1
|
Chen B, Wang J, Huang M, Gui Y, Wei Q, Wang L, Tan BC. C1-FDX is required for the assembly of mitochondrial complex I and subcomplexes of complex V in Arabidopsis. PLoS Genet 2024; 20:e1011419. [PMID: 39356718 PMCID: PMC11446459 DOI: 10.1371/journal.pgen.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
C1-FDX (Complex I-ferredoxin) has been defined as a component of CI in a ferredoxin bridge in Arabidopsis mitochondria. However, its full function remains to be addressed. We created two c1-fdx mutants in Arabidopsis using the CRISPR-Cas9 methodology. The mutants show delayed seed germination. Over-expression of C1-FDX rescues the phenotype. Molecular analyses showed that loss of the C1-FDX function decreases the abundance and activity of both CI and subcomplexes of CV. In contrast, the over-expression of C1-FDX-GFP enhances the CI* (a sub-complex of CI) and CV assembly. Immunodetection reveals that the stoichiometric ratio of the α:β subunits in the F1 module of CV is altered in the c1-fdx mutant. In the complemented mutants, C1-FDX-GFP was found to be associated with the F' and α/β sub-complexes of CV. Protein interaction assays showed that C1-FDX could interact with the β, γ, δ, and ε subunits of the F1 module, indicating that C1-FDX, a structural component of CI, also functions as an assembly factor in the assembly of F' and α/β sub-complexes of CV. These results reveal a new role of C1-FDX in the CI and CV assembly and seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- College of Agriculture, and State Key Laboratory of Crop Biology, Shangdong Agricultural University, Tai’an, China
| | - Junjun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Manna Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuanye Gui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Qingqing Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Maldonado M. Plant supercomplex I + III2 structure and function: implications for the growing field. Biochem Soc Trans 2024; 52:1647-1659. [PMID: 39177070 DOI: 10.1042/bst20230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Mitochondrial respiration is major source of chemical energy for all free-living eukaryotes. Nevertheless, the mechanisms of the respiratory complexes and supercomplexes remain poorly understood. Here, I review recent structural and functional investigations of plant supercomplex I + III2 from Arabidopsis thaliana and Vigna radiata. I discuss commonalities, open questions and implications for complex I, complex III2 and supercomplexes in plants and non-plants. Studies across further clades will enhance our understanding of respiration and the potential universal mechanisms of its complexes and supercomplexes.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Plant Biology, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
3
|
Sayyed A, Chen B, Wang Y, Cao SK, Tan BC. PPR596 Is Required for nad2 Intron Splicing and Complex I Biogenesis in Arabidopsis. Int J Mol Sci 2024; 25:3542. [PMID: 38542518 PMCID: PMC10971677 DOI: 10.3390/ijms25063542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (A.S.); (B.C.); (Y.W.); (S.-K.C.)
| |
Collapse
|
4
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Röhricht H, Przybyla-Toscano J, Forner J, Boussardon C, Keech O, Rouhier N, Meyer EH. Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:2170-2184. [PMID: 36695030 PMCID: PMC10069907 DOI: 10.1093/plphys/kiad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/11/2023] [Indexed: 06/02/2023]
Abstract
In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.
Collapse
Affiliation(s)
| | - Jonathan Przybyla-Toscano
- Present address: Laboratoire Physiologie Cellulaire & Végétale, Institut de Recherche Interdisciplinaire de Grenoble, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Commissariat à l’Energie Atomique et aux Energie Alternatives, Centre National de la Recherche Scientifique, F-38000 Grenoble, France
| | - Joachim Forner
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Nicolas Rouhier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Interactions Arbres-Microorganismes (IAM), Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
7
|
Maldonado M, Fan Z, Abe KM, Letts JA. Plant-specific features of respiratory supercomplex I + III 2 from Vigna radiata. NATURE PLANTS 2023; 9:157-168. [PMID: 36581760 PMCID: PMC9873571 DOI: 10.1038/s41477-022-01306-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 05/07/2023]
Abstract
The last steps of cellular respiration-an essential metabolic process in plants-are carried out by mitochondrial oxidative phosphorylation. This process involves a chain of multi-subunit membrane protein complexes (complexes I-V) that form higher-order assemblies called supercomplexes. Although supercomplexes are the most physiologically relevant form of the oxidative phosphorylation complexes, their functions and structures remain mostly unknown. Here we present the cryogenic electron microscopy structure of the supercomplex I + III2 from Vigna radiata (mung bean). The structure contains the full subunit complement of complex I, including a newly assigned, plant-specific subunit. It also shows differences in the mitochondrial processing peptidase domain of complex III2 relative to a previously determined supercomplex with complex IV. The supercomplex interface, while reminiscent of that in other organisms, is plant specific, with a major interface involving complex III2's mitochondrial processing peptidase domain and no participation of complex I's bridge domain. The complex I structure suggests that the bridge domain sets the angle between the enzyme's two arms, limiting large-scale conformational changes. Moreover, complex I's catalytic loops and its response in active-to-deactive assays suggest that, in V. radiata, the resting complex adopts a non-canonical state and can sample deactive- or open-like conformations even in the presence of substrate. This study widens our understanding of the possible conformations and behaviour of complex I and supercomplex I + III2. Further studies of complex I and its supercomplexes in diverse organisms are needed to determine the universal and clade-specific mechanisms of respiration.
Collapse
Affiliation(s)
- M Maldonado
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
- Department of Plant Biology, University of California, Davis, CA, USA.
| | - Z Fan
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - K M Abe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - J A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
Alkhaldi HA, Vik SB. Subunits E-F-G of E. coli Complex I can form an active complex when expressed alone, but in time-delayed assembly co-expression of B-CD-E-F-G is optimal. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148593. [PMID: 35850264 PMCID: PMC9783743 DOI: 10.1016/j.bbabio.2022.148593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, in three different groupings, and expressing them simultaneously, or with time-delay of expression from one plasmid. When the B-CD-E-F-G genes were co-expressed after a time-delay, assembly was over 90 % of that when the whole operon was expressed together. In summary, E-F-G was the only soluble subcomplex detected in these studies, but assembly was not optimal when these subunits were expressed either first or last. Co-expression of subunits B and CD with E-F-G provided a higher level of assembly, indicating that integrated assembly of N- and Q-modules provides a more efficient pathway.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
9
|
Wang G, Wang Y, Ni J, Li R, Zhu F, Wang R, Tian Q, Shen Q, Yang Q, Tang J, Murcha MW, Wang G. An MCIA-like complex is required for mitochondrial complex I assembly and seed development in maize. MOLECULAR PLANT 2022; 15:1470-1487. [PMID: 35957532 DOI: 10.1016/j.molp.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
During adaptive radiation, mitochondria have co-evolved with their hosts, leading to gain or loss of subunits and assembly factors of respiratory complexes. Plant mitochondrial complex I harbors ∼40 nuclear- and 9 mitochondrial-encoded subunits, and is formed by stepwise assembly during which different intermediates are integrated via various assembly factors. In mammals, the mitochondrial complex I intermediate assembly (MCIA) complex is required for building the membrane arm module. However, plants have lost almost all of the MCIA complex components, giving rise to the hypothesis that plants follow an ancestral pathway to assemble the membrane arm subunits. Here, we characterize a maize crumpled seed mutant, crk1, and reveal by map-based cloning that CRK1 encodes an ortholog of human complex I assembly factor 1, zNDUFAF1, the only evolutionarily conserved MCIA subunit in plants. zNDUFAF1 is localized in the mitochondria and accumulates in two intermediate complexes that contain complex I membrane arm subunits. Disruption of zNDUFAF1 results in severe defects in complex I assembly and activity, a cellular bioenergetic shift to aerobic glycolysis, and mitochondrial vacuolation. Moreover, we found that zNDUFAF1, the putative mitochondrial import inner membrane translocase ZmTIM17-1, and the isovaleryl-coenzyme A dehydrogenase ZmIVD1 interact each other, and could be co-precipitated from the mitochondria and co-migrate in the same assembly intermediates. Knockout of either ZmTIM17-1 or ZmIVD1 could lead to the significantly reduced complex I stability and activity as well as defective seeds. These results suggest that zNDUFAF1, ZmTIM17-1 and ZmIVD1 probably form an MCIA-like complex that is essential for the biogenesis of mitochondrial complex I and seed development in maize. Our findings also imply that plants and mammals recruit MCIA subunits independently for mitochondrial complex I assembly, highlighting the importance of parallel evolution in mitochondria adaptation to their hosts.
Collapse
Affiliation(s)
- Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiacheng Ni
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rongrong Li
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Fengling Zhu
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruyin Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiuzhen Tian
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Monika W Murcha
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science, CIMMYT--China Joint Center of Wheat and Maize, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
10
|
Meyer EH, Letts JA, Maldonado M. Structural insights into the assembly and the function of the plant oxidative phosphorylation system. THE NEW PHYTOLOGIST 2022; 235:1315-1329. [PMID: 35588181 DOI: 10.1111/nph.18259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 05/23/2023]
Abstract
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Maria Maldonado
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes (Basel) 2022; 13:genes13071137. [PMID: 35885919 PMCID: PMC9321910 DOI: 10.3390/genes13071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.
Collapse
|
12
|
Przybyla-Toscano J, Maclean AE, Franceschetti M, Liebsch D, Vignols F, Keech O, Rouhier N, Balk J. Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. PLANT PHYSIOLOGY 2022; 188:997-1013. [PMID: 34718778 PMCID: PMC8825329 DOI: 10.1093/plphys/kiab501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
Collapse
Affiliation(s)
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, F-34060 Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
13
|
Vincis Pereira Sanglard L, Colas des Francs-Small C. High-Throughput BN-PAGE for Mitochondrial Respiratory Complexes. Methods Mol Biol 2022; 2363:111-119. [PMID: 34545490 DOI: 10.1007/978-1-0716-1653-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blue native electrophoresis (BN-PAGE) is a highly resolutive method suited to the study of high molecular weight protein complexes between 100 and >3000 kDa. One of the drawbacks of this method is that it is very time-consuming and requires high quantities of purified organelles. Here we describe a high throughput BN-PAGE method allowing to screen libraries of plants potentially altered in respiratory metabolism.
Collapse
|
14
|
Moseler A, Kruse I, Maclean AE, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dörmann P, Hildebrandt TM, Hell R, Schwarzländer M, Balk J, Meyer AJ. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. PLANT PHYSIOLOGY 2021; 186:1507-1525. [PMID: 33856472 PMCID: PMC8260144 DOI: 10.1093/plphys/kiab172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Collapse
Affiliation(s)
- Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Université de Lorraine, INRAE, IAM, Nancy 54000, France
| | - Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Wellcome Trust Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Luca Pedroletti
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Regina Wehler
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katrin Fischer-Schrader
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | | | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP)—Plant Energy Biology, University of Münster, 48143 Münster, Germany
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, 52425 Jülich, Germany
- Author for communication:
| |
Collapse
|
15
|
Ivanova A, Ghifari AS, Berkowitz O, Whelan J, Murcha MW. The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly. PLANT PHYSIOLOGY 2021; 186:599-610. [PMID: 33616659 PMCID: PMC8154063 DOI: 10.1093/plphys/kiab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 06/02/2023]
Abstract
ATP is generated in mitochondria by oxidative phosphorylation. Complex I (NADH:ubiquinone oxidoreductase or NADH dehydrogenase) is the first multisubunit protein complex of this pathway, oxidizing NADH and transferring electrons to the ubiquinone pool. Typically, Complex I mutants display a slow growth rate compared to wild-type plants. Here, using a forward genetic screen approach for restored growth of a Complex I mutant, we have identified the mitochondrial ATP-dependent metalloprotease, Filamentous Temperature Sensitive H 3 (FTSH3), as a factor that is required for the disassembly of Complex I. An ethyl methanesulfonate-induced mutation in FTSH3, named as rmb1 (restoration of mitochondrial biogenesis 1), restored Complex I abundance and plant growth. Complementation could be achieved with FTSH3 lacking proteolytic activity, suggesting the unfoldase function of FTSH3 has a role in Complex I disassembly. The introduction of the rmb1 to an additional, independent, and extensively characterized Complex I mutant, ndufs4, resulted in similar increases to Complex I abundance and a partial restoration of growth. These results show that disassembly or degradation of Complex I plays a role in determining its steady-state abundance and thus turnover may vary under different conditions.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
16
|
Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148443. [PMID: 33965424 DOI: 10.1016/j.bbabio.2021.148443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Mitochondrial biology is underpinned by the presence and activity of large protein assemblies participating in the organelle-located steps of respiration, TCA-cycle, glycine oxidation, and oxidative phosphorylation. While the enzymatic roles of these complexes are undisputed, little is known about the interactions of the subunits beyond their presence in these protein complexes and their functions in regulating mitochondrial metabolism. By applying one of the most important regulatory cues for plant metabolism, the presence or absence of light, we here assess changes in the composition and molecular mass of protein assemblies involved in NADH-production in the mitochondrial matrix and in oxidative phosphorylation by employing a differential complexome profiling strategy. Covering a mass up to 25 MDa, we demonstrate dynamic associations of matrix enzymes and of components involved in oxidative phosphorylation. The data presented here form the basis for future studies aiming to advance our understanding of the role of protein:protein interactions in regulating plant mitochondrial functions.
Collapse
|
17
|
Shevtsov-Tal S, Best C, Matan R, Chandran SA, Brown GG, Ostersetzer-Biran O. nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo development in Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1128-1147. [PMID: 33683754 DOI: 10.1111/tpj.15225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/21/2023]
Abstract
Group-II introns are self-splicing mobile genetic elements consisting of catalytic intron-RNA and its related intron-encoded splicing maturase protein cofactor. Group-II sequences are particularly plentiful within the mitochondria of land plants, where they reside within many critical gene loci. During evolution, the plant organellar introns have degenerated, such as they lack regions that are are required for splicing, and also lost their evolutionary related maturase proteins. Instead, for their splicing the organellar introns in plants rely on different host-acting protein cofactors, which may also provide a means to link cellular signals with respiratory functions. The nuclear genome of Arabidopsis thaliana encodes four maturase-related factors. Previously, we showed that three of the maturases, nMAT1, nMAT2 and nMAT4, function in the excision of different group-II introns in Arabidopsis mitochondria. The function of nMAT3 (encoded by the At5g04050 gene locus) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria, resulting in complex-I biogenesis defects and altered respiratory activities. Functional complementation of nMAT3 restored the organellar defects and embryo-arrested phenotypes associated with the nmat3 mutant line. Notably, nMAT3 and nMA4 were found to act on the same RNA targets but have no redundant functions in the splicing of nad1 transcripts. The two maturases, nMAT3 and nMAT4 are likely to cooperate together in the maturation of nad1 pre-RNAs. Our results provide important insights into the roles of maturases in mitochondria gene expression and the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Roei Matan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Sam A Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, India
| | - Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| |
Collapse
|
18
|
Chen W, Cui Y, Wang Z, Chen R, He C, Liu Y, Du X, Liu Y, Fu J, Wang G, Wang J, Gu R. Nuclear-Encoded Maturase Protein 3 Is Required for the Splicing of Various Group II Introns in Mitochondria during Maize (Zea mays L.) Seed Development. ACTA ACUST UNITED AC 2021; 62:293-305. [DOI: 10.1093/pcp/pcaa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.
Collapse
Affiliation(s)
- Weiwei Chen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rongrong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Wang Y, Liu F, Liu M, Shi S, Bi Y, Chen N. Molecular cloning and transcriptional regulation of two γ-carbonic anhydrase genes in the green macroalga Ulva prolifera. Genetica 2021; 149:63-72. [PMID: 33449239 DOI: 10.1007/s10709-020-00112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/06/2020] [Indexed: 12/01/2022]
Abstract
Ulva prolifera O.F. Müller (Ulvophyceae, Chlorophyta) is well known as a typical green-tide forming macroalga which has caused the world's largest macroalgal blooms in the Yellow Sea of China. In this study, two full-length γ-carbonic anhydrase (γ-CA) genes (UpγCA1 and UpγCA2) were cloned from U. prolifera. UpγCA1 has three conserved histidine residues, which act as an active site for binding a zinc metal ion. In UpγCA2, two of the three histidine residues were replaced by serine and arginine, respectively. The two γ-CA genes are clustered together with other γ-CAs in Chlorophyta with strong support value (100% bootstrap) in maximum likelihood (ML) phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analysis showed that stressful environmental conditions markedly inhibited transcription levels of these two γ-CA genes. Low pH value (pH 7.5) significantly increased transcription level of UpγCA2 not UpγCA1 at 12 h, whereas high pH value (pH 8.5) significantly inhibited the transcription of these two γ-CA genes at 6 h. These findings enhanced our understanding on transcriptional regulation of γ-CA genes in response to environmental factors in U. prolifera.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China. .,Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, People's Republic of China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, Shandong, People's Republic of China.
| | - Manman Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Shitao Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China.,Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, Shandong, People's Republic of China
| |
Collapse
|
20
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Maldonado M, Padavannil A, Zhou L, Guo F, Letts JA. Atomic structure of a mitochondrial complex I intermediate from vascular plants. eLife 2020; 9:56664. [PMID: 32840211 PMCID: PMC7447434 DOI: 10.7554/elife.56664] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Respiration, an essential metabolic process, provides cells with chemical energy. In eukaryotes, respiration occurs via the mitochondrial electron transport chain (mETC) composed of several large membrane-protein complexes. Complex I (CI) is the main entry point for electrons into the mETC. For plants, limited availability of mitochondrial material has curbed detailed biochemical and structural studies of their mETC. Here, we present the cryoEM structure of the known CI assembly intermediate CI* from Vigna radiata at 3.9 Å resolution. CI* contains CI's NADH-binding and CoQ-binding modules, the proximal-pumping module and the plant-specific γ-carbonic-anhydrase domain (γCA). Our structure reveals significant differences in core and accessory subunits of the plant complex compared to yeast, mammals and bacteria, as well as the details of the γCA domain subunit composition and membrane anchoring. The structure sheds light on differences in CI assembly across lineages and suggests potential physiological roles for CI* beyond assembly.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Long Zhou
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States.,BIOEM Facility, University of California Davis, Davis, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
22
|
Genomic dissection and expression analysis of stress-responsive genes in C4 panicoid models, Setaria italica and Setaria viridis. J Biotechnol 2020; 318:57-67. [DOI: 10.1016/j.jbiotec.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
|
23
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
24
|
Marchetti F, Cainzos M, Shevtsov S, Córdoba JP, Sultan LD, Brennicke A, Takenaka M, Pagnussat G, Ostersetzer-Biran O, Zabaleta E. Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1080-1094. [PMID: 32163154 PMCID: PMC7295397 DOI: 10.1093/pcp/pcaa028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/08/2020] [Indexed: 05/14/2023]
Abstract
The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Sofía Shevtsov
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Laure Dora Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Axel Brennicke
- Institut für, Molekulare Botanik, Universität Ulm, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|
25
|
Braun HP. The Oxidative Phosphorylation system of the mitochondria in plants. Mitochondrion 2020; 53:66-75. [PMID: 32334143 DOI: 10.1016/j.mito.2020.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial Oxidative Phosphorylation (OXPHOS) provides ATP for driving cellular functions. In plants, OXPHOS takes place in the context of photosynthesis. Indeed, metabolism of mitochondria and chloroplasts is tightly linked. OXPHOS has several extra functions in plants. This review takes a view on the OXPHOS system of plants, the electron transfer chain (ETC), the ATP synthase complex and the numerous supplementary enzymes involved. Electron transport pathways are especially branched in plants. Furthermore, the "classical" OXPHOS complexes include extra subunits, some of which introduce side activities into these complexes. Consequently, and to a remarkable degree, OXPHOS is a multi-functional system in plants that needs to be efficiently regulated with respect to all its physiological tasks in the mitochondria, the chloroplasts, and beyond. Regulatory mechanisms based on posttranslational protein modifications and formation of supramolecular protein assemblies are summarized and discussed.
Collapse
Affiliation(s)
- Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
26
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
27
|
Ivanova A, Gill-Hille M, Huang S, Branca RM, Kmiec B, Teixeira PF, Lehtiö J, Whelan J, Murcha MW. A Mitochondrial LYR Protein Is Required for Complex I Assembly. PLANT PHYSIOLOGY 2019; 181:1632-1650. [PMID: 31601645 PMCID: PMC6878026 DOI: 10.1104/pp.19.00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Complex I biogenesis requires the expression of both nuclear and mitochondrial genes, the import of proteins, cofactor biosynthesis, and the assembly of at least 49 individual subunits. Assembly factors interact with subunits of Complex I but are not part of the final holocomplex. We show that in Arabidopsis (Arabidopsis thaliana), a mitochondrial matrix protein (EMB1793, At1g76060), which we term COMPLEX I ASSEMBLY FACTOR 1 (CIAF1), contains a LYR domain and is required for Complex I assembly. T-DNA insertion mutants of CIAF1 lack Complex I and the Supercomplex I+III. Biochemical characterization shows that the assembly of Complex I is stalled at 650 and 800 kD intermediates in mitochondria isolated from ciaf1 mutant lines.I. Yeast-two-hybrid interaction and complementation assays indicate that CIAF1 specifically interacts with the 23-kD TYKY-1 matrix domain subunit of Complex I and likely plays a role in Fe-S insertion into this subunit. These data show that CIAF1 plays an essential role in assembling the peripheral matrix arm Complex I subunits into the Complex I holoenzyme.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth 6009, Australia
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Mabel Gill-Hille
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth 6009, Australia
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Shaobai Huang
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth 6009, Australia
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Rui M Branca
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institutet, Stockholm 171 77, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm SE-106 91, Sweden
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm SE-106 91, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institutet, Stockholm 171 77, Sweden
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Australia
| | - Monika W Murcha
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Perth 6009, Australia
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
28
|
A Mitochondrial Transcription Termination Factor, ZmSmk3, Is Required for nad1 Intron4 and nad4 Intron1 Splicing and Kernel Development in Maize. G3-GENES GENOMES GENETICS 2019; 9:2677-2686. [PMID: 31196888 PMCID: PMC6686911 DOI: 10.1534/g3.119.400265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression systems of the mitochondrial genes are derived from their bacterial ancestors, but have evolved many new features in their eukaryotic hosts. Mitochondrial RNA splicing is a complex process regulated by families of nucleus-encoded RNA-binding proteins, few of which have been characterized in maize (Zea mays L.). Here, we identified the Zea mays small kernel 3 (Zmsmk3) candidate gene, which encodes a mitochondrial transcription termination factor (mTERF) containing two mTERF motifs, which is conserved in monocotyledon; and the target introns were also quite conserved during evolution between monocotyledons and dicotyledons. The mutations of Zmsmk3 led to arrested embryo and endosperm development, resulting in small kernels. A transcriptome of 12 days after pollination endosperm analysis revealed that the starch biosynthetic pathway and the zein gene family were down-regulated in the Zmsmk3 mutant kernels. ZmSMK3 is localized in mitochondria. The reduced expression of ZmSmk3 in the mutant resulted in the splicing deficiency of mitochondrial nad4 intron1 and nad1 intron4, causing a reduction in complex I assembly and activity, impairing mitochondria structure and activating the alternative respiratory pathway. So, the results suggest that ZmSMK3 is required for the splicing of nad4 intron 1 and nad1 intron 4, complex I assembly and kernel development in maize.
Collapse
|
29
|
C�rdoba JP, Fassolari M, Marchetti F, Soto D, Pagnussat GC, Zabaleta E. Different Types Domains are Present in Complex I from Immature Seeds and of CA Adult Plants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:986-998. [PMID: 30668784 PMCID: PMC6498749 DOI: 10.1093/pcp/pcz011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.
Collapse
Affiliation(s)
- Juan Pablo C�rdoba
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - D�bora Soto
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|
30
|
Chen B, Yin G, Whelan J, Zhang Z, Xin X, He J, Chen X, Zhang J, Zhou Y, Lu X. Composition of Mitochondrial Complex I during the Critical Node of Seed Aging in Oryza sativa. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:7-14. [PMID: 30840921 DOI: 10.1016/j.jplph.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/20/2019] [Accepted: 02/19/2019] [Indexed: 05/10/2023]
Abstract
Previous studies have documented mitochondrial dysfunction during the critical node (CN) of rice (Oryza sativa) seed aging, including a decrease in the capacity of NADH dependent O2 consumption. This raises the hypothesis that changes in the activity of NADH:ubiquinone oxidoreductase (complex I) may play a role in seed aging. The composition and activity of complex I was investigated at the CN of aged rice seeds. Using BN-PAGE and SWATH-MS 52 complex I subunits were identified, nineteen for the first time to be experimentally detected in rice. The subunits of the matrix arm (N and Q modules) were reduced in abundance at the CN, in accordance with a reduction in the capacity to oxidise NADH, reducing substrate oxidation and increase ROS accumulation. In contrast, subunits in the P module increased in abundance that contains many mitochondrial encoded subunits. It is proposed that the changes in complex I abundance subunits may indicate a premature re-activation of mitochondrial biogenesis, as evidenced by the increase in mitochondrial encoded subunits. This premature activation of mitochondrial biogenesis may under-pin the decreased viability of aged seeds, as mitochondrial biogenesis is a crucial event in germination to drive growth before autotrophic growth of the seedling is established.
Collapse
Affiliation(s)
- Baoyin Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Zesen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Chen
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchang Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crop, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Meyer EH, Welchen E, Carrie C. Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:23-50. [PMID: 30822116 DOI: 10.1146/annurev-arplant-050718-100412] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.
Collapse
Affiliation(s)
- Etienne H Meyer
- Organelle Biology and Biotechnology Research Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Current affiliation: Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
| | - Elina Welchen
- Cátedra de Biología Celular y Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Chris Carrie
- Plant Sciences Research Group, Department Biologie I, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Ligas J, Pineau E, Bock R, Huynen MA, Meyer EH. The assembly pathway of complex I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:447-459. [PMID: 30347487 DOI: 10.1111/tpj.14133] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
All present-day mitochondria originate from a single endosymbiotic event that gave rise to the last eukaryotic common ancestor more than a billion years ago. However, to date, many aspects of mitochondrial evolution have remained unresolved. Comparative genomics and proteomics have revealed a complex evolutionary origin for many mitochondrial components. To understand the evolution of the respiratory chain, we have examined both the components and the mechanisms of the assembly pathway of complex I. Complex I represents the first enzyme in the respiratory chain, and complex I deficiencies have dramatic consequences in both animals and plants. The complex is located in the mitochondrial inner membrane and possesses two arms: one embedded in the inner membrane and one protruding in the matrix. Here, we describe the assembly pathway of complex I in the model plant Arabidopsis thaliana. Using a proteomics approach called complexome profiling, we have resolved the different steps in the assembly process in plants. We propose a model for the stepwise assembly of complex I, including every subunit. We then compare this pathway with the corresponding pathway in humans and find that complex I assembly in plants follows a different, and likely ancestral, pathway compared with the one in humans. We show that the main evolutionary changes in complex I structure and assembly in humans occurred at the level of the membrane arm, whereas the matrix arm remained rather conserved.
Collapse
Affiliation(s)
- Joanna Ligas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Emmanuelle Pineau
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Centre for Mitochondrial Medicine, Radboud University, Nijmegen, The Netherlands
| | - Etienne H Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
33
|
Colas des Francs-Small C, Vincis Pereira Sanglard L, Small I. Targeted cleavage of nad6 mRNA induced by a modified pentatricopeptide repeat protein in plant mitochondria. Commun Biol 2018; 1:166. [PMID: 30320233 PMCID: PMC6181959 DOI: 10.1038/s42003-018-0166-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genes encode key components of the cellular energy machinery, but their genetic analysis is difficult or impossible in most organisms (including plants) because of the lack of viable transformation approaches. We report here a method to block the expression of the mitochondrial nad6 gene encoding a subunit of respiratory complex I in Arabidopsis thaliana, via the modification of the specificity of the RNA-binding protein RNA PROCESSING FACTOR 2 (RPF2). We show that the modified RPF2 binds and specifically induces cleavage of nad6 RNA, almost eliminating expression of the Nad6 protein and consequently complex I accumulation and activity. To our knowledge, this is the first example of a targeted block in expression of a specific mitochondrial transcript by a custom-designed RNA-binding protein. This opens the path to reverse genetics studies on mitochondrial gene functions and leads to potential applications in agriculture. Catherine Colas des Francs-Small et al. used an engineered pentatricopeptide repeat protein to induce cleavage of nad6 mRNA in the mitochondria of Arabidopsis thaliana, eliminating its expression. The approach has potential for use in functional characterization of mitochondrial genes and future agricultural applications.
Collapse
Affiliation(s)
- Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
34
|
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem 2018; 293:16043-16056. [PMID: 30166340 DOI: 10.1074/jbc.ra118.005326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial genes of Euglenozoa (Kinetoplastida, Diplonemea, and Euglenida) are notorious for being barely recognizable, raising the question of whether such divergent genes actually code for functional proteins. Here we demonstrate the translation and identify the function of five previously unassigned y genes encoded by mitochondrial DNA (mtDNA) of diplonemids. As is the rule in diplonemid mitochondria, y genes are fragmented, with gene pieces transcribed separately and then trans-spliced to form contiguous mRNAs. Further, y transcripts undergo massive RNA editing, including uridine insertions that generate up to 16-residue-long phenylalanine tracts, a feature otherwise absent from conserved mitochondrial proteins. By protein sequence analyses, MS, and enzymatic assays in Diplonema papillatum, we show that these y genes encode the subunits Nad2, -3, -4L, -6, and -9 of the respiratory chain Complex I (CI; NADH:ubiquinone oxidoreductase). The few conserved residues of these proteins are essentially those involved in proton pumping across the inner mitochondrial membrane and in coupling ubiquinone reduction to proton pumping (Nad2, -3, -4L, and -6) and in interactions with subunits containing electron-transporting Fe-S clusters (Nad9). Thus, in diplonemids, 10 CI subunits are mtDNA-encoded. Further, MS of D. papillatum CI allowed identification of 26 conventional and 15 putative diplonemid-specific nucleus-encoded components. Most conventional accessory subunits are well-conserved but unusually long, possibly compensating for the streamlined mtDNA-encoded components and for missing, otherwise widely distributed, conventional subunits. Finally, D. papillatum CI predominantly exists as a supercomplex I:III:IV that is exceptionally stable, making this protist an organism of choice for structural studies.
Collapse
Affiliation(s)
- Matus Valach
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Alexandra Léveillé-Kunst
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| | - Michael W Gray
- the Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gertraud Burger
- From the Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada and
| |
Collapse
|
35
|
Shevtsov S, Nevo-Dinur K, Faigon L, Sultan LD, Zmudjak M, Markovits M, Ostersetzer-Biran O. Control of organelle gene expression by the mitochondrial transcription termination factor mTERF22 in Arabidopsis thaliana plants. PLoS One 2018; 13:e0201631. [PMID: 30059532 PMCID: PMC6066234 DOI: 10.1371/journal.pone.0201631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022] Open
Abstract
Mitochondria are key sites for cellular energy metabolism and are essential to cell survival. As descendants of eubacterial symbionts (specifically α-proteobacteria), mitochondria contain their own genomes (mtDNAs), RNAs and ribosomes. Plants need to coordinate their energy demands during particular growth and developmental stages. The regulation of mtDNA expression is critical for controlling the oxidative phosphorylation capacity in response to physiological or environmental signals. The mitochondrial transcription termination factor (mTERF) family has recently emerged as a central player in mitochondrial gene expression in various eukaryotes. Interestingly, the number of mTERFs has been greatly expanded in the nuclear genomes of plants, with more than 30 members in different angiosperms. The majority of the annotated mTERFs in plants are predicted to be plastid- or mitochondria-localized. These are therefore expected to play important roles in organellar gene expression in angiosperms. Yet, functions have been assigned to only a small fraction of these factors in plants. Here, we report the characterization of mTERF22 (At5g64950) which functions in the regulation of mtDNA transcription in Arabidopsis thaliana. GFP localization assays indicate that mTERF22 resides within the mitochondria. Disruption of mTERF22 function results in reduced mtRNA accumulation and altered organelle biogenesis. Transcriptomic and run-on experiments suggest that the phenotypes of mterf22 mutants are attributable, at least in part, to altered mitochondria transcription, and indicate that mTERF22 affects the expression of numerous mitochondrial genes in Arabidopsis plants.
Collapse
Affiliation(s)
- Sofia Shevtsov
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Keren Nevo-Dinur
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Lior Faigon
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Laure D. Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Michal Zmudjak
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Mark Markovits
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
36
|
Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Curr Biol 2018; 28:1614-1619.e3. [PMID: 29731304 DOI: 10.1016/j.cub.2018.03.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I.
Collapse
|
37
|
Schwarzländer M, Fuchs P. Plant mitochondrial membranes: adding structure and new functions to respiratory physiology. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:147-157. [PMID: 28992511 DOI: 10.1016/j.pbi.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The membranes of mitochondria are focal points of cellular physiology and respiratory energy transformation. Recent discoveries have started painting a refined picture of plant mitochondrial membranes as platforms in which structure and function have evolved in an interconnected and dynamically regulated manner. Hosting ancillary functions that interact with other mitochondrial properties gives mitochondria the characteristics of multitasking and integrated molecular mega machines. We review recent insights into the makeup and the plasticity of the outer and inner mitochondrial membranes, their intimate relationship with respiratory function and regulation, and their properties in mediating solute transport. Synthesizing recent research advances we hypothesize that plant mitochondrial membranes are a privileged location for incorporation of a wide range of processes, some of which collaborate with respiratory function, including plant immunity, metabolic regulation and signal transduction, to underpin flexibility in the acclimation to changing environments.
Collapse
Affiliation(s)
- Markus Schwarzländer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany; Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany; Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster, Germany
| |
Collapse
|
38
|
Senkler J, Senkler M, Braun HP. Structure and function of complex I in animals and plants - a comparative view. PHYSIOLOGIA PLANTARUM 2017; 161:6-15. [PMID: 28261805 DOI: 10.1111/ppl.12561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms.
Collapse
Affiliation(s)
- Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Michael Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, 30419, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, 30419, Germany
| |
Collapse
|
39
|
Ren X, Pan Z, Zhao H, Zhao J, Cai M, Li J, Zhang Z, Qiu F. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4571-4581. [PMID: 28981788 PMCID: PMC5853838 DOI: 10.1093/jxb/erx212] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 05/20/2023]
Abstract
Group II introns are common in the mitochondrial genome of higher plant species. The splicing of these introns is a complex process involving the synergistic action of multiple factors. However, few of these factors have been characterized in maize. In this study, we found that the Empty pericarp11 (Emp11) gene, which encodes a P-type pentatricopeptide repeat (PPR) protein, is required for the development of maize seeds. The loss of Emp11 function seriously impairs embryo and endosperm development, resulting in empty pericarp seeds in maize, and alteration in Emp11 expression leads to quantitative variation in kernel size and weight. We found that the emp11 mutants showed a failure in nad1 intron splicing, exhibited a severe reduction in complex I assembly and activity, mitochondrial structure disturbances, and an increase in alternative oxidase AOX2 and AOX3 levels. Interestingly, the emp11 phenotype was very severe in the W22 inbred line but could be partially recovered in B73 BC2F2 segregating ears. These results suggest that EMP11 serves as a factor for the splicing of mitochondrial nad1 introns and is required for mitochondrial function to ensure proper seed development in maize.
Collapse
Affiliation(s)
- Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Junli Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence: ,
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence: ,
| |
Collapse
|
40
|
Han X, Sun N, Xu M, Mi H. Co-ordination of NDH and Cup proteins in CO2 uptake in cyanobacterium Synechocystis sp. PCC 6803. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3869-3877. [PMID: 28911053 PMCID: PMC5853218 DOI: 10.1093/jxb/erx129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 05/24/2023]
Abstract
High and low affinity CO2-uptake systems containing CupA (NDH-1MS) and CupB (NDH-1MS'), respectively, have been identified in Synechocystis sp. PCC 6803, but it is yet unknown how the complexes function in CO2 uptake. In this work, we found that deletion of cupB significantly lowered the growth of cells, and deletion of both cupA and cupB seriously suppressed the growth below pH 7.0 even under 3% CO2. The rate of photosynthetic oxygen evolution was decreased slightly by deletion of cupA but significantly by deletion of cupB and more severely by deletion of both cupA and cupB, especially in response to changed pH conditions under 3% CO2. Furthermore, we found that assembly of CupB into NDH-1MS' was dependent on NdhD4 and NdhF4. NDH-1MS' was not affected in the NDH-1MS-degradation mutant and NDH-1MS was not affected in the NDH-1MS'-degradation mutants, indicating the existence of independent CO2-uptake systems under high CO2 conditions. The light-induced proton gradient across thylakoid membranes was significantly inhibited in ndhD-deletion mutants, suggesting that NdhDs functions in proton pumping. The carbonic anhydrase activity was suppressed partly in the cupA- or cupB-deletion mutant but severely in the mutant with both cupA and cupB deletion, indicating that CupA and CupB function in conversion of CO2 to HCO3-. In turn, deletion of cup genes lowered the transthylakoid membrane proton gradient and deletion of ndhDs decreased the CO2 hydration. Our results suggest that NDH-1M provides an alkaline region to activate Cup proteins involved in CO2 uptake.
Collapse
Affiliation(s)
- Xunling Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sun
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai, China
| |
Collapse
|
41
|
Blomme J, Van Aken O, Van Leene J, Jégu T, De Rycke R, De Bruyne M, Vercruysse J, Nolf J, Van Daele T, De Milde L, Vermeersch M, des Francs-Small CC, De Jaeger G, Benhamed M, Millar AH, Inzé D, Gonzalez N. The Mitochondrial DNA-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. THE PLANT CELL 2017; 29:1137-1156. [PMID: 28420746 PMCID: PMC5466028 DOI: 10.1105/tpc.16.00899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 05/08/2023]
Abstract
In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
- Department of Biology, Lund University, 226 52 Lund, Sweden
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Molecular Biology Department, Simches Research Center, Boston, Massachusetts 02114
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel De Bruyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jasmien Vercruysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Twiggy Van Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, 91400 Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- INRA, UMR 1332, Biologie du Fruit et Pathologie, CS20032 Villenave d'Ornon, France
| |
Collapse
|
42
|
Weißenberger S, Soll J, Carrie C. The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. PLANT MOLECULAR BIOLOGY 2017; 93:355-368. [PMID: 27942959 DOI: 10.1007/s11103-016-0566-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/21/2016] [Indexed: 05/25/2023]
Abstract
SLO4 is a mitochondrial PPR protein that is involved in editing nad4, possibly required for the efficient splicing of nad2 intron1. Pentatricopeptide repeat (PPR) proteins constitute a large protein family in flowering plants and are thought to be mostly involved in organellar RNA metabolism. The subgroup of PLS-type PPR proteins were found to be the main specificity factors of cytidine to uridine RNA editing. Identifying the targets of PLS-type PPR proteins can help in elucidating the molecular function of proteins encoded in the organellar genomes. In this study, plants lacking the SLOW GROWTH 4 PPR protein were characterized. Slo4 mutants were characterized as having restricted root growth, being late flowering and displaying an overall delayed growth phenotype. Protein levels and activity of mitochondrial complex I were decreased and putative complex I assembly intermediates accumulated in the mutant plants. An editing defect, leading to an amino acid change, in the mitochondrial nad4 transcript, encoding for a complex I subunit, was identified. Furthermore, the splicing efficiency of the first intron of nad2, encoding for another complex I subunit, was also decreased. The change in splicing efficiency could however not be linked to any editing defects in the nad2 transcript.
Collapse
Affiliation(s)
- Stefan Weißenberger
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
43
|
Senkler J, Senkler M, Eubel H, Hildebrandt T, Lengwenus C, Schertl P, Schwarzländer M, Wagner S, Wittig I, Braun HP. The mitochondrial complexome of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1079-1092. [PMID: 27943495 DOI: 10.1111/tpj.13448] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein-protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot-gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re-annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource (https://complexomemap.de/at_mito_leaves) to deposit the data and to allow straightforward access and custom data analyses.
Collapse
Affiliation(s)
- Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Michael Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Tatjana Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Christian Lengwenus
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Peter Schertl
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Ilka Wittig
- Functional Proteomics, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
44
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M. The multifunctional face of plant carbonic anhydrase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:362-368. [PMID: 28152407 DOI: 10.1016/j.plaphy.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Although most studies on the ubiquitous enzyme carbonic anhydrase (CA) have indicated its significant role in plants to facilitate the diffusion of CO2 to the site of inorganic carbon fixation, it is becoming increasingly likely that carbonic anhydrase isoforms also have diverse unexplored functions in plant cells. This review lays emphasis on additional roles of CA associated with many physiological, biochemical and structural changes in plant metabolism. The presented findings have revealed essential functions of CA isoforms in plant adjustment to both abiotic and biotic agents and developmental stimuli. However, sometimes it is difficult to separate the non-photosynthetic from the photosynthetic-related role of CAs during post-stress impaired metabolism, and the preventive CA outcome might be due to the effect of these enzymes on improvement of photosynthetic capacity. Finally, taking into account the experimental evidence, the direct and indirect functional roles of CAs in mitigating negative effects of environmental conditions are presented.
Collapse
|
45
|
Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S. Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:458-471. [PMID: 27726214 DOI: 10.1111/tpj.13392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| |
Collapse
|
46
|
Pétriacq P, de Bont L, Genestout L, Hao J, Laureau C, Florez-Sarasa I, Rzigui T, Queval G, Gilard F, Mauve C, Guérard F, Lamothe-Sibold M, Marion J, Fresneau C, Brown S, Danon A, Krieger-Liszkay A, Berthomé R, Ribas-Carbo M, Tcherkez G, Cornic G, Pineau B, Gakière B, De Paepe R. Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. PLANT PHYSIOLOGY 2017; 173:434-455. [PMID: 27852950 PMCID: PMC5210746 DOI: 10.1104/pp.16.01484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/16/2016] [Indexed: 05/07/2023]
Abstract
Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Linda de Bont
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Lucie Genestout
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jingfang Hao
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Constance Laureau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Igor Florez-Sarasa
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Touhami Rzigui
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Queval
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Marlène Lamothe-Sibold
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jessica Marion
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Chantal Fresneau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Spencer Brown
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Antoine Danon
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Anja Krieger-Liszkay
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Richard Berthomé
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Miquel Ribas-Carbo
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Tcherkez
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Gabriel Cornic
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bernard Pineau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.);
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.);
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.);
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.);
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Rosine De Paepe
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| |
Collapse
|
47
|
Murcha MW, Kubiszewski-Jakubiak S, Teixeira PF, Gügel IL, Kmiec B, Narsai R, Ivanova A, Megel C, Schock A, Kraus S, Berkowitz O, Glaser E, Philippar K, Maréchal-Drouard L, Soll J, Whelan J. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. PLANT PHYSIOLOGY 2016; 172:2471-2490. [PMID: 27789739 PMCID: PMC5129730 DOI: 10.1104/pp.16.01519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 05/03/2023]
Abstract
A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Pedro F Teixeira
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Irene L Gügel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Beata Kmiec
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Cyrille Megel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Annette Schock
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Sabrina Kraus
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Elzbieta Glaser
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Katrin Philippar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Laurence Maréchal-Drouard
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Jürgen Soll
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| |
Collapse
|
48
|
Dong CJ, Wu AM, Du SJ, Tang K, Wang Y, Liu JY. GhMCS1, the Cotton Orthologue of Human GRIM-19, Is a Subunit of Mitochondrial Complex I and Associated with Cotton Fibre Growth. PLoS One 2016; 11:e0162928. [PMID: 27632161 PMCID: PMC5025012 DOI: 10.1371/journal.pone.0162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5-15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ai-Min Wu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shao-Jun Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Møller IM. The proteome of higher plant mitochondria. Mitochondrion 2016; 33:22-37. [PMID: 27405097 DOI: 10.1016/j.mito.2016.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Plant mitochondria perform a wide range of functions in the plant cell ranging from providing energy and metabolic intermediates, via coenzyme biosynthesis and their own biogenesis to retrograde signaling and programmed cell death. To perform these functions, they contain a proteome of >2000 different proteins expressed in some cells under some conditions. The vast majority of these proteins are imported, in many cases by a dedicated protein import machinery. Recent proteomic studies have identified about 1000 different proteins in both Arabidopsis and potato mitochondria, but even for energy-related proteins, the most well-studied functional protein group in mitochondria, <75% of the proteins are recognized as mitochondrial by even one of six of the most widely used prediction algorithms. The mitochondrial proteomes contain proteins representing a wide range of different functions. Some protein groups, like energy-related proteins, membrane transporters, and de novo fatty acid synthesis, appear to be well covered by the proteome, while others like RNA metabolism appear to be poorly covered possibly because of low abundance. The proteomic studies have improved our understanding of basic mitochondrial functions, have led to the discovery of new mitochondrial metabolic pathways and are helping us towards appreciating the dynamic role of the mitochondria in the responses of the plant cell to biotic and abiotic stress.
Collapse
Affiliation(s)
- R S P Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore 575018, India
| | - F Salvato
- Institute of Biology, Department of Plant Biology, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas CEP: 13083-970, São Paulo, Brazil
| | - B Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - H Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, DE-30419 Hannover, Germany
| | - J J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA
| | - I M Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
50
|
Fromm S, Braun HP, Peterhansel C. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development. THE NEW PHYTOLOGIST 2016; 211:194-207. [PMID: 26889912 DOI: 10.1111/nph.13886] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 05/23/2023]
Abstract
Complex I of the mitochondrial electron transport chain (mETC) in plants contains an extra domain that is made up from proteins homologous to prokaryotic gamma-carbonic anhydrases (γCA). This domain has been suggested to participate in complex I assembly or to support transport of mitochondrial CO2 to the chloroplast. Here, we generated mutants lacking CA1 and CA2 - two out of three CA proteins in Arabidopsis thaliana. Double mutants were characterized at the developmental and physiological levels. Furthermore, the composition and activity of the mETC were determined, and mutated CA versions were used for complementation assays. Embryo development of double mutants was strongly delayed and seed development stopped before maturation. Mutant plants could only be rescued on sucrose media, showed severe stress symptoms and never produced viable seeds. By contrast, callus cultures were only slightly affected in growth. Complex I was undetectable in the double mutants, but complex II and complex IV were upregulated concomitant with increased oxygen consumption in mitochondrial respiration. Ectopic expression of inactive CA variants was sufficient to complement the mutant phenotype. Data indicate that CA proteins are structurally required for complex I assembly and that reproductive development is dependent on the presence of complex I.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
- Institute of Botany, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | | |
Collapse
|