1
|
Tian H, Zhai Y, Sun S, Zhang W, Zhao Z. The transcription factor HMGB2 indirectly regulates APRIL expression and Gd-IgA1 production in patients with IgA nephropathy. Ren Fail 2024; 46:2338931. [PMID: 38622929 PMCID: PMC11022921 DOI: 10.1080/0886022x.2024.2338931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.
Collapse
Affiliation(s)
- Huijuan Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Yaling Zhai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Shuaigang Sun
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Wenhui Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Han W, Zhou H, Zhang X, Li H, Han X, Su L, Tian L, Xue X. HMGB2 is a biomarker associated with poor prognosis promoting radioresistance in glioma by targeting base excision repair pathway. Transl Oncol 2024; 45:101977. [PMID: 38728871 PMCID: PMC11107350 DOI: 10.1016/j.tranon.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High mobility group box 2 (HMGB2) is considered as a biomarker of poor prognosis in various cancers.This study aims to investigate the effect and mechanism of HMGB2 in gliomas. METHODS With the glioma related on-line and our local hospital databases, the expression differences of HMGB2,Kaplan-Meier survival analysis and COX regression analysis were performed.The correlation analysis between the clinicopathological features and imaging parameters with the HMGB2 expression had been done. Then GSEA and PPI networks were carried out to find out the most significant pathway. The pathway inhibitor was applied to verify HMGB2's participation. CCK8,EDU assays,γ-H2AX immunofluorescence staining and colony formation assay were conducted to observe effects on glioma cells. RESULTS Available datasets showed that HMGB2 was highly expressed in glioma and patients with high expression of HMGB2 had poorer prognosis and molecular characteristics. Protein level evidence of western blot and immunohistochemistry from our center supported the conclusions above. Analysis on imaging features suggested that HMGB2 expression level had an inverse association with ADCmean but positively with the thickness of enhancing margin. Results from GSEA and PPI network analysis exhibited that HMGB2 was involved in base excision repair (BER) signaling pathway. Experimental evidence demonstrated that the overexpression of HMGB2 promoted the proliferation of glioma cells and enhanced the radio-resistance. CONCLUSIONS HMGB2 could promote glioma development and enhance the radioresistance of glioma cells, potentially related to the BER pathway, suggesting it may serve as an underlying biomarker for patients with glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Becker AP, Becker V, McElroy J, Webb A, Han C, Guo Y, Bell EH, Fleming J, Popp I, Staszewski O, Prinz M, Otero JJ, Haque SJ, Grosu AL, Chakravarti A. Proteomic Analysis of Spatial Heterogeneity Identifies HMGB2 as Putative Biomarker of Tumor Progression in Adult-Type Diffuse Astrocytomas. Cancers (Basel) 2024; 16:1516. [PMID: 38672598 PMCID: PMC11049315 DOI: 10.3390/cancers16081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.
Collapse
Affiliation(s)
- Aline P. Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Valesio Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Joseph McElroy
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Amy Webb
- School of Biomedical Science-Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Chunhua Han
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Yingshi Guo
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Erica H. Bell
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA;
| | - Jessica Fleming
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Ilinca Popp
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty of the Saarland University, 66421 Homburg, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Signalling Research Centres BIOSS & CIBSS, University of Freiburg, 79098 Freiburg, Germany
| | - Jose J. Otero
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Saikh Jaharul Haque
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| |
Collapse
|
4
|
Arnold EA, Kaai RJ, Leung K, Brinkley MR, Kelnhofer-Millevolte LE, Guo MS, Avgousti DC. Adenovirus protein VII binds the A-box of HMGB1 to repress interferon responses. PLoS Pathog 2023; 19:e1011633. [PMID: 37703278 PMCID: PMC10519595 DOI: 10.1371/journal.ppat.1011633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Viruses hijack host proteins to promote infection and dampen host defenses. Adenovirus encodes the multifunctional protein VII that serves both to compact viral genomes inside the virion and disrupt host chromatin. Protein VII binds the abundant nuclear protein high mobility group box 1 (HMGB1) and sequesters HMGB1 in chromatin. HMGB1 is an abundant host nuclear protein that can also be released from infected cells as an alarmin to amplify inflammatory responses. By sequestering HMGB1, protein VII prevents its release, thus inhibiting downstream inflammatory signaling. However, the consequences of this chromatin sequestration on host transcription are unknown. Here, we employ bacterial two-hybrid interaction assays and human cell culture to interrogate the mechanism of the protein VII-HMGB1 interaction. HMGB1 contains two DNA binding domains, the A- and B-boxes, that bend DNA to promote transcription factor binding while the C-terminal tail regulates this interaction. We demonstrate that protein VII interacts directly with the A-box of HMGB1, an interaction that is inhibited by the HMGB1 C-terminal tail. By cellular fractionation, we show that protein VII renders A-box containing constructs insoluble, thereby acting to prevent their release from cells. This sequestration is not dependent on HMGB1's ability to bind DNA but does require post-translational modifications on protein VII. Importantly, we demonstrate that protein VII inhibits expression of interferon β, in an HMGB1-dependent manner, but does not affect transcription of downstream interferon-stimulated genes. Together, our results demonstrate that protein VII specifically harnesses HMGB1 through its A-box domain to depress the innate immune response and promote infection.
Collapse
Affiliation(s)
- Edward A. Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Robin J. Kaai
- Molecular & Cellular Biology, Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Katie Leung
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Mia R. Brinkley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | | | - Monica S. Guo
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daphne C. Avgousti
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
5
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
7
|
Arnold EA, Kaai RJ, Leung K, Brinkley MR, Kelnhofer-Millevolte LE, Guo MS, Avgousti DC. Adenovirus protein VII binds the A-box of HMGB1 to repress interferon responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537247. [PMID: 37131771 PMCID: PMC10153217 DOI: 10.1101/2023.04.17.537247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viruses hijack host proteins to promote infection and dampen host defenses. Adenovirus encodes the multifunctional protein VII that serves both to compact viral genomes inside the virion and disrupt host chromatin. Protein VII binds the abundant nuclear protein high mobility group box 1 (HMGB1) and sequesters HMGB1 in chromatin. HMGB1 is an abundant host nuclear protein that can also be released from infected cells as an alarmin to amplify inflammatory responses. By sequestering HMGB1, protein VII prevents its release, thus inhibiting downstream inflammatory signaling. However, the consequences of this chromatin sequestration on host transcription are unknown. Here, we employ bacterial two-hybrid interaction assays and human cell biological systems to interrogate the mechanism of the protein VII-HMGB1 interaction. HMGB1 contains two DNA binding domains, the A- and B-boxes, that bend DNA to promote transcription factor binding while the C-terminal tail regulates this interaction. We demonstrate that protein VII interacts directly with the A-box of HMGB1, an interaction that is inhibited by the HMGB1 C-terminal tail. By cellular fractionation, we show that protein VII renders A-box containing constructs insoluble, thereby acting to prevent their release from cells. This sequestration is not dependent on HMGB1's ability to bind DNA but does require post-translational modifications on protein VII. Importantly, we demonstrate that protein VII inhibits expression of interferon β, in an HMGB1- dependent manner, but does not affect transcription of downstream interferon- stimulated genes. Together, our results demonstrate that protein VII specifically harnesses HMGB1 through its A-box domain to depress the innate immune response and promote infection.
Collapse
|
8
|
Liu Q, Song Y, Cui Y, Hu C, Luo Y, Hu D, Wang H, Li K, Chen J, Xiao H. Heterogeneity of fibroblasts is a hallmark of age-associated erectile dysfunction. Int J Biochem Cell Biol 2023; 156:106343. [PMID: 36503049 DOI: 10.1016/j.biocel.2022.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prevalence of age-associated erectile dysfunction (ED) increases pronouncedly with age. However, the cellular composition and transcriptomic changes of aging penile corpus cavernosum remain largely unclear. METHODS Herein, we performed single cell sequencing penile corpus cavernosum from five young with normal erectile response and five old rats with ED. RESULTS Clustering analysis identified 19 cell types, such as fibroblasts, myofibroblasts and immune cells. We next revealed their transcriptomic alterations and investigated novel subpopulations of major cell types. Among them, fibroblasts possessed the largest cell number and showed apparent heterogeneity. By performing single-cell entropy analysis on fibroblasts, we observed the age-associated decrease of entropy, and aged fibroblasts were found to adopt senescent secretory phenotype, as evidenced by the high expression of genes associated with the senescence-associated secretory phenotype (SASP). Finally, we constructed a comprehensive intercellular communication network and highlighted key mediators of crosstalk between fibroblasts and other cell types. CONCLUSIONS We plotted a cellular atlas of aging cells within penile corpus cavernosum, especially fibroblasts. Our work will deepen the understanding of the heterogeneity among certain cell types within aged penile corpus cavernosum, which will generate positive effects on the future treatment of age-associated ED.
Collapse
Affiliation(s)
- Qiwei Liu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; Plastic Surgery Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100040, China
| | - Yulong Song
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yubin Cui
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Cheng Hu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Daoyuan Hu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Hua Wang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Ke Li
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Jun Chen
- Department of Infertility and Sexual Medicine, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Hengjun Xiao
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Shin J, Kim YH, Lee B, Chang JH, Choi HY, Lee H, Song KC, Kwak MS, Choi JE, Shin JS. USP13 regulates HMGB1 stability and secretion through its deubiquitinase activity. Mol Med 2022; 28:164. [PMID: 36585612 PMCID: PMC9801610 DOI: 10.1186/s10020-022-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.
Collapse
Affiliation(s)
- Jaemin Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Young Hun Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Jae Ho Chang
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Hee Youn Choi
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Hoojung Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ki Chan Song
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ji Eun Choi
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Boramaero 5 Gil 20, Dongjakgu, Seoul, 07061 South Korea
| | - Jeon-Soo Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| |
Collapse
|
10
|
Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022; 66:3426. [PMID: 35726535 PMCID: PMC9251611 DOI: 10.4081/ejh.2022.3426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Gang Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| |
Collapse
|
11
|
Immunogenic Cell Death, DAMPs and Prothymosin α as a Putative Anticancer Immune Response Biomarker. Cells 2022; 11:cells11091415. [PMID: 35563721 PMCID: PMC9102069 DOI: 10.3390/cells11091415] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
The new and increasingly studied concept of immunogenic cell death (ICD) revealed a previously unknown perspective of the various regulated cell death (RCD) modalities, elucidating their immunogenic properties and rendering obsolete the notion that immune stimulation is solely the outcome of necrosis. A distinct characteristic of ICD is the release of danger-associated molecular patterns (DAMPs) by dying and/or dead cells. Thus, several members of the DAMP family, such as the well-characterized heat shock proteins (HSPs) HSP70 and HSP90, the high-mobility group box 1 protein and calreticulin, and the thymic polypeptide prothymosin α (proTα) and its immunoreactive fragment proTα(100–109), are being studied as potential diagnostic tools and/or possible therapeutic agents. Here, we present the basic aspects and mechanisms of both ICD and other immunogenic RCD forms; denote the role of DAMPs in ICD; and further exploit the relevance of human proTα and proTα(100–109) in ICD, highlighting their possible clinical applications. Furthermore, we present the preliminary results of our in vitro studies, which show a direct correlation between the concentration of proTα/proTα(100–109) and the levels of cancer cell apoptosis, induced by anticancer agents and γ-radiation.
Collapse
|
12
|
Štros M, Polanská EV, Hlaváčová T, Skládal P. Progress in Assays of HMGB1 Levels in Human Plasma-The Potential Prognostic Value in COVID-19. Biomolecules 2022; 12:544. [PMID: 35454134 PMCID: PMC9031208 DOI: 10.3390/biom12040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of patients suffering from inflammation-mediated disorders-such as COVID-19, cancer, and autoimmune disorders-correlate positively with disease severity and vice versa. A late release of HMGB1 in sepsis suggests the existence of a wide therapeutic window for treating sepsis. Rapid and accurate methods for the detection of HMGB1 levels in plasma/serum are, therefore, of great importance for monitoring the occurrence, treatment success, and survival prediction of patients with inflammation-mediated diseases. In this review, we briefly explain the role of HMGB1 in the cell, and particularly the involvement of extracellular HMGB1 (released from the cells) in inflammation-mediated diseases, with an emphasis on COVID-19. The current assays to measure HMGB1 levels in human plasma-Western blotting, ELISA, EMSA, and a new approach based on electrochemical immunosensors, including some of our preliminary results-are presented and thoroughly discussed.
Collapse
Affiliation(s)
- Michal Štros
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Eva Volfová Polanská
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Tereza Hlaváčová
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| |
Collapse
|
13
|
Campos-Bedolla P, Feria-Romero I, Orozco-Suárez S. Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: assessment of neuroinflammation. Epilepsia Open 2022; 7 Suppl 1:S68-S80. [PMID: 35247028 PMCID: PMC9340302 DOI: 10.1002/epi4.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
More than one‐third of people with epilepsy develop drug‐resistant epilepsy (DRE). Different hypotheses have been proposed to explain the origin of DRE. Accumulating evidence suggests the contribution of neuroinflammation, modifications in the integrity of the blood‐brain barrier (BBB), and altered immune responses in the pathophysiology of DRE. The inflammatory response is mainly due to the increase of cytokines and related molecules; these molecules have neuromodulatory effects that contribute to hyperexcitability in neural networks that cause seizure generation. Some patients with DRE display the presence of autoantibodies in the serum and mainly cerebrospinal fluid. These patients are refractory to the different treatments with standard antiseizure medications (ASMs), and they could be responding well to immunomodulatory therapies. This observation emphasizes that the etiopathogenesis of DRE is involved with immunology responses and associated long‐term events and chronic inflammation processes. Furthermore, multiple studies have shown that functional polymorphisms as risk factors are involved in inflammation processes. Several relevant polymorphisms could be considered risk factors involved in inflammation‐related DRE such as receptor for advanced glycation end products (RAGE) and interleukin 1β (IL‐1β). All these evidences sustained the hypothesis that the chronic inflammation process is associated with the DRE. However, the effect of the chronic inflammation process should be investigated in further clinical studies to promote the development of novel therapeutics useful in treatment of DRE.
Collapse
Affiliation(s)
- Patricia Campos-Bedolla
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
14
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
15
|
Hong Z, Lu Y, Ran C, Tang P, Huang J, Yang Y, Duan X, Wu H. The bioactive ingredients in Actinidia chinensis Planch. Inhibit liver cancer by inducing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114553. [PMID: 34428524 DOI: 10.1016/j.jep.2021.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia chinensis Planch. (ACP) is a common traditional Chinese medicine, which is mostly used for cancer treatment clinically. Liver cancer is a refractory tumor with a high incidence. Although ACP has been reported in the treatment of liver cancer, its possible mechanism of action is little known. AIM OF STUDY The aim of this paper was to investigate the active components of ACP in the treatment of liver cancer and the related mechanisms by a network pharmacology approach. METHODS The active components of ACP and the corresponding targets were obtained from multiple databases. Cytoscape software and STRING database were used to build the "herb-component-target (H-C-T)" network and protein-protein interactions (PPI) network. The key components and targets were further predicted by the Cytohubba plug-in in Cytoscape. Then, experiments were carried out on HepG2 cell line and Huh7 cell line to verify the effects and related mechanisms of the key compounds in ACP. RESULTS 28 active components in ACP and 1299 related targets were screened out according to two indicators, oral bioavailability (OB) and drug-likeness (DL). The key compounds predicted include rutinum, astragalin, and L-epicatechin, and the main signaling pathways focus on apoptosis. Astragalin, a key compound in ACP, could inhibit the expression of Bcl-2, up-regulate the expression of Bax, cleaved caspase 3, cleaved caspase 8, and cleaved caspase 9, and regulate the apoptosis signaling pathway to inhibit the proliferation of liver cancer cells to play a therapeutic role in anti-liver cancer. CONCLUSIONS These results suggest that ACP can alleviate the progression of liver cancer through the mechanisms predicted by network pharmacology, and provide a basis for the further understanding of the application of ACP in anti-cancer.
Collapse
Affiliation(s)
- Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yi Lu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Chongwang Ran
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peili Tang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Ju Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xueyun Duan
- Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
16
|
Dynamics of HMBG1 (High Mobility Group Box 1) during radiochemotherapy correlate with outcome of HNSCC patients. Strahlenther Onkol 2021; 198:194-200. [PMID: 34671818 PMCID: PMC8789630 DOI: 10.1007/s00066-021-01860-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
Purpose High Mobility Group Box 1 (HMGB1) protein has been described as a consensus marker for immunogenic cell death (ICD) in cancer. To personalize treatments, there is a need for biomarkers to adapt dose prescription, concomitant chemotherapy, and follow-up in radiation oncology. Thus, we investigated the levels of HMGB1 in plasma of patients with head and neck squamous cell carcinoma (HNSCC) during the course of radiochemotherapy and follow-up in correlation with oncologic outcome and clinical confounders. Methods In our pilot study, 11 patients with advanced HNSCC were treated with definitive radiochemotherapy. Blood samples were taken weekly during treatment and frequently at follow-up visits. HMGB1 levels as well as routine laboratory values were measured and clinical information was collected including tumor volume, infections, toxicity, and follow-up data. Results In total, 85 samples were analyzed. In eight patients, HMGB1 levels (baseline vs. last available sample during treatment) were increasing and in three patients HMGB1 values were decreasing toward the end of treatment. All three patients with decreasing values developed tumor recurrence. By contrast, no relapse occurred in patients that showed increasing HMGB1 levels during therapy. Moreover, a positive correlation of HMGB1 levels with tumor volumes, C‑reactive protein (CRP) levels, infections, and grade three toxicity (RTOG) was observed. Conclusion HMGB1 might be a promising marker to monitor ICD in HNSCC during the course of radiochemotherapy. However, HMGB1 seems to reflect complex and diverse immunogenic responses and potential confounders. Infections and treatment-associated toxicity should be considered when interpreting the dynamics of HMGB1.
Collapse
|
17
|
Chen KB, Chang MM, Wang SL, Li YX, Wang YX, Xu ZG, Wang H, Zhao BC, Ma WY. High mobility group box-1 serves a pathogenic role in spinal cord injury via the promotion of pro-inflammatory cytokines. J Leukoc Biol 2021; 110:1131-1142. [PMID: 34402106 DOI: 10.1002/jlb.3ma0721-007r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition marked by permanent motor, sensory, and autonomic dysfunction, in which the inflammatory response serves an important and preventable role. High mobility group box-1 (HMGB1) is a potent regulator of inflammation in numerous acute and chronic inflammatory conditions.; however, the role of HMGB1 in SCI remains unclear. The present study aimed to characterize the temporal dynamics of HMGB1 release after SCI, to investigate the role of spinal microglia activation in mediating the effects of HMGB1 on SCI, and to explore the therapeutic potential of intrathecal anti-HMGB1 polyclonal antibody on alleviating SCI. The present study demonstrated that HMGB1 expression was increased immediately after traumatic injury of a primary spinal neuron culture. It was found that neutralizing HMGB1 significantly ameliorated SCI pathogenesis and hind limb paralysis. Moreover, the levels of a number of pro-inflammatory cytokines in the SCI lesion were reduced when local HMGB1 was blocked by anti-HMGB1 antibody. In addition, the injured neuron-derived conditioned medium increased TNF-α secretion and the NF-κB pathway in the BV2 microglia cell line via HMGB1. Collectively, these results indicated that HMGB1 served an important role in SCI inflammation and suggested the therapeutic potential of an anti-HMGB1 antibody for SCI.
Collapse
Affiliation(s)
- Ke-Bing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Min-Min Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Sheng-Li Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, P.R. China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Yong-Xin Li
- Vascular Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yi-Xi Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Xu
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wei-Ying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
18
|
The LncRNA RP11-301G19.1/miR-582-5p/HMGB2 axis modulates the proliferation and apoptosis of multiple myeloma cancer cells via the PI3K/AKT signalling pathway. Cancer Gene Ther 2021; 29:292-303. [PMID: 33707625 DOI: 10.1038/s41417-021-00309-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have recently been reported to act as crucial regulators and prognostic biomarkers of human tumorigenesis. Based on microarray data, RP11-301G19.1 was previously identified as an upregulated lncRNA during B cell development. However, the effect of RP11-301G19.1 on multiple myeloma (MM) cells remains unclear. In the present study, the effects of RP11-301G19.1 on tumour progression were ascertained both in vitro and in vivo. Our results demonstrated that RP11-301G19.1 was upregulated in MM cell lines and that its downregulation inhibited the proliferation and cell cycle progression and promoted the apoptosis of MM cells. Bioinformatic analysis and luciferase reporter assay results revealed that RP11-301G19.1 can upregulate the miR-582-5p-targeted gene HMGB2 as a competing endogenous RNA (ceRNA). Furthermore, Western blot results indicated that RP11-301G19.1 knockdown decreased the levels of PI3K and AKT phosphorylation without affecting their total protein levels. Additionally, in a xenograft model of human MM, RP11-301G19.1 knockdown significantly inhibited tumour growth by downregulating HMGB2. Overall, our data demonstrated that RP11-301G19.1 is involved in MM cell proliferation by sponging miR-582-5p and may serve as a therapeutic target for MM.
Collapse
|
19
|
Ghaffari S, Jang E, Naderinabi F, Sanwal R, Khosraviani N, Wang C, Steinberg BE, Goldenberg NM, Ikeda J, Lee WL. Endothelial HMGB1 Is a Critical Regulator of LDL Transcytosis via an SREBP2-SR-BI Axis. Arterioscler Thromb Vasc Biol 2021; 41:200-216. [PMID: 33054399 DOI: 10.1161/atvbaha.120.314557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown. Approach and Results: HMGB1 was depleted by siRNA in human coronary artery endothelial cells, and transcytosis of LDL was measured by total internal reflection fluorescence microscopy. Knockdown of HMGB1 attenuated LDL transcytosis without affecting albumin transcytosis. Loss of HMGB1 resulted in reduction in SR-BI levels and depletion of SREBP2 (sterol regulatory element-binding protein 2)-a transcription factor upstream of SR-BI. The effect of HMGB1 depletion on LDL transcytosis required SR-BI and SREBP2. Overexpression of HMGB1 caused an increase in LDL transcytosis that was unaffected by inhibition of extracellular HMGB1 or depletion of RAGE (receptor for advanced glycation endproducts)-a cell surface receptor for HMGB1. The effect of HMGB1 overexpression on LDL transcytosis was prevented by knockdown of SREBP2. Loss of HMGB1 caused a reduction in the half-life of SREBP2; incubation with LDL caused a significant increase in nuclear localization of HMGB1 that was dependent on SR-BI. Animals lacking endothelial HMGB1 exhibited less acute accumulation of LDL in the aorta 30 minutes after injection and when fed a high-fat diet developed fewer fatty streaks and less atherosclerosis. CONCLUSIONS Endothelial HMGB1 regulates LDL transcytosis by prolonging the half-life of SREBP2, enhancing SR-BI expression. Translocation of HMGB1 to the nucleus in response to LDL requires SR-BI.
Collapse
Affiliation(s)
- Siavash Ghaffari
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Erika Jang
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
| | - Farnoosh Naderinabi
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Rajiv Sanwal
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
| | - Negar Khosraviani
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Changsen Wang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | | | | | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Canada (J.I.)
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
- Department of Biochemistry (W.L.L.), University of Toronto, Canada
| |
Collapse
|
20
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
21
|
Chen Y, Wang T, Huang M, Liu Q, Hu C, Wang B, Han D, Chen C, Zhang J, Li Z, Liu C, Lei W, Chang Y, Wu M, Xiang D, Chen Y, Wang R, Huang W, Lei Z, Chu X. MAFB Promotes Cancer Stemness and Tumorigenesis in Osteosarcoma through a Sox9-Mediated Positive Feedback Loop. Cancer Res 2020; 80:2472-2483. [PMID: 32234710 DOI: 10.1158/0008-5472.can-19-1764] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Despite the fact that osteosarcoma is one of the most common primary bone malignancies with poor prognosis, the mechanism behind the pathogenesis of osteosarcoma is only partially known. Here we characterized differentially expressed genes by extensive analysis of several publicly available gene expression profile datasets and identified musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) as a key transcriptional regulator in osteosarcoma progression. MAFB was highly expressed in tumor tissues and required for proliferation and tumorigenicity of osteosarcoma cells. MAFB expression was elevated in osteosarcoma stem cells to maintain their self-renewal potential in vitro and in vivo through upregulation of stem cell regulator Sox9 at the transcriptional level. Sox9 in turn activated MAFB expression via direct recognition of its sequence binding enrichment motif on the MAFB locus, thereby forming a positive feedback regulatory loop. Sox9-mediated feedback activation of MAFB was pivotal to tumorsphere-forming and tumor-initiating capacities of osteosarcoma stem cells. Moreover, expression of MAFB and Sox9 was highly correlated in osteosarcoma and associated with disease progression. Combined detection of both MAFB and Sox9 represented a promising prognostic biomarker that stratified a subset of patients with osteosarcoma with shortest overall survival. Taken together, these findings reveal a MAFB-Sox9 reciprocal regulatory axis driving cancer stemness and malignancy in osteosarcoma and identify novel molecular targets that might be therapeutically applicable in clinical settings. SIGNIFICANCE: Transcription factors MAFB and Sox9 form a positive feedback loop to maintain cell stemness and tumor growth in vitro and in vivo, revealing a potential target pathway for therapeutic intervention in osteosarcoma.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Qin Liu
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chao Hu
- Department of Orthopedics, 904 Hospital of PLA, North Xingyuan Road, Beitang District, Wuxi, Jiangsu, P.R. China
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Cheng Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Junliang Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Zhiping Li
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Wenbin Lei
- Department of Orthopedics, Tianshui Cooperation of Chinese and Western Medicine Hospital, Tianshui, Gansu Province, P.R. China
| | - Yue Chang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Meijuan Wu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Dan Xiang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Weiqian Huang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China
| | - Zengjie Lei
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P.R. China.
| |
Collapse
|
22
|
Wang C, Teo CR, Sabapathy K. p53-Related Transcription Targets of TAp73 in Cancer Cells-Bona Fide or Distorted Reality? Int J Mol Sci 2020; 21:ijms21041346. [PMID: 32079264 PMCID: PMC7072922 DOI: 10.3390/ijms21041346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73—often by TAp73 overexpression in cell lines with non-functional p53—were affirmative. However, genome-wide and phenotype-based studies led to the identification of TAp73-regulated genes involved in cellular survival and thus, tumor promotion. Our analyses therefore suggest that TAp73 may not necessarily be p53’s natural substitute in enforcing tumor suppression. It has likely evolved to perform unique functions in regulating developmental processes and promoting cellular growth through entirely different sets of target genes that are not common to, and cannot be substituted by p53. The p53-related targets initially reported to be regulated by TAp73 may therefore represent an experimental possibility rather than the reality.
Collapse
Affiliation(s)
- Chao Wang
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Cui Rong Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
- Institute of Molecular and Cell Biology, Biopolis, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
23
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
24
|
Kanagasabai T, Venkatesan T, Natarajan U, Alobid S, Alhazzani K, Algahtani M, Rathinavelu A. Regulation of cell cycle by MDM2 in prostate cancer cells through Aurora Kinase-B and p21WAF1 /CIP1 mediated pathways. Cell Signal 2019; 66:109435. [PMID: 31706019 DOI: 10.1016/j.cellsig.2019.109435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Overexpression of MDM2 oncoprotein has been detected in a large number of diverse human malignancies and has been shown to play both p53-dependent and p53-independent roles in oncogenesis. Our study was designed to explore the impact of MDM2 overexpression on the levels of various cell cycle regulatory proteins including Aurora kinase-B (AURK-B), CDC25C and CDK1, which are known to promote tumor progression and increase metastatic potential. Our data from human cell cycle RT2 profiler PCR array experiments revealed significant changes in the expression profile of genes that are involved in different phases of cell cycle regulation in LNCaP-MST (MDM2 transfected) prostate cancer cells. Our current study has demonstrated a significant increase in the expression level of AURK-B, CDC25C, Cyclin A2, Cyclin B and CDK1 in LNCaP-MST cells as compared with wild type LNCaP cells that were modulated by MDM2 specific inhibitor Nutlin-3. In fact, the expression levels of the above- mentioned proteins were significantly altered at both mRNA and protein levels after treating the cells with 20 μM Nutlin-3 for 24h. Additionally, the pro-apoptotic proteins including p53, p21, and Bax were elevated with the concomitant decrease in the key anti-apoptotic proteins following MDM2 inhibitor treatment. Also, Nutlin-3 treated cells demonstrated caspase-3 activation was observed with an in-vitro caspase-3 fluorescent assay performed with caspase 3/7 specific DEVD-amc substrate. Our results offer significant evidence towards the effectiveness of MDM2 inhibition in causing cell cycle arrest via blocking the transmission of signals through AURKB-CDK1 axis and inducing apoptosis in LNCaP-MST cancer cells. It is evident from our data that MDM2 overexpression probably is the primary cause for CDK1 up-regulation in the LNCaP-MST cells, which might have occurred possibly through activation of AURK-B. However, further studies in this direction should shed more light on the intracellular mechanisms involved in the regulation of Aurora kinase-B and CDK1 axis in MDM2 positive cancers.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; VRR Institute of Biomedical Sciences, Kattupakkam, Chennai, TN 600056, India
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohammad Algahtani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA.
| |
Collapse
|
25
|
Kučírek M, Bagherpoor AJ, Jaroš J, Hampl A, Štros M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells. FASEB J 2019; 33:14307-14324. [PMID: 31661640 DOI: 10.1096/fj.201901465rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.
Collapse
Affiliation(s)
- Martin Kučírek
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alireza J Bagherpoor
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Štros
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
26
|
Zhai Y, Qi Y, Long X, Dou Y, Liu D, Cheng G, Xiao J, Liu Z, Zhao Z. Elevated hsa-miR-590-3p expression down-regulates HMGB2 expression and contributes to the severity of IgA nephropathy. J Cell Mol Med 2019; 23:7299-7309. [PMID: 31557418 PMCID: PMC6815813 DOI: 10.1111/jcmm.14582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 01/15/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) play important roles in the pathogenesis of IgA nephropathy (IgAN). Our study aimed to provide a deep understanding of IgAN and focused on the dysregulation of hsa‐miR‐590‐3p and its target gene HMGB2 in PBMCs. Three gene expression profile datasets (GSE14795, GSE73953 and GSE25590) were downloaded from the GEO database. The DEGs (differentially expressed genes)‐miRNA network that was associated with IgAN was constructed by Cytoscape, and HMGB2 and hsa‐miR‐590‐3p were selected for further exploration. The dual‐luciferase reporter system was utilized to verify their interaction. Then, the expression levels of HMGB2 and hsa‐miR‐590‐3p in PBMCs were detected by qPCR in another cohort, and the correlation of their expression levels with the clinical pathological manifestations and serum Gd‐IgA1(galactose‐deficient IgA1) levels was also investigated. HMGB2 was identified as the target gene of hsa‐miR‐590‐3p. Furtherly, the elderly patients had higher HMGB2 expression levels than the expression levels of the younger patients. As the serum creatinine, serum BUN levels increased, the expression of HMGB2 decreased; Besides, the HMGB2 expression was positively correlated with serum complement 3(C3) levels, and it also had a negative correlation with the diastolic blood pressure, but not reach statistical significance. What is more, both hsa‐miR‐590‐3p and HMGB2 expression had a slight correlation tendency with serum Gd‐IgA1 levels in the whole population. In conclusion, HMGB2, the target gene of hsa‐miR‐590‐3p, was identified to correlate with the severity of IgAN, and this provides more clues for the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Yaling Zhai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Xiaoqing Long
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Yanna Dou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Zhang P, Lu Y, Gao S. High-mobility group box 2 promoted proliferation of cervical cancer cells by activating AKT signaling pathway. J Cell Biochem 2019; 120:17345-17353. [PMID: 31209930 DOI: 10.1002/jcb.28998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Cervical cancer is one of the leading killers for female worldwide. Nevertheless, the less knowledge of molecular mechanism for cervical cancer limited the improvement of treatment effects. High-mobility group box 2 (HMGB2) belongs to the HMGB family, which could play diverse roles in cell proliferation. This work mainly aimed to study the functions of HMGB2 on cervical cancer cells proliferation. HMGB2 was highly expressed in cervical cancer tissue. The results of real-time polymerase chain reaction and Western blot analysis showed that HMGB2 was expressed in all the five cervical cancer cells (HeLa, CaSki, SiHa, C-33A, and C4-1 cells). In addition, HMGB2 overexpression obviously improved cell viability and promoted cell cycle progression, which suggested that HMGB2 could promote proliferation of cervical cancer cells. Moreover, HMGB2 overexpression increased the level of p-AKT and reduced the levels of p21 and p27. However, HMGB2 downregulation had contrary influences on cell proliferation, cell cycle distribution and the levels of p-AKT, p21, and p27. Notably, LY294002, as an inhibitor of AKT signaling pathway, could significantly weaken the effects of HMGB2 overexpression, which indicated that HMGB2 might promote cell proliferation by activating AKT signaling pathway. Therefore, HMGB2 was hopeful to be a candidate as a new biomarker and therapy target for cervical cancer.
Collapse
Affiliation(s)
- Pengnan Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yuan Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shujun Gao
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Strohbuecker L, Koenen H, van Rijssen E, van Cranenbroek B, Fasse E, Joosten I, Körber A, Bergmann C. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. PSORIASIS (AUCKLAND, N.Z.) 2019; 9:7-17. [PMID: 30859087 PMCID: PMC6385765 DOI: 10.2147/ptt.s190507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Psoriasis vulgaris (PV) is an autoimmune-related chronic inflammatory disease of the skin, with both vascular and metabolic effects. Aggravating factors have been identified that initiate and maintain inflammation, including expression of Th1-, Th17-, and Th22-cell derived cytokines. Recently, we showed that the evolutionarily ancient and highly conserved damage-associated molecular pattern molecule "high mobility group box 1 (HMGB1)" is significantly increased in the serum of PV patients with disease progression and is decreased under standard therapies. MATERIALS AND METHODS To better understand the role of HMGB1 in the pathogenesis of PV, we recruited 22 untreated psoriatic patients with either mild or severe disease, defined by the Psoriasis Area Severity Index. We assessed HMGB1 and receptor for advanced glycation end products (RAGE) expression in the skin by immunohistochemistry and analyzed the immune-phenotype of Treg and Th17 cells by flow cytometry. RESULTS We found increased staining for HMGB1 in the dermis of psoriatic plaques in comparison to uninvolved skin of patients with PV. In addition, the major histocompatibility complex class III-encoded DNA and HMGB1 RAGE, induced by HMGB1, were highly expressed on psoriatic CD8+ T cells and CD4+ Treg. High expression of HMGB1 in the lesional skin was associated with even higher expression of its receptor, RAGE, on the cell surface of keratino-cytes in patients with severe PV. CONCLUSION The presence of HMGB1 and RAGE signaling may impact orchestration of chronic inflammation in PV which might have implications for Treg and Th17 cells.
Collapse
Affiliation(s)
- Lisa Strohbuecker
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Fasse
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Körber
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Bergmann
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany,
| |
Collapse
|
29
|
Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res 2018; 135:230-238. [PMID: 30120976 DOI: 10.1016/j.phrs.2018.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
The toll-like receptors (TLRs) are a class of transmembrane-spanning receptors that are sentinels of both innate and adaptive immunity. Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are the most commonly prescribed therapeutic agents for treating hypercholesterolemia globally. However, statin therapy appears to have pleiotropic effects including attenuation of chronic low-grade inflammation and modulation of TLR activity. Statins through abolition of TLR4 expression and regulation of the TLR4/Myd88/NF-κB signaling pathway may slow the progression of atherosclerosis and other inflammatory diseases. In this review, we have focused on the impact and mechanism of action of statins on cardiovascular and non-cardiovascular diseases.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Sci Rep 2018; 8:9601. [PMID: 29942000 PMCID: PMC6018498 DOI: 10.1038/s41598-018-28023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Although various surgical procedures have been developed for chronic rotator cuff tear repair, the re-tear rate remains high with severe fat infiltration. However, little is known about the molecular regulation of this process. Mesenchymal stem cells (MSCs) in the intra-muscular space are origin of ectopic fat cells in skeletal muscle. We have previously shown that high-mobility group box 2 (HMGB2), which is a nuclear protein commonly associated with mesenchymal differentiation, is involved in the early articular cartilage degeneration. In this study, we addressed the role of HMGB2 in adipogenesis of MSCs and fat infiltration into skeletal muscles. HMGB2 was highly expressed in undifferentiated MSCs and co-localized with platelet-derived growth factor receptor α (PDGFRA) known as an MSC-specific marker, while their expressions were decreased during adipocytic differentiation. Under the deficiency of HMGB2, the expressions of adipogenesis-related molecules were reduced, and adipogenic differentiation is substantially impaired in MSCs. Moreover, HMGB2+ cells were generated in the muscle belly of rat supraspinatus muscles after rotator cuff transection, and some of these cells expressed PDGFRA in intra-muscular spaces. Thus, our findings suggest that the enhance expression of HMGB2 induces the adipogenesis of MSCs and the fat infiltration into skeletal muscles through the cascade of HMGB2-PDGFRA.
Collapse
|
31
|
Huang C, Huang Z, Zhao X, Wang Y, Zhao H, Zhong Z, Wang L. Overexpression of high mobility group box 1 contributes to progressive clinicopathological features and poor prognosis of human bladder urothelial carcinoma. Onco Targets Ther 2018; 11:2111-2120. [PMID: 29695918 PMCID: PMC5905469 DOI: 10.2147/ott.s155745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background High mobility group box 1 (HMGB1), a versatile protein with intranuclear and extracellular functions, plays an important role in a variety of human cancers. However, the clinical/prognostic significance of HMGB1 expression in human bladder urothelial carcinoma (BUC) remains unclear. The aim of this study was to investigate the HMGB1 expression in human BUC with regard to its clinical and prognostic significance. Patients and methods HMGB1 mRNA and protein expressions in tumor and paired normal bladder tissues were detected in 20 BUC cases by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. HMGB1 protein expression in 165 primary BUC tissues was evaluated by immunohistochemistry (IHC), and its correlations with clinicopathological characteristics and prognosis were also analyzed. Student’s t-test, χ2 test, Kaplan–Meier plots, and Cox proportional hazard regression model were performed to analyze the data. Results By using qRT-PCR and Western blot, the upregulated expression of HMGB1 mRNA and protein was detected in BUC, compared with paired normal tissue (P<0.05). By using IHC, high HMGB1 expression was examined in 84 of 165 (51.0%) BUC cases. High HMGB1 expression was significantly correlated with poorer differentiation and higher T and N classification (all P<0.05). Univariate analysis showed that high HMGB1 expression was significantly associated with a shortened patients’ overall survival (OS) and disease-free survival (DFS; both P<0.001). In different subgroups of BUC patients, HMGB1 expression was a prognostic factor in patients with different histological grades or T classification (all P<0.05), pN− (both P<0.001) for OS and DFS, and pT1/pN− (P<0.05) for OS. HMGB1 expression, as well as pT and pN status, was an independent prognostic factor for both OS (P=0.001, hazard ratio [HR] =2.973, 95% confidence interval [CI] =1.550–5.704) and DFS (P<0.001, HR =3.019, 95% CI =1.902–4.792) in multivariate analysis. Conclusion Overexpression of HMGB1 may be a new independent molecular marker for the poor prognosis of patients with BUC.
Collapse
Affiliation(s)
- Changkun Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hongqing Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lang Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
32
|
Al-Eryani L, Waigel S, Tyagi A, Peremarti J, Jenkins SF, Damodaran C, States JC. Differentially Expressed mRNA Targets of Differentially Expressed miRNAs Predict Changes in the TP53 Axis and Carcinogenesis-Related Pathways in Human Keratinocytes Chronically Exposed to Arsenic. Toxicol Sci 2018; 162:645-654. [PMID: 29319823 PMCID: PMC5889014 DOI: 10.1093/toxsci/kfx292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a widely distributed toxic natural element. Chronic arsenic ingestion causes several cancers, especially skin cancer. Arsenic-induced cancer mechanisms are not well defined, but several studies indicate that mutation is not the driving force and that microRNA expression changes play a role. Chronic low arsenite exposure malignantly transforms immortalized human keratinocytes (HaCaT), serving as a model for arsenic-induced skin carcinogenesis. Early changes in miRNA expression in HaCaT cells chronically exposed to arsenite will reveal early steps in transformation. HaCaT cells were maintained with 0/100 nM NaAsO2 for 3 and 7 weeks. Total RNA was purified. miRNA and mRNA expression was assayed using Affymetrix microarrays. Targets of differentially expressed miRNAs were collected from TargetScan 6.2, intersected with differentially expressed mRNAs using Partek Genomic Suite software, and mapped to their pathways using MetaCore software. MDM2, HMGB1 and TP53 mRNA, and protein levels were assayed by RT-qPCR and Western blot. Numerous miRNAs and mRNAs involved in carcinogenesis pathways in other systems were differentially expressed at 3 and 7 weeks. A TP53 regulatory network including MDM2 and HMGB1 was predicted by the miRNA and mRNA networks. Total TP53 and TP53-S15-phosphorylation were induced. However, TP53-K382-hypoacetylation suggested that the induced TP53 is inactive in arsenic exposed cells. Our data provide strong evidence that early changes in miRNAs and target mRNAs may contribute to arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
| | | | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, Kentucky 40202
| | - Jana Peremarti
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, Kentucky 40202
| | - J C States
- Department of Pharmacology and Toxicology
| |
Collapse
|
33
|
HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:200-210. [PMID: 29421308 DOI: 10.1016/j.bbagrm.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/02/2023]
Abstract
HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites.
Collapse
|
34
|
Zhao Y, Yang Z, Wu J, Wu R, Keshipeddy SK, Wright D, Wang L. High-mobility-group protein 2 regulated by microRNA-127 and small heterodimer partner modulates pluripotency of mouse embryonic stem cells and liver tumor initiating cells. Hepatol Commun 2017; 1:816-830. [PMID: 29218329 PMCID: PMC5678910 DOI: 10.1002/hep4.1086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High‐mobility‐group protein 2 (HMGB2) expression is up‐regulated in human liver cancer; however, little is known about its regulatory function. Here, we establish HMGB2 as a new modulator of the pluripotency of mouse embryonic stem cells. Similar to octamer‐binding transcription factor 4 (OCT4) and sex‐determining region Y‐box 2 (SOX2), HMGB2 protein is highly expressed in undifferentiated CGR8 cells, whereas it undergoes rapid decline during embryonic body formation. HMGB2 interacts with OCT4, increases protein expression of OCT4 and SOX2, and enhances their transcriptional activities. We also show that microRNA (miRNA)‐127 is a translational repressor of HMGB2 protein expression by targeting its 3′ untranslated region. We further elucidate a transcriptional mechanism controlling HMGB2 messenger RNA expression by the nuclear receptor small heterodimer partner (SHP) and transcription factor E2F1. Diminishing HMGB2 expression by ectopic expression of miR‐127 or SHP or treatment with the small molecule inhibitor inflachromene decreases OCT4 and SOX2 expression and facilitates CGR8 differentiation. In addition, HMGB2 is markedly induced in liver tumor initiating cells. Diminishing HMGB2 expression by short hairpin RNA for HMGB2 (shHMGB2), miR‐127, or SHP impairs spheroid formation. Importantly, HMGB2 expression is elevated in various human cancers. Conclusion: HMGB2 acts upstream of OCT4/SOX2 signaling to control embryonic stem cell pluripotency. Diminishing HMGB2 expression by miR‐127 or SHP may provide a potential means to decrease the pluripotency of tumor initiating cells. (Hepatology Communications 2017;1:816–830)
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Zhihong Yang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Jianguo Wu
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Raymond Wu
- Departments of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033; and Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles CA 90073
| | - Santosh K Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269
| | - Dennis Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269
| | - Li Wang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
35
|
Liu X, Wang X, Duan X, Poorun D, Xu J, Zhang S, Gan L, He M, Zhu K, Ming Z, Hu F, Chen H. Lipoxin A4 and its analog suppress inflammation by modulating HMGB1 translocation and expression in psoriasis. Sci Rep 2017; 7:7100. [PMID: 28769106 PMCID: PMC5541073 DOI: 10.1038/s41598-017-07485-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects 2-3% of the global population, and there is still no known possibility of a cure. Lipoxin A4 (LXA4), an endogenous lipoxygenase-derived eicosanoid mediator, has potent dual pro-resolving and anti-inflammatory properties. BML-111 (5(S)-6(R)-7-trihydroxyheptanoic acid methyl ester), a lipoxin receptor agonist, has been previously confirmed to be equivalent to LXA4 in the anti-inflammatory processes. High mobility group box 1 (HMGB1) serves as an inflammatory cytokine when secreted extracellularly in psoriatic lesions and is involved in the development of psoriasis. Therefore, we investigated the effects of LXA4 and BML-111 on the HMGB1 signaling cascade and inflammation in lipopolysaccharide (LPS)-induced keratinocytes and imiquimod (IMQ)-induced psoriasiform dermatitis in mice. In the present study, we found that treatment with BML-111 attenuated the development of IMQ-induced psoriasiform dermatitis. Furthermore, treatment with BML-111 and LXA4 inhibited HMGB1 translocation from the nucleus to cytoplasm and downregulated the expression of toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), p-ERK1/2, nuclear NF-κB p65, and proinflammatory cytokines in vivo and in vitro. Our findings indicate that LXA4 and its analog may be potential therapeutic candidates for psoriasis because of their ability to modulate the translocation and expression of HMGB1.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Devesh Poorun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Juntao Xu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Gan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangyin Ming
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Hu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street Charlestown, Boston, MA, 02129, USA.
| |
Collapse
|
36
|
Characterization of the new human pleomorphic undifferentiated sarcoma TP53-null cell line mfh-val2. Cytotechnology 2017; 69:539-550. [PMID: 28676915 DOI: 10.1007/s10616-017-0112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/21/2016] [Indexed: 01/01/2023] Open
Abstract
Pleomorphic undifferentiated sarcoma (PUS), also called malignant fibrous histiocytoma, is a soft tissue sarcoma which occurs predominantly in the extremities. Its origin is a poorly defined mesenchymal cell, which derives to histiocytic and fibroblastic cells. The patient, a 58 year-old man, presented a lesion located in the forearm composed by spindle cells and multinucleated giant cells, which expressed vimentin and adopted a histological pattern formed by irregular-swirling fascicles. Cells were cultured in vitro and a new cell line was established. We characterized this new cell line by histological analyses, cytogenetics (using G-bands and spectral karyotype technique) and cytometric analyses. Cells were grown in culture for more than 100 passages. They had elongated or polygonal morphology. The cells presented a saturation rate of 70,980 cells/cm2, a plating efficiency of 21.5% and a mitotic index of 21 mitoses per field. The cell line was tumorigenic in nude mice. The ploidy study using flow cytometry revealed an aneuploid peak with a DNA index of 1.43. A side population was detected, demonstrating the presence of stem and progenitor cells. Cytogenetics showed a hypotriploid range with many clonal unbalanced rearrangements. Loss of p53 gene was evidenced by MLPA. We describe, for the first time, the characterization of a new human PUS TP53-null cell line called mfh-val2. Mfh-val2 presents a wide number of applications as a TP53-null cell line and a great interest in order to characterize genetic alterations influencing the oncogenesis or progression of PUS and to advance in the biological investigation of this tumor.
Collapse
|
37
|
He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017; 8:64534-64550. [PMID: 28969092 PMCID: PMC5610024 DOI: 10.18632/oncotarget.17885] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is an abundant protein in most eukaryocytes. It can bind to several receptors such as advanced glycation end products (RAGE) and Toll-like receptors (TLRs), in direct or indirect way. The biological effects of HMGB1 depend on its expression and subcellular location. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it possesses more complicated functions, including regulating cell proliferation, autophagy, inflammation and immunity. During tumor development, HMGB1 has been characterized as both a pro- and anti-tumoral protein by either promoting or suppressing tumor growth, proliferation, angiogenesis, invasion and metastasis. However, the current knowledge concerning the positive and negative effects of HMGB1 on tumor development is not explicit. Here, we evaluate the role of HMGB1 in tumor development and attempt to reconcile the dual effects of HMGB1 in carcinogenesis. Furthermore, we would like to present current strategies targeting against HMGB1, its receptor or release, which have shown potentially therapeutic value in cancer intervention.
Collapse
Affiliation(s)
- Si-Jia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- Oncology Department, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Misra G, Gupta S, Jabalia N. Understanding the Interactions of High-Mobility Group of Protein Domain B1 with DNA Adducts Generated by Platinum Anticancer Molecules Using In Silico Approaches. Interdiscip Sci 2016; 10:476-485. [DOI: 10.1007/s12539-016-0204-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
|
39
|
Lee WJ, Škalamera D, Dahmer-Heath M, Shakhbazov K, Ranall MV, Fox C, Lambie D, Stevenson AJ, Yaswen P, Gonda TJ, Gabrielli B. Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma. SLAS DISCOVERY 2016; 22:298-308. [PMID: 27872202 DOI: 10.1177/1087057116679592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes. Genes known to bypass p16-induced senescence arrest, including the human papilloma virus 18 E7 gene ( HPV18E7), and genes such as the p16-binding CDK6 with expected functions, as well as panel of novel genes, were identified, including high-mobility group box (HMGB) proteins. A number of these were further validated in two other models of p16-induced senescence. Tissue immunohistochemistry demonstrated higher levels of CDK6 in primary melanomas compared with normal skin and nevi. Reduction of CDK6 levels drove melanoma cells expressing functional p16 into senescence, demonstrating its contribution to bypass senescence.
Collapse
Affiliation(s)
- Won Jae Lee
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dubravka Škalamera
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mareike Dahmer-Heath
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Konstanin Shakhbazov
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Max V Ranall
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Carly Fox
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Duncan Lambie
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Alexander J Stevenson
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Paul Yaswen
- 2 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas J Gonda
- 3 School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian Gabrielli
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. Downregulation of HMGB1 by miR-34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells. Tumour Biol 2016; 37:13155-13166. [PMID: 27456356 DOI: 10.1007/s13277-016-5261-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein known to be highly expressed in human cervical (CaCx) and colorectal (CRC) cancers, and sustained high levels of HMGB1 contribute to tumourigenesis and metastasis. HMGB1-targeted cancer therapy is of recent interest, and there are not many studies on miRNA-mediated HMGB1 regulation in these cancers. Since miRNA-based therapeutics for cancer is gaining importance in recent years, it was of interest to predict miRNAs targeting HMGB1. Based on the identification of a potential miR-34a response element in HMGB1-3' untranslated region (3'UTR) and an inverse correlation between HMGB1 and miR-34a expression levels in CaCx and CRC tissues, from a subset of the local population as well as a large sampling from TCGA database, experiments were performed to validate HMGB1 as a direct target of miR-34a in CaCx and CRC cells. Ectopic expression of miR-34a decreased the wild-type HMGB1-3'UTR luciferase activity but not that of its mutant in 3'UTR luciferase assays. While forced expression of miR-34a in CaCx and CRC cells inhibited HMGB1 mRNA and protein levels, proliferation, migration and invasion, inhibition of endogenous miR-34a enhanced these tumourigenic properties. siRNA-mediated HMGB1 suppression imitated miR-34a expression in reducing proliferation and metastasis-related events. Combined with the disparity in expression of miR-34a and HMGB1 in clinical specimens, the current findings would help in not only understanding the complexity of miRNA-target regulatory mechanisms but also in designing novel therapeutic interventions in CaCx and CRC.
Collapse
Affiliation(s)
- Karthik Subramanian Chandrasekaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Anusha Sathyanarayanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
41
|
Wang J, Guo W, Zhou H, Luo N, Nie C, Zhao X, Yuan Z, Liu X, Wei Y. Mitochondrial p53 phosphorylation induces Bak-mediated and caspase-independent cell death. Oncotarget 2016; 6:17192-205. [PMID: 25980443 PMCID: PMC4627301 DOI: 10.18632/oncotarget.3780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/10/2015] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance in cancer has previously been attributed to gene mutations or deficiency. Caspase mutations or Bax deficiency can lead to resistance to cancer drugs. We recently demonstrated that Bak initiates a caspase/Bax-independent cell death pathway. We show that Plumbagin (PL) (5-hydroxy-2-methyl-1,4-napthoquinone), a medicinal plant-derived naphthoquinone that is known to have anti-tumor activity in a variety of models, induces caspase-independent cell death in HCT116 Bax knockout (KO) or MCF-7 Bax knockdown (KD) cells that express wild-type (WT) Bak. The re-expression of Bax in HCT116 Bax KO cells fails to enhance the PL-induced cell death. Additionally, Bak knockdown by shRNA efficiently attenuates PL-induced cell death. These results suggest that PL-induced cell death depends primarily on Bak, not Bax, in these cells. Further experimentation demonstrated that p53 Ser15 phosphorylation and mitochondrial translocation mediated Bak activation and subsequent cell death. Knockdown of p53 or a p53 Ser15 mutant significantly inhibited p53 mitochondrial translocation and cell death. Furthermore, we found that Akt mediated p53 phosphorylation and the subsequent mitochondrial accumulation. Taken together, our data elaborate the role of Bak in caspase/Bax-independent cell death and suggest that PL may be an effective agent for overcoming chemoresistance in cancer cells with dysfunctional caspases.
Collapse
Affiliation(s)
- Jinjing Wang
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Wenhao Guo
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Hang Zhou
- Department of Chemotherapy, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Na Luo
- Nankai University School of Medicine, Collaborative Innovation Center of Biotherapy, Tianjin 300071, P. R. China
| | - Chunlai Nie
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xinyu Zhao
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Zhu Yuan
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xinyu Liu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Yuquan Wei
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|
42
|
Monte E, Rosa-Garrido M, Karbassi E, Chen H, Lopez R, Rau CD, Wang J, Nelson SF, Wu Y, Stefani E, Lusis AJ, Wang Y, Kurdistani SK, Franklin S, Vondriska TM. Reciprocal Regulation of the Cardiac Epigenome by Chromatin Structural Proteins Hmgb and Ctcf: IMPLICATIONS FOR TRANSCRIPTIONAL REGULATION. J Biol Chem 2016; 291:15428-46. [PMID: 27226577 DOI: 10.1074/jbc.m116.719633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 02/05/2023] Open
Abstract
Transcriptome remodeling in heart disease occurs through the coordinated actions of transcription factors, histone modifications, and other chromatin features at pathology-associated genes. The extent to which genome-wide chromatin reorganization also contributes to the resultant changes in gene expression remains unknown. We examined the roles of two chromatin structural proteins, Ctcf (CCCTC-binding factor) and Hmgb2 (high mobility group protein B2), in regulating pathologic transcription and chromatin remodeling. Our data demonstrate a reciprocal relationship between Hmgb2 and Ctcf in controlling aspects of chromatin structure and gene expression. Both proteins regulate each others' expression as well as transcription in cardiac myocytes; however, only Hmgb2 does so in a manner that involves global reprogramming of chromatin accessibility. We demonstrate that the actions of Hmgb2 on local chromatin accessibility are conserved across genomic loci, whereas the effects on transcription are loci-dependent and emerge in concert with histone modification and other chromatin features. Finally, although both proteins share gene targets, Hmgb2 and Ctcf, neither binds these genes simultaneously nor do they physically colocalize in myocyte nuclei. Our study uncovers a previously unknown relationship between these two ubiquitous chromatin proteins and provides a mechanistic explanation for how Hmgb2 regulates gene expression and cellular phenotype. Furthermore, we provide direct evidence for structural remodeling of chromatin on a genome-wide scale in the setting of cardiac disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Wu
- From the Departments of Anesthesiology
| | | | - Aldons J Lusis
- Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, and
| | - Yibin Wang
- From the Departments of Anesthesiology, Medicine, Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | | | - Sarah Franklin
- the Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| |
Collapse
|
43
|
Luan G, Gao Q, Zhai F, Chen Y, Li T. Upregulation of HMGB1, toll-like receptor and RAGE in human Rasmussen's encephalitis. Epilepsy Res 2016; 123:36-49. [PMID: 27108105 DOI: 10.1016/j.eplepsyres.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 10/21/2022]
Abstract
Rasmussen encephalitis (RE) is a rare neurological disorder of childhood characterized by uni-hemispheric inflammation, progressive neurological deficits and intractable focal epilepsy. The pathogenesis of RE is still enigmatic. Activation of endogenous high-mobility group box-1 (HMGB1) and Toll-like receptor (TLR) has been proved to be with pro-inflammatory as well as pro-convulsant effects. We hypothesized that the epileptogenic mechanisms underlying RE are related to activation of HMGB1/TLR signaling. Immunnohistochemistry approach was used to examine the expression of HMGB1, TLR2, TLR4, receptor for advanced glycation end products (RAGE) in surgically resected human epileptic cortical specimens from RE (n=12), and compared that with control cortical issue (n=6). HMGB1 was ubiquitously detected in nuclei of astrocytes while its receptors were not detected in control cortex specimens. Marked expression of the receptors were observed in the lesions of RE. In particular, HMGB1 was in stead detected in cytoplasm of reactive astrocytes in RE cortex, predictive its release from glial cells. Significant greater HMGB1 and its receptors expression in RE vs. control was demonstrated by western blot. These results provide the novel evidence of intrinsic activation of these pro-inflammation pathways in RE, which suggest the specific targets in the treatment of epilepsy associated with RE.
Collapse
Affiliation(s)
- Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Qing Gao
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yin Chen
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
44
|
Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun 2016; 473:490-6. [DOI: 10.1016/j.bbrc.2016.03.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
45
|
Bergmann C, Strohbuecker L, Lotfi R, Sucker A, Joosten I, Koenen H, Körber A. High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. J Eur Acad Dermatol Venereol 2016; 30:435-41. [PMID: 26834049 DOI: 10.1111/jdv.13564] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/09/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Psoriasis vulgaris (PV) is an autoimmune-related chronic inflammatory disease, which appears mostly in skin, but also affects the vascular and metabolic system. The incidence of PV is 2-3% in the general population and there is still no possibility to cure. Trigger factors have been identified to initiate and maintain inflammation in the skin, which is characterized by Th1-, Th17- and Th22- cells. OBJECTIVE We hypothesize that the damage-associated molecular pattern (DAMP) molecule high mobility group box 1 (HMGB1) plays a role in the pathogenesis of PV. HMGB1 is a DNA-binding protein located in the nucleus, which acquires cytokine-like properties once released from the cell upon necrotic cell death or actively secreted by immune cells in inflammation and cancer. METHODS We recruited 90 psoriatic patients under and without therapy with mild, intermediate and severe progression of disease, defined by the Psoriasis Area Severity Index. Serum levels of HMGB1 in patients with PV were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Our results show an increased level of HMGB1 in the sera of patients with PV in comparison to healthy donors. Furthermore, our analyses reveal that HMGB1 levels are significantly increased with disease progression and are downregulated after standard therapies for PV have been conducted. CONCLUSION Our data provide insights into a possible role of HMGB1 for inflammation in PV.
Collapse
Affiliation(s)
- C Bergmann
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - L Strohbuecker
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - R Lotfi
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - A Sucker
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - I Joosten
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Körber
- Department of Dermatology, University Hospital Essen, Essen, Germany
| |
Collapse
|
46
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
47
|
Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst) 2015; 36:122-136. [PMID: 26411874 DOI: 10.1016/j.dnarep.2015.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat 'individualistic' impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-4660, USA.
| |
Collapse
|
48
|
Wang H, Qu H, Deng H. Plasma HMGB-1 Levels in Subjects with Obesity and Type 2 Diabetes: A Cross-Sectional Study in China. PLoS One 2015; 10:e0136564. [PMID: 26317615 PMCID: PMC4552731 DOI: 10.1371/journal.pone.0136564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Object To detect the levels of plasma High-Mobility Group Box-1(HMGB1) in Chinese subject with obesity and type 2 diabetes mellitus (T2DM), and to investigate the correlations between plasma HMGB1 concentration and parameters of body fat, insulin resistance (IR) metabolism and inflammation. Methods This study recruited 79 normal glucose tolerance (NGT) subjects and 76 newly diagnosed T2DM patients. NGT and T2DM groups were divided into normal weight (NW) and obese (OB)subgroups respectively. Anthropometric parameters such as height, weight, waist circumference, hip circumference and blood pressure were measured. Plasma concentrations of HMGB1, IL-6, fasting plasma glucose (FPG), 2 hours post challenge plasma glucose (2hPG), serum lipid, glycated hemoglobin (HbA1C) and fasting insulin (FINS) were examined. The homeostasis model assessment (HOMA) was performed to assess IR status. Results Plasma HMGB1 levels were higher in T2DM group than that in NGT group. The concentrations of serum HMGB1 were also higher in subjects with OB than those in subjects with NW both in NGT and T2DM groups. Plasma levels of HMGB1 were positively correlated with waist hip ratio (WHR), blood pressure, FPG, FINS, HOMA-IR, TG, IL-6 and negatively correlated with HOMA-βand high-density lipoprotein-cholesterol (HDL-c) independent of age, gender and BMI. Plasma levels of HMGB1 were significantly correlated with diabetes in fully adjusted models. Conclusion Plasma HMGB1 levels were increased in Chinese subjects with pure T2DM, which might be caused by IR. Serum HMGB1 participated in the pathological process of obesity and T2DM via its proinflammatory effect.
Collapse
Affiliation(s)
- Hang Wang
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qu
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- M.D. Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
49
|
Zuo Z, Che X, Wang Y, Li B, Li J, Dai W, Lin CP, Huang C. High mobility group Box-1 inhibits cancer cell motility and metastasis by suppressing activation of transcription factor CREB and nWASP expression. Oncotarget 2015; 5:7458-70. [PMID: 25277185 PMCID: PMC4202136 DOI: 10.18632/oncotarget.2150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability to metastasize is a hallmark of malignant tumors, and metastasis is the principal cause of death of cancer patients. The High Mobility Group Box-1 (HMGB1) is a multifunction protein that serves as both a chromatin protein and an extracellular signaling molecule. Our current study demonstrated a novel mechanism of HMGB1 in the regulation of cancer cell actin polymerization, cell skeleton formation, cancer cell motility and metastasis. We found that knockdown of HMGB1 in human lung cancer A549 cells significantly increased cell β-actin polymerization, cell skeleton formation, cancer cell migration and invasion in vitro, as well as metastasis in vivo. And this increase could be inhibited by treatment of HMGB1 knockdown cells with recombinant human HMGB1. Further studies discovered that HMGB1 suppressed phosphorylation, nuclear translocation, and activation of CREB, by inhibiting nuclear translocation of PKA catalytic subunit. This reduces nWASP mRNA transcription and expression, further impairing cancer cell motility. Our findings on the novel mechanism underlying the HMGB1 anti-metastatic effect on cancer provides significant insight into the understanding of the nature of HMGB1 in cancer invasion and metastasis, further serving as key information for utilization of HMGB1 and its regulated downstream components as new targets for cancer therapy.
Collapse
Affiliation(s)
- Zhenghong Zuo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY. State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.+ Contributed equally to this work
| | - Xun Che
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY. Contributed equally to this work
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Bowen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Wei Dai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| | - Charles P Lin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY
| |
Collapse
|
50
|
Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel) 2015; 5:219-53. [PMID: 26854151 PMCID: PMC4665591 DOI: 10.3390/diagnostics5020219] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
High molecular group box 1 (HMGB1) is a highly conserved member of the HMG-box-family; abundantly expressed in almost all human cells and released in apoptosis; necrosis or by activated immune cells. Once in the extracellular space, HMGB1 can act as a danger associated molecular pattern (DAMP), thus stimulating or inhibiting certain functions of the immune system; depending on the “combinatorial cocktail” of the surrounding milieu. HMGB1 exerts its various functions through binding to a multitude of membrane-bound receptors such as TLR-2; -4 and -9; IL-1 and RAGE (receptor for advanced glycation end products); partly complex-bound with intracellular fragments like nucleosomes. Soluble RAGE in the extracellular space, however, acts as a decoy receptor by binding to HMGB1 and inhibiting its effects. This review aims to outline today’s knowledge of structure, intra- and extracellular functions including mechanisms of release and finally the clinical relevance of HMGB1 and RAGE as clinical biomarkers in therapy monitoring, prediction and prognosis of malignant and autoimmune disease.
Collapse
|