: 38610795 PMCID: PMC11012567 DOI: 10.3390/jcm13072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Collapse
Affiliation(s)
- Zachary Daniel O’Hehir
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Sean O’Neill
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
4
|
Müller-Calleja N, Grunz K, Nguyen TS, Posma J, Pedrosa D, Meineck M, Hollerbach A, Braun J, Muth S, Schild H, Saar K, Hübner N, Krishnaswamy S, Royce J, Teyton L, Lemmermann N, Weinmann-Menke J, Lackner KJ, Ruf W. Targeting the tissue factor coagulation initiation complex prevents antiphospholipid antibody development. Blood 2024; 143:1167-1180. [PMID: 38142429 PMCID: PMC10972716 DOI: 10.1182/blood.2023022276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jens Posma
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anne Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Sriram Krishnaswamy
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Niels Lemmermann
- Institute for Virology, Johannes Gutenberg University Medical Center, Mainz, Germany
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Mainz, Germany
| |
Collapse
|
5
|
O'Donnell JS, Fleming H, Noone D, Preston RJS. Unraveling coagulation factor-mediated cellular signaling. J Thromb Haemost 2023; 21:3342-3353. [PMID: 37391097 DOI: 10.1016/j.jtha.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland. https://twitter.com/profJSOdonnell
| | - Harry Fleming
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland.
| |
Collapse
|
6
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
7
|
Kono H, Hosomura N, Amemiya H, Kawaida H, Furuya S, Shoda K, Akaike H, Kawaguchi Y, Ichikawa D. Recombinant Human Thrombomodulin Reduces Mortality and Acute Lung Injury Caused by Septic Peritonitis in Rats. Immunohorizons 2023; 7:159-167. [PMID: 36706425 PMCID: PMC10563402 DOI: 10.4049/immunohorizons.2200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/29/2023] Open
Abstract
This study aimed to investigate the therapeutic effects of recombinant human thrombomodulin (rhTM) on acute lung injury (ALI) caused by sepsis in rats. Rats that underwent cecal ligation and puncture (CLP) were treated with or without rhTM, and then mortality was analyzed. In another set of experiments, ALI was assessed. Furthermore, microthrombosis in the lungs was investigated by immunohistochemistry. Moreover, plasma inflammatory and anti-inflammatory cytokines, such as TNF-α, high-mobility group box chromosomal protein 1 (HMGB-1), and IL-10, were evaluated by ELISA. Production of TNF-α and HMGB-1 by isolated tissue macrophages (Mφs) was assessed in vitro. Mortality after CLP was significantly improved by rhTM treatment. In addition, rhTM treatment improved the wet/dry weight ratio of the lungs, the pulmonary microvascular permeability, and the lung injury scores in animals that underwent CLP. Microthrombosis was detected in the lungs after CLP. These pathophysiological changes were blunted by rhTM treatment. Increased plasma TNF-α and HMGB-1 levels were blunted by rhTM treatment; however, the anti-inflammatory cytokine IL-10 was significantly greater in the rhTM(+) group than in the rhTM(-) group. Increased TNF-α and HMGB-1 production by the tissue Mφs stimulated with LPS were significantly blunted by rhTM treatment in vitro, but the production of IL-10 by the tissue Mφs was not changed in the cells incubated with rhTM. Overall, rhTM improved the mortality caused by septic peritonitis. The possible mechanisms are most likely anti-inflammatory and anticoagulant effects, which lead to the prevention of ALI.
Collapse
Affiliation(s)
- Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naohiro Hosomura
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
8
|
Fleischer MI, Röhrig N, Raker VK, Springer J, Becker D, Ritz S, Bros M, Stege H, Haist M, Grabbe S, Haub J, Becker C, Reyda S, Disse J, Schmidt T, Mahnke K, Weiler H, Ruf W, Steinbrink K. Protease- and cell type-specific activation of protease-activated receptor 2 in cutaneous inflammation. J Thromb Haemost 2022; 20:2823-2836. [PMID: 36161697 DOI: 10.1111/jth.15894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Protease-activated receptor 2 (PAR2) signaling controls skin barrier function and inflammation, but the roles of immune cells and PAR2-activating proteases in cutaneous diseases are poorly understood. OBJECTIVE To dissect PAR2 signaling contributions to skin inflammation with new genetic and pharmacological tools. METHODS/RESULTS We found markedly increased numbers of PAR2+ infiltrating myeloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell-mediated allergic skin inflammation. Cell type-specific deletion of PAR2 in myeloid immune cells as well as mutation-induced complete PAR2 cleavage insensitivity significantly reduced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological approaches identified individual proteases involved in PAR2 cleavage and demonstrated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell-expressed proteases furthermore uncovered a time-dependent regulation of CHS development with an important function of FXa-induced PAR2 activation during the late phase of skin inflammation. CONCLUSIONS Myeloid cells and the TF-FXa-PAR2 axis are key mediators and potential therapeutic targets in inflammatory skin diseases.
Collapse
Affiliation(s)
- Maria Isabel Fleischer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Verena K Raker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Juliane Springer
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Detlef Becker
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Sandra Ritz
- Institute of Molecular Biology Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University of Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Christian Becker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Disse
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Hartmut Weiler
- Versity Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Center, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
10
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
11
|
Bochenek ML, Gogiraju R, Großmann S, Krug J, Orth J, Reyda S, Georgiadis GS, Spronk H, Konstantinides S, Münzel T, Griffin JH, Wild PS, Espinola-Klein C, Ruf W, Schäfer K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight 2022; 7:157701. [PMID: 35700057 PMCID: PMC9431695 DOI: 10.1172/jci.insight.157701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Blood clot formation initiates ischemic events, but coagulation roles during postischemic tissue repair are poorly understood. The endothelial protein C receptor (EPCR) regulates coagulation, as well as immune and vascular signaling, by protease activated receptors (PARs). Here, we show that endothelial EPCR-PAR1 signaling supports reperfusion and neovascularization in hindlimb ischemia in mice. Whereas deletion of PAR2 or PAR4 did not impair angiogenesis, EPCR and PAR1 deficiency or PAR1 resistance to cleavage by activated protein C caused markedly reduced postischemic reperfusion in vivo and angiogenesis in vitro. These findings were corroborated by biased PAR1 agonism in isolated primary endothelial cells. Loss of EPCR-PAR1 signaling upregulated hemoglobin expression and reduced endothelial nitric oxide (NO) bioavailability. Defective angiogenic sprouting was rescued by the NO donor DETA-NO, whereas NO scavenging increased hemoglobin and mesenchymal marker expression in human and mouse endothelial cells. Vascular specimens from patients with ischemic peripheral artery disease exhibited increased hemoglobin expression, and soluble EPCR and NO levels were reduced in plasma. Our data implicate endothelial EPCR-PAR1 signaling in the hypoxic response of endothelial cells and identify suppression of hemoglobin expression as an unexpected link between coagulation signaling, preservation of endothelial cell NO bioavailability, support of neovascularization, and prevention of fibrosis.
Collapse
Affiliation(s)
- Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Stefanie Großmann
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Janina Krug
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Orth
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - George S Georgiadis
- Department of Vascular Surgery, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Henri Spronk
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States of America
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
12
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
14
|
Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, Falter T, Rossmann H, Bodenstein M, Werner C, Sagoschen I, Münzel T, Schreiner O, Sivanathan V, Reuter M, Niermann J, Galle PR, Teyton L, Ruf W, Lackner KJ. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost 2021; 19:2335-2347. [PMID: 34242469 PMCID: PMC8420426 DOI: 10.1111/jth.15455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19)-associated coagulopathy is a hallmark of disease severity and poor prognosis. The key manifestations of this prothrombotic syndrome-microvascular thrombosis, stroke, and venous and pulmonary clots-are also observed in severe and catastrophic antiphospholipid syndrome. Antiphospholipid antibodies (aPL) are detectable in COVID-19 patients, but their association with the clinical course of COVID-19 remains unproven. OBJECTIVES To analyze the presence and relevance of lipid-binding aPL in hospitalized COVID-19 patients. METHODS Two cohorts of 53 and 121 patients from a single center hospitalized for PCR-proven severe acute respiratory syndrome-coronavirus 2 infection were analyzed for the presence of aPL and clinical severity of COVID-19. RESULTS We here demonstrate that lipid-binding aPL are common in COVID-19. COVID-19 patients with lipid-binding aPL have higher median concentrations of C-reactive protein and D-dimer, and are more likely to have a critical clinical course and fatal outcome. Lipid-binding aPL isolated from COVID-19 patients target the recently described cell surface complex of lysobisphosphatidic acid (LBPA) with the protein C receptor (EPCR) to induce prothrombotic and inflammatory responses in monocytes and endothelial cells. We show that B1a cells producing lipid-reactive aPL of the IgG isotype circulate in the blood of COVID-19 patients. In vivo, COVID-19 aPL accelerate thrombus formation in an experimental mouse model dependent on the recently delineated signaling pathway involving EPCR-LBPA. CONCLUSIONS COVID-19 patients rapidly expand B1a cells secreting pathogenic lipid-binding aPL with broad thrombotic and inflammatory effects. The association with markers of inflammation and coagulation, clinical severity, and mortality suggests a causal role of aPL in COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Anne Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Martin F Sprinzl
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Marc Bodenstein
- Department of Anesthesiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Christian Werner
- Department of Anesthesiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Ingo Sagoschen
- Department of Cardiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Oliver Schreiner
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Visvakanth Sivanathan
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Michael Reuter
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Johannes Niermann
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Medicine I, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center Mainz, Germany
| |
Collapse
|
15
|
Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021; 121:1122-1137. [PMID: 34214998 PMCID: PMC8432591 DOI: 10.1055/s-0040-1722187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
16
|
Ruf W, Graf C. Coagulation signaling and cancer immunotherapy. Thromb Res 2021; 191 Suppl 1:S106-S111. [PMID: 32736766 DOI: 10.1016/s0049-3848(20)30406-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The last decades have delineated many interactions of the hemostatic system with cancer cells that are pivotal for cancer-associated thrombosis, angiogenesis and metastasis. Expanding evidence shows that platelets, the tissue factor pathway, and proteolytic signaling involving protease-activated receptors (PARs) are also central players in innate and adaptive immunity. Recent studies in immune-competent mice have uncovered new immune-evasive roles of coagulation signaling networks in the development and growth of different preclinical tumor models. Tumor-type specific PAR1 signaling facilitates the escape from immune surveillance by cytotoxic T cells. In addition, tumor-associated macrophages produce factor X (FX) and cell autonomous FXa-PAR2 signaling emerges as a central mechanism for tumor-promoting macrophage polarization in the tumor microenvironment. Pharmacological targeting of this signaling pathway with tissue penetrating oral FXa inhibitor reprograms macrophage phenotypes, enhances tumor antigen presentation, and expands tumor-killing cytotoxic lymphocytes. Importantly, by specifically targeting innate immune cells, the oral FXa inhibitor rivaroxaban synergizes with checkpoint inhibitor therapy in enhancing antigen-specific antitumor immunity. In similar experiments, anticoagulation with heparin is inefficient to block extravascular coagulation signaling. Thus, antithrombotic therapy with oral FXa inhibitors may contribute to reversing tumor immune-evasive mechanisms and enhance the clinical outcome of targeted immuno-therapy regimens.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
17
|
Macrophage protease-activated receptor 2 regulates fetal liver erythropoiesis in mice. Blood Adv 2021; 4:5810-5824. [PMID: 33232477 DOI: 10.1182/bloodadvances.2020003299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Deficiencies in many coagulation factors and protease-activated receptors (PARs) affect embryonic development. We describe a defect in definitive erythropoiesis in PAR2-deficient mice. Embryonic PAR2 deficiency increases embryonic death associated with variably severe anemia in comparison with PAR2-expressing embryos. PAR2-deficient fetal livers display reduced macrophage densities, erythroblastic island areas, and messenger RNA expression levels of markers for erythropoiesis and macrophages. Coagulation factor synthesis in the liver coincides with expanding fetal liver hematopoiesis during midgestation, and embryonic factor VII (FVII) deficiency impairs liver macrophage development. Cleavage-insensitive PAR2-mutant mice recapitulate the hematopoiesis defect of PAR2-deficient embryos, and macrophage-expressed PAR2 directly supports erythroblastic island function and the differentiation of red blood cells in the fetal liver. Conditional deletion of PAR2 in macrophages impairs erythropoiesis, as well as increases inflammatory stress, as evidenced by upregulation of interferon-regulated hepcidin antimicrobial peptide. In contrast, postnatal macrophage PAR2 deficiency does not have any effect on steady-state Kupffer cells, bone marrow macrophage numbers, or erythropoiesis, but erythropoiesis in macrophages from PAR2-deficient mice is impaired following hemolysis. These data identify a novel function for macrophage PAR2 signaling in adapting to rapid increases in blood demand during gestational development and postnatal erythropoiesis under stress conditions.
Collapse
|
18
|
Abstract
Oral anticoagulant therapy has changed by clinical evidence that coagulation factor Xa (FXa) can be safely and effectively targeted for thromboprophylaxis. Because thrombotic and thrombo-inflammatory diseases are frequently caused by excessive activation of the tissue factor (TF) pathway, activation of FX by the TF-FVIIa complex is of central importance for understanding the roles of FXa in thrombosis and hemostasis and functions beyond blood coagulation. Recent data showed that the nascent product FXa associated with TF-FVIIa not only supports hemostatic cofactor VIII activation, but also broadly influences immune reactions in inflammation, cancer, and autoimmunity. These signaling functions of FXa are mediated through protease activated receptor (PAR) cleavage and PAR2 activation occurs in extravascular environments specifically by macrophage synthesized FX. Cell autonomous FXa-PAR2 signaling is a mechanism for tumor-promoting macrophage polarization in the tumor microenvironment and tissue penetrance of oral FXa inhibitors favors the reprogramming of tumor-associated macrophages for non-coagulant therapeutic benefit. It is necessary to decipher the distinct functions of coagulation factors synthesized by the liver for circulation in blood versus those synthesized by extrahepatic immune cells for activity in tissue milieus. This research will lead to a better understanding of the broader roles of FXa as a central regulator of immune and hematopoietic systems.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
19
|
Müller-Calleja N, Hollerbach A, Royce J, Ritter S, Pedrosa D, Madhusudhan T, Teifel S, Meineck M, Häuser F, Canisius A, Nguyen TS, Braun J, Bruns K, Etzold A, Zechner U, Strand S, Radsak M, Strand D, Gu JM, Weinmann-Menke J, Esmon CT, Teyton L, Lackner KJ, Ruf W. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021; 371:371/6534/eabc0956. [PMID: 33707237 DOI: 10.1126/science.abc0956] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Anne Hollerbach
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Svenja Ritter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sina Teifel
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - T Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Kai Bruns
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Anna Etzold
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Markus Radsak
- Department of Medicine III, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jian-Ming Gu
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
21
|
Kusadasi N, Sikma M, Huisman A, Westerink J, Maas C, Schutgens R. A Pathophysiological Perspective on the SARS-CoV-2 Coagulopathy. Hemasphere 2020; 4:e457. [PMID: 32885147 PMCID: PMC7430228 DOI: 10.1097/hs9.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Recent evidence is focusing on the presence of a hypercoagulable state with development of both venous and arterial thromboembolic complications in patients infected with SARS-CoV-2. The ongoing activation of coagulation related to the severity of the illness is further characterized by thrombotic microangiopathy and endotheliitis. These microangiopathic changes cannot be classified as classical disseminated intravascular coagulation (DIC). In this short review we describe the interaction between coagulation and inflammation with focus on the possible mechanisms that might be involved in SARS-CoV-2 infection associated coagulopathy in the critically ill.
Collapse
Affiliation(s)
- Nuray Kusadasi
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Sikma
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Huisman
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger Schutgens
- Van Creveldkliniek, Benign Hematology Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
23
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
24
|
Graf C, Wilgenbus P, Pagel S, Pott J, Marini F, Reyda S, Kitano M, Macher-Göppinger S, Weiler H, Ruf W. Myeloid cell-synthesized coagulation factor X dampens antitumor immunity. Sci Immunol 2020; 4:4/39/eaaw8405. [PMID: 31541031 DOI: 10.1126/sciimmunol.aaw8405] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Immune evasion in the tumor microenvironment (TME) is a crucial barrier for effective cancer therapy, and plasticity of innate immune cells may contribute to failures of targeted immunotherapies. Here, we show that rivaroxaban, a direct inhibitor of activated coagulation factor X (FX), promotes antitumor immunity by enhancing infiltration of dendritic cells and cytotoxic T cells at the tumor site. Profiling FX expression in the TME identifies monocytes and macrophages as crucial sources of extravascular FX. By generating mice with immune cells lacking the ability to produce FX, we show that myeloid cell-derived FX plays a pivotal role in promoting tumor immune evasion. In mouse models of cancer, we report that the efficacy of rivaroxaban is comparable with anti-programmed cell death ligand 1 (PD-L1) therapy and that rivaroxaban synergizes with anti-PD-L1 in improving antitumor immunity. Mechanistically, we demonstrate that FXa promotes immune evasion by signaling through protease-activated receptor 2 and that rivaroxaban specifically targets this cell-autonomous signaling pathway to reprogram tumor-associated macrophages. Collectively, our results have uncovered the importance of FX produced in the TME as a regulator of immune cell activation and suggest translational potential of direct oral anticoagulants to remove persisting roadblocks for immunotherapy and provide extravascular benefits in other diseases.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.,Department of Internal Medicine III, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sven Pagel
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jennifer Pott
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Federico Marini
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Maki Kitano
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
25
|
Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11010051. [PMID: 30626007 PMCID: PMC6356956 DOI: 10.3390/cancers11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR-1) by themselves play important role in cancer growth and dissemination. Moreover, interactions between the two receptors are essential for tumor progression. EPCR is a cell surface transmembrane glycoprotein localized predominantly on endothelial cells (ECs). It is a vital component of the activated protein C (APC)—mediated anticoagulant and cytoprotective signaling cascade. PAR-1, which belongs to a family of G protein–coupled cell surface receptors, is also widely distributed on endothelial and blood cells, where it plays a critical role in hemostasis. Both EPCR and PAR-1, generally considered coagulation-related receptors, are implicated in carcinogenesis and dissemination of diverse tumor types, and their expression correlates with clinical outcome of cancer patients. Existing data explain some mechanisms by which EPCR/PAR-1 affects cancer growth and metastasis; however, the exact molecular basis of cancer invasion associated with the signaling is still obscure. Here, we discuss the role of EPCR and PAR-1 reciprocal interactions in cancer progression as well as potential therapeutic options targeted specifically to interact with EPCR/PAR-1-induced signaling in cancer patients.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Endothelial cell protein C receptor (EPCR), a transmembrane glycoprotein present on the surface of endothelial cells and other cell types, is an essential component of the protein C (PC) anticoagulant system. EPCR is also shown to play a critical role in mediating activated protein C (APC)-induced cytoprotective signaling. The purpose of this review is to outline the mechanisms of EPCR-dependent cell signaling and discuss recent findings made in this area. RECENT FINDINGS Recent studies showed that the cleavage of protease-activated receptor (PAR)1 at a noncanonical site by APC-EPCR or the canonical site by thrombin when PC occupies EPCR induces β-arrestin-2-mediated biased cytoprotective signaling. Factor VIIa binding to EPCR is also shown to induce the cytoprotective signaling. EPCR is found to be a reliable surface marker for identifying human hematopoietic stem cells in culture. EPCR, binding to diverse ligands, is thought to play a role in the pathogenesis of severe malaria, immune functions, and cancer by either blocking the APC-mediated signaling or by mechanisms that are yet to be elucidated. SUMMARY Recent studies provide a mechanistic basis to how EPCR contributes to PAR1-mediated biased signaling. EPCR may play a role in influencing a wide array of biological functions by binding to diverse ligands.
Collapse
|
27
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
28
|
Cimmino G, Cirillo P. Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis. Cardiovasc Diagn Ther 2018; 8:581-593. [PMID: 30498683 DOI: 10.21037/cdt.2018.10.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the attention on tissue factor (TF) in human pathophysiology has been limited to its role as initiator of extrinsic coagulation pathway. Moreover, it was described as a glycoprotein located in several tissue including vascular wall and atherosclerotic plaque. However, in the last two decades, the discovery that TF circulates in the blood as cell-associated protein, microparticles (MPs) bound and as soluble form, is changing this old vessel-wall TF dogma. Moreover, it has been reported that TF is expressed by different cell types, even T lymphocytes and platelets, and different pathological conditions, such as acute and chronic inflammatory status, and cancer, may enhance its expression and activity. Thus, recent advances in the biology of TF have clearly indicated that beyond its known effects on blood coagulation, it is a "true surface receptor" involved in many intracellular signaling, cell-survival, gene and protein expression, proliferation, angiogenesis and tumor metastasis. Finally, therapeutic modulation of TF expression and/or activity has been tested with controversial results. This report, starting from the old point of view about TF as initiator of extrinsic coagulation pathway, briefly illustrates the more recent concepts about TF and thrombosis and finally gives an overview about its role beyond thrombosis and haemostasis focusing on the different intracellular mechanisms triggered by its activation and potentially involved in atherosclerosis.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Science, Division of Cardiology, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Plinio Cirillo
- Department of Advance Biomedical Science, Division of Cardiology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
29
|
Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132:123-131. [PMID: 29866813 DOI: 10.1182/blood-2017-12-768986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
The hemostatic system plays pivotal roles in injury repair, innate immunity, and adaptation to inflammatory challenges. We review the evidence that these vascular-protective mechanisms have nontraditional roles in hematopoietic stem cell (HSC) maintenance in their physiological bone marrow (BM) niches at steady-state and under stress. Expression of coagulation factors and the extrinsic coagulation initiator tissue factor by osteoblasts, tissue-resident macrophages, and megakaryocytes suggests that endosteal and vascular HSC niches are functionally regulated by extravascular coagulation. The anticoagulant endothelial protein C receptor (EPCR; Procr) is highly expressed by primitive BM HSCs and endothelial cells. EPCR is associated with its major ligand, activated protein C (aPC), in proximity to thrombomodulin-positive blood vessels, enforcing HSC integrin α4 adhesion and chemotherapy resistance in the context of CXCL12-CXCR4 niche retention signals. Protease-activated receptor 1-biased signaling by EPCR-aPC also maintains HSC retention, whereas thrombin signaling activates HSC motility and BM egress. Furthermore, HSC mobilization under stress is enhanced by the fibrinolytic and complement cascades that target HSCs and their BM niches. In addition, coagulation, fibrinolysis, and HSC-derived progeny, including megakaryocytes, synergize to reestablish functional perivascular HSC niches during BM stress. Therapeutic restoration of the anticoagulant pathway has preclinical efficacy in reversing BM failure following radiation injury, but questions remain about how antithrombotic therapy influences extravascular coagulation in HSC maintenance and hematopoiesis.
Collapse
|
30
|
Factor VIIa induces anti-inflammatory signaling via EPCR and PAR1. Blood 2018; 131:2379-2392. [PMID: 29669778 DOI: 10.1182/blood-2017-10-813527] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies show that endothelial cell protein C receptor (EPCR) interacts with diverse ligands, in addition to its known ligands protein C and activated protein C (APC). We showed in earlier studies that procoagulant clotting factor VIIa (FVIIa) binds EPCR and downregulates EPCR-mediated anticoagulation and induces an endothelial barrier protective effect. Here, we investigated the effect of FVIIa's interaction with EPCR on endothelial cell inflammation and lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Treatment of endothelial cells with FVIIa suppressed tumor necrosis factor α (TNF-α)- and LPS-induced expression of cellular adhesion molecules and adherence of monocytes to endothelial cells. Inhibition of EPCR or protease-activated receptor 1 (PAR1) by either specific antibodies or small interfering RNA abolished the FVIIa-induced suppression of TNF-α- and LPS-induced expression of cellular adhesion molecules and interleukin-6. β-Arrestin-1 silencing blocked the FVIIa-induced anti-inflammatory effect in endothelial cells. In vivo studies showed that FVIIa treatment markedly suppressed LPS-induced inflammatory cytokines and infiltration of innate immune cells into the lung in wild-type and EPCR-overexpressing mice, but not in EPCR-deficient mice. Mechanistic studies revealed that FVIIa treatment inhibited TNF-α-induced ERK1/2, p38 MAPK, JNK, NF-κB, and C-Jun activation indicating that FVIIa-mediated signaling blocks an upstream signaling event in TNFα-induced signaling cascade. FVIIa treatment impaired the recruitment of TNF-receptor-associated factor 2 into the TNF receptor 1 signaling complex. Overall, our present data provide convincing evidence that FVIIa binding to EPCR elicits anti-inflammatory signaling via a PAR1- and β-arrestin-1 dependent pathway. The present study suggests new therapeutic potentials for FVIIa, which is currently in clinical use for treating bleeding disorders.
Collapse
|
31
|
Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood 2018; 131:674-685. [PMID: 29246902 PMCID: PMC5805488 DOI: 10.1182/blood-2017-02-768218] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Enbo Liu
- San Diego Biomedical Research Institute, San Diego, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer Disse
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
32
|
Graf C, Ruf W. Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation. Thromb Res 2018; 164 Suppl 1:S143-S147. [PMID: 29703473 DOI: 10.1016/j.thromres.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
Thrombosis is frequently diagnosed as a first symptom in tumor patients and the clinical management of hypercoagulability in cancer patients remains challenging due to concomitant changes in risk factors for severe bleeding. It therefore remains a priority to better understand interactions of the hemostatic system with cancer biology. Specifically, further research is needed to elucidate the details and effects of new anticoagulants on extravascular coagulation and the interplay between cancer progression and chronic inflammation. In addition, it will be important to identify subgroups of cancer patients benefiting from specific modulations of the coagulation system without increasing the bleeding risk. Here, we review recent findings on tissue factor (TF) regulation, its procoagulant activity and TF signaling in the various cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
33
|
Selective factor VIII activation by the tissue factor-factor VIIa-factor Xa complex. Blood 2017; 130:1661-1670. [PMID: 28729433 DOI: 10.1182/blood-2017-02-767079] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.
Collapse
|
34
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
35
|
FVIIa prevents the progressive hemorrhaging of a brain contusion by protecting microvessels via formation of the TF–FVIIa–FXa complex. Neuroscience 2017; 348:114-125. [DOI: 10.1016/j.neuroscience.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
36
|
Grandoni J, Perret G, Forier C. Kinetic analysis and binding studies of a new recombinant human factor VIIa for treatment of haemophilia. Haemophilia 2016; 23:300-308. [PMID: 27995727 DOI: 10.1111/hae.13110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION/AIM LR769 is a new second-generation recombinant human Factor VIIa (rhFVIIa) developed for haemophilia treatment. We determined enzymatic properties of LR769 and its interaction with antithrombin, tissue factor, platelets and endothelial protein C receptor (EPCR), compared with NovoSevenRT. METHODS Kinetic enzyme assays and active site titration were used for enzymatic studies. Surface Plasmon Resonance (SPR) was used for determination of binding constants. Cellular binding was determined for platelets and cultured human umbilical vein endothelial cells (HUVEC). RESULTS The dissociation constant (Kd ) for activated platelet binding was in the 1 μm range for both products. At saturation, more LR769 than NovoSevenRT was bound to the platelets. Binding to HUVEC was 25-50% higher for LR769 than for NovoSevenRT. Protein C, soluble EPCR, and anti-EPCR antibody all reduced the binding, indicating specificity for EPCR. LR769 was similar to NovoSevenRT in all kinetic assays. Active site titration demonstrated 0.7 mole of active site/mole of protein. The kcat /Km values for activation of FX and FIX with purified recombinant tissue factor and phospholipids were 10.5 s-1 /0.32 μm and 3.3 s-1 /0.44 μm respectively. The apparent second-order rate constant for inactivation by human plasma AT was 5.9 ± 0.4 × 103 m-1 s-1 . The Kd values for binding of LR769 to soluble tissue factor and full-length tissue factor were 8.1 nm and 0.9 nm, respectively, and the Kd for binding to soluble EPCR was 41 nm. CONCLUSION Overall, LR769 exhibited characteristics similar to NovoSevenRT, but bound EPCR on HUVEC with somewhat higher affinity than NovoSevenRT.
Collapse
|
37
|
Hu Z, Cheng J, Xu J, Ruf W, Lockwood CJ. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy. Angiogenesis 2016; 20:85-96. [PMID: 27807692 PMCID: PMC5306358 DOI: 10.1007/s10456-016-9530-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023]
Abstract
Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center (OSUCCC), The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jijun Cheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Jie Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
38
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
39
|
Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood 2016; 127:3260-9. [PMID: 27114461 DOI: 10.1182/blood-2015-11-683110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Collapse
|
40
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
41
|
Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370:65-81. [PMID: 26928241 DOI: 10.1111/nyas.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudine Graf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Third Medical Department, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, California
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 2015; 21:1307-17. [PMID: 26457757 DOI: 10.1038/nm.3960] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with activated protein C (aPC) that retains EPCR(+) LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing integrin VLA4 affinity and adhesion. Inhibition of NO production by aPC-EPCR-PAR1 signaling reduces progenitor cell egress from the bone marrow, increases retention of bone marrow NO(low) EPCR(+) LT-HSCs and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR in controlling NO production to balance maintenance and recruitment of bone marrow EPCR(+) LT-HSCs, with potential clinical relevance for stem cell transplantation.
Collapse
|
43
|
Page MJ, Lourenço AL, David T, LeBeau AM, Cattaruzza F, Castro HC, VanBrocklin HF, Coughlin SR, Craik CS. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat Commun 2015; 6:8448. [PMID: 26423607 PMCID: PMC4593073 DOI: 10.1038/ncomms9448] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. Functional imaging of proteolytic activity is an emerging strategy to guide patient diagnosis and monitor clinical outcome. Here the authors present a peptide-based probe to detect and localize thrombin activity ex vivo and non-invasively in mouse models of wounding and pulmonary thrombosis.
Collapse
Affiliation(s)
- Michael J Page
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - André L Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil.,LABiEMol, Postgraduate Program in Pathology, Universidade Federal Fluminense, Niterói, Rio de Janeiro RJ 23230-060, Brazil
| | - Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, California 94158-9001, USA
| | - Aaron M LeBeau
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - Fiore Cattaruzza
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - Helena C Castro
- LABiEMol, Postgraduate Program in Pathology, Universidade Federal Fluminense, Niterói, Rio de Janeiro RJ 23230-060, Brazil
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, California 94158-9001, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| |
Collapse
|
44
|
Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice. Blood 2015; 126:2415-23. [PMID: 26341257 DOI: 10.1182/blood-2015-05-644401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/31/2015] [Indexed: 01/20/2023] Open
Abstract
The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.
Collapse
|
45
|
Characterization of mice harboring a variant of EPCR with impaired ability to bind protein C: novel role of EPCR in hematopoiesis. Blood 2015; 126:673-82. [DOI: 10.1182/blood-2014-02-558940] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/28/2015] [Indexed: 01/27/2023] Open
Abstract
Key Points
Mutation of the PC-binding domain of EPCR results in viable mice that exhibit procoagulant and proinflammatory phenotype when challenged. EPCRR84A/R84A mice develop splenomegaly as a result of BM failure, suggesting that EPCR plays an important role in hematopoiesis.
Collapse
|
46
|
Petersen JEV, Bouwens EAM, Tamayo I, Turner L, Wang CW, Stins M, Theander TG, Hermida J, Mosnier LO, Lavstsen T. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb Haemost 2015; 114:1038-48. [PMID: 26155776 DOI: 10.1160/th15-01-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/23/2015] [Indexed: 12/23/2022]
Abstract
The Endothelial Protein C receptor (EPCR) is essential for the anticoagulant and cytoprotective functions of the Protein C (PC) system. Selected variants of the malaria parasite protein, Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) associated with severe malaria, including cerebral malaria, specifically target EPCR on vascular endothelial cells. Here, we examine the cellular response to PfEMP1 engagement to elucidate its role in malaria pathogenesis. Binding of the CIDRα1.1 domain of PfEMP1 to EPCR obstructed activated PC (APC) binding to EPCR and induced a loss of cellular EPCR functions. CIDRα1.1 severely impaired endothelial PC activation and effectively blocked APC-mediated activation of protease-activated receptor-1 (PAR1) and associated barrier protective effects of APC on endothelial cells. A soluble EPCR variant (E86A-sEPCR) bound CIDRα1.1 with high affinity and did not interfere with (A)PC binding to cellular EPCR. E86A-sEPCR used as a decoy to capture PfEMP1, permitted normal PC activation on endothelial cells, normal barrier protective effects of APC, and greatly reduced cytoadhesion of infected erythrocytes to brain endothelial cells. These data imply important contributions of PfEMP1-induced protein C pathway defects in the pathogenesis of severe malaria. Furthermore, the E86A-sEPCR decoy provides a proof-of-principle strategy for the development of novel adjunct therapies for severe malaria.
Collapse
Affiliation(s)
- Jens E V Petersen
- Jens E. V. Petersen, Centre for Medical Parasitology, Dept. of International Health, Immunology & Microbiology, University of Copenhagen and Dept. of Infectious Diseases, Rigshospitalet, 1014 Copenhagen, Denmark, Tel.: +45 35327549, Fax: +45 35327851, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood 2015; 125:2845-54. [PMID: 25733582 DOI: 10.1182/blood-2014-11-610717] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/23/2015] [Indexed: 01/14/2023] Open
Abstract
Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow-derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses.
Collapse
|
48
|
Abstract
The hemostatic system plays pleiotropic roles in cancer progression by shaping the tumor microenvironment and metastatic niches through thrombin-dependent fibrin deposition and platelet activation. Expanding experimental evidence implicates coagulation protease receptors expressed by tumor cells as additional players that directly influence tumor biology. Pro-angiogenic G protein-coupled signaling of TF through protease activated receptor 2 and regulation of tumor cell and vascular integrins through ligation by alternative spliced TF are established pathways driving tumor progression. Our recent work shows that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is also crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. In aggressive triple-negative breast cancer cells, EPCR expression is a characteristic of cancer stem cell-like populations that have tumor initiating properties in vivo. Blocking antibodies to EPCR attenuate in vivo tumor growth and proliferation specifically of EPCR(+) cells on defined integrin matrices in vitro. We also showed that tumor-associated macrophages are a source for upstream coagulation proteases that can activate TF- and EPCR-dependent cellular responses, suggesting that tumor cells utilize the tumor microenvironment for tumor promoting coagulation protease signaling.
Collapse
|
49
|
Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hamostaseologie 2015; 35:279-83. [PMID: 25623940 DOI: 10.5482/hamo-14-11-0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023] Open
Abstract
Obesity is a major cause for a spectrum of metabolic syndrome-related diseases that include insulin resistance, type 2 diabetes, and steatosis of the liver. Inflammation elicited by macrophages and other immune cells contributes to the metabolic abnormalities in obesity. In addition, coagulation activation following tissue factor (TF) upregulation in adipose tissue is frequently found in obese patients and particularly associated with diabetic complications. Genetic and pharmacological evidence indicates that TF makes significant contributions to the development of the metabolic syndrome by signaling through G protein-coupled protease activated receptors (PARs). Adipocyte TF-PAR2 signaling contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas hematopoietic TF-PAR2 signaling is a major cause for adipose tissue inflammation, hepatic steatosis and inflammation, as well as insulin resistance. In the liver of mice on a high fat diet, PAR2 signaling increases transcripts of key regulators of gluconeogenesis, lipogenesis and inflammatory cytokines. Increased markers of hepatic gluconeogenesis correlate with decreased activation of AMP-activated protein kinase (AMPK), a known regulator of these pathways and a target for PAR2 signaling. Clinical markers of a TF-induced prothrombotic state may thus indicate a risk in obese patient for developing complications of the metabolic syndrome.
Collapse
Affiliation(s)
- W Ruf
- Wolfram Ruf, M.D., Professor, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Mail stop: SP258, Tel. 858/784-2748, Fax -8480, E-mail: ,
| | | |
Collapse
|
50
|
Koizume S, Miyagi Y. Breast cancer phenotypes regulated by tissue factor-factor VII pathway: Possible therapeutic targets. World J Clin Oncol 2014; 5:908-920. [PMID: 25493229 PMCID: PMC4259953 DOI: 10.5306/wjco.v5.i5.908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a leading cause of cancer death in women, worldwide. Fortunately, breast cancer is relatively chemosensitive, with recent advances leading to the development of effective therapeutic strategies, significantly increasing disease cure rate. However, disease recurrence and treatment of cases lacking therapeutic molecular targets, such as epidermal growth factor receptor 2 and hormone receptors, referred to as triple-negative breast cancers, still pose major hurdles in the treatment of breast cancer. Thus, novel therapeutic approaches to treat aggressive breast cancers are essential. Blood coagulation factor VII (fVII) is produced in the liver and secreted into the blood stream. Tissue factor (TF), the cellular receptor for fVII, is an integral membrane protein that plays key roles in the extrinsic coagulation cascade. TF is overexpressed in breast cancer tissues. The TF-fVII complex may be formed in the absence of injury, because fVII potentially exists in the tissue fluid within cancer tissues. The active form of this complex (TF-fVIIa) may stimulate the expression of numerous malignant phenotypes in breast cancer cells. Thus, the TF-fVII pathway is a potentially attractive target for breast cancer treatment. To date, a number of studies investigating the mechanisms by which TF-fVII signaling contributes to breast cancer progression, have been conducted. In this review, we summarize the mechanisms controlling TF and fVII synthesis and regulation in breast cancer cells. Our current understanding of the TF-fVII pathway as a mediator of breast cancer progression will be also described. Finally, we will discuss how this knowledge can be applied to the design of future therapeutic strategies.
Collapse
|