1
|
Kim S, Jeon JH, Kim M, Lee Y, Hwang YH, Park M, Li CH, Lee T, Lee JA, Kim YM, Kim D, Lee H, Kim YJ, Kim VN, Park JE, Yeo J. Innate immune responses against mRNA vaccine promote cellular immunity through IFN-β at the injection site. Nat Commun 2024; 15:7226. [PMID: 39191748 PMCID: PMC11349762 DOI: 10.1038/s41467-024-51411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
mRNA vaccines against SARS-CoV-2 have revolutionized vaccine development, but their immunological mechanisms are not fully understood. Here, we investigate injection site responses of mRNA vaccines by generating a comprehensive single-cell transcriptome profile upon lipid nanoparticle (LNP) or LNP-mRNA challenge in female BALB/c mice. We show that LNP-induced stromal pro-inflammatory responses and mRNA-elicited type I interferon responses dominate the initial injection site responses. By tracking the fate of delivered mRNA, we discover that injection site fibroblasts are highly enriched with the delivered mRNA and that they express IFN-β specifically in response to the mRNA component, not to the LNP component of mRNA vaccines. Moreover, the mRNA-LNP, but not LNP alone, induces migratory dendritic cells highly expressing IFN-stimulated genes (mDC_ISGs) at the injection site and draining lymph nodes. When co-injected with LNP-subunit vaccine, IFN-β induces mDC_ISGs at the injection site, and importantly, it substantially enhances antigen-specific cellular immune responses. Furthermore, blocking IFN-β signaling at the injection site significantly decreases mRNA vaccine-induced cellular immune responses. Collectively, these data highlight the importance of injection site fibroblasts and IFN-β signaling during early immune responses against the mRNA vaccine and provide detailed information on the initial chain of immune reactions elicited by mRNA vaccine injection.
Collapse
Affiliation(s)
- Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji Hyang Jeon
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - Myeonghwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University; Seodaemun-gu, Seoul, Republic of Korea
| | - Yun-Ho Hwang
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - C Han Li
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Taeyoung Lee
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - Jung-Ah Lee
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University; Seodaemun-gu, Seoul, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Jinah Yeo
- Division of Infectious Disease Vaccine Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Republic of Korea.
| |
Collapse
|
2
|
Krammer F, Palese P. Profile of Katalin Karikó and Drew Weissman: 2023 Nobel laureates in Physiology or Medicine. Proc Natl Acad Sci U S A 2024; 121:e2400423121. [PMID: 38381788 PMCID: PMC10907315 DOI: 10.1073/pnas.2400423121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
|
3
|
Aygün I, Barciszewski J. The forerunners and successful partnerships behind the BioNTech mRNA vaccine. J Appl Genet 2024; 65:47-55. [PMID: 37861886 PMCID: PMC10789661 DOI: 10.1007/s13353-023-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The discovery of nucleic acids stands as a paramount achievement in the history of scientific endeavors. By applying transformative advancements in the fields of chemistry and physics to biological systems, researchers unveiled the enigmatic nature of life. Notably, messenger RNA (mRNA) emerged as a crucial player in this profound revelation, serving as a transient intermediary for genetic information transfer between genes and proteins. Groundbreaking investigations carried out from 1944 to 1961 led to the initial identification of this pivotal molecule, captivating scientific interest for the past three decades. The field of mRNA research has witnessed a transformative shift owing to the development of cap analogs and nucleotide modifications. This revolutionary progress has fostered a new generation of potent therapeutics. Prior to the advent of the coronavirus pandemic, numerous scientists had already begun exploring the unique properties of mRNA. However, with the onset of the pandemic, mRNA catapulted into the limelight as a heroic agent, providing the foundation for highly effective vaccines that have played a crucial role in mitigating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The successive generations of cap analogs have significantly enhanced the translation efficacy of mRNA, while the discovery of suitable purification, packaging, and delivery methods has paved the way for groundbreaking medical breakthroughs. Pioneers in the field such as Katalin Karikó, Drew Weissman, Edward Darzynkiewicz, Robert Rhodes, Ugur Sahin, and Ozlem Tureci have made significant contributions during the early stages of mRNA research, warranting acknowledgement for their visionary endeavors. The narrative of mRNA represents a remarkable journey marked by a succession of breakthroughs in a discipline that holds immense promise for the future of medicine. Thanks to the pioneering work of these exceptional scientists, we are well-positioned to unlock the full potential of this extraordinary molecule, ushering in a new era of medical advancements.
Collapse
Affiliation(s)
- Ilkin Aygün
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego, 12/14, 61-704, Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego, 12/14, 61-704, Poznan, Poland
- NanoBioMedical Center, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Medenbach J, Tschochner H. Nobel Prize for physiology or medicine in 2023: how to dupe the cellular innate immune system using modified RNA for therapeutic treatment. Pflugers Arch 2024; 476:5-6. [PMID: 38087083 PMCID: PMC10758357 DOI: 10.1007/s00424-023-02895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Jan Medenbach
- Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center of Biochemistry (RCB), Biochemistry III, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Komori M, Morey AL, Quiñones-Molina AA, Fofana J, Romero L, Peters E, Matsuda K, Gummuluru S, Smith JF, Akahata W, Akiyama H. Incorporation of 5 methylcytidine alleviates innate immune response to self-amplifying RNA vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565056. [PMID: 37961509 PMCID: PMC10634970 DOI: 10.1101/2023.11.01.565056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.
Collapse
|
6
|
Getachew H, Pierce E. Extracellular Vesicle RNA Contents as Biomarkers for Ocular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:81-86. [PMID: 37440018 DOI: 10.1007/978-3-031-27681-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Extracellular vesicles (EVs) are small vesicles secreted from cells into extracellular space. EVs contain proteins, lipids, and nucleic acids of the cells from which they originate. For this reason, EVs are being studied for use as biomarkers as they can be surrogates for the status of the cell from which they are secreted. Moreover, EVs are found in numerous biofluids and can be taken up by other cells, which allows for transfer of functional cargo, like RNAs, and changes in gene regulation in the recipient cell. Several potential RNA biomarkers have been identified in many diseases, and there is great potential in the vision field for extracellular RNA biomarkers as a diagnostic tool as well as a measure for treatment efficacy.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Eric Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Janowski M, Andrzejewska A. The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:272-284. [PMID: 35855896 PMCID: PMC9278038 DOI: 10.1016/j.omtn.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
mRNA is like Hermes, delivering the genetic code to cellular construction sites, so it has long been of interest, but only to a small group of scientists, and only demonstrating its remarkable efficacy in coronavirus disease 2019 (COVID-19) vaccines allowed it to go out into the open. Therefore, now is the right timing to delve into the stepping stones that underpin this success and pay tribute to the underlying scientists. From this perspective, advances in mRNA engineering have proven crucial to the rapidly growing role of this molecule in healthcare. Development of consecutive generations of cap analogs, including anti-reverse cap analogs (ARCAs), has significantly boosted translation efficacy and maintained an enthusiasm for mRNA research. Nucleotide modification to protect mRNA molecules from the host's immune system, followed by finding appropriate purification and packaging methods, were other links in the chain enabling medical breakthroughs. Currently, vaccines are the central area of mRNA research, but it will reach far beyond COVID-19. Supplementation of missing or abnormal proteins is another large field of mRNA research. Ex vivo cell engineering and genome editing have been expanding recently. Thus, it is time to recognize mRNA pioneers while building upon their legacy.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Program in Image Guided Neurointerventions, Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland,Corresponding author Anna Andrzejewska, NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Peng XL, Cheng JSY, Gong HL, Yuan MD, Zhao XH, Li Z, Wei DX. Advances in the design and development of SARS-CoV-2 vaccines. Mil Med Res 2021; 8:67. [PMID: 34911569 PMCID: PMC8674100 DOI: 10.1186/s40779-021-00360-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Since the end of 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The RNA genome of SARS-CoV-2, which is highly infectious and prone to rapid mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to prevent COVID-19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or therapeutic vaccines against COVID-19, including viral vector vaccines, DNA vaccines, RNA vaccines, live-attenuated vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology also play important roles in combating COVID-19. However, many challenges persist in ongoing clinical trials.
Collapse
Affiliation(s)
- Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Meng-Di Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710069 China
| |
Collapse
|
9
|
Shapiro L, Losick R. Delivering the message: How a novel technology enabled the rapid development of effective vaccines. Cell 2021; 184:5271-5274. [PMID: 34562362 PMCID: PMC8462133 DOI: 10.1016/j.cell.2021.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This year's Lasker∼Debakey Clinical Research Award honors Katalin Karikó and Drew Weissman for the development of a therapeutic technology based on nucleoside-modification of messenger RNA, enabling the rapid development of the highly effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA, USA.
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Katalin Karikó
- Dpt. Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Cavaillon JM, Osuchowski MF. COVID-19 and earlier pandemics, sepsis, and vaccines: A historical perspective. JOURNAL OF INTENSIVE MEDICINE 2021; 1:4-13. [PMID: 36943823 PMCID: PMC8130518 DOI: 10.1016/j.jointm.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Humanity has regularly faced the threat of epidemics and pandemics over the course of history. Successful attempts to protect populations were initially made with the development of new vaccines, such as those against plague and cholera, under the leadership of the bacteriologist Waldemar Haffkine. Vaccines have led to a complete eradication of smallpox and bovine plague and a major reduction in other infectious diseases including diphtheria, typhoid fever, poliomyelitis, and Haemophilus influenzae type B meningitis. While a few coronaviruses have been identified that seasonally infect humans causing mild symptoms, the emergence of a new zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly triggered the ongoing coronavirus disease 2019 (COVID-19) as a global pandemic responsible for widespread mortality. The severe phenotypes of COVID-19 resemble a previous infectious threat that was initially designated as hospital fever and puerperal fever, presently known as sepsis. A SARS-CoV-2 infection has frequently been considered as a form of viral sepsis (owing to common features with bacterial sepsis) but is also associated with an array of specific and unique symptoms. Rapid progress in anti-SARS-CoV-2 vaccine development, in particular, the design of efficient messenger RNA (mRNA) and recombinant adenovirus vaccines, is crucial for curbing the pandemic.
Collapse
Affiliation(s)
| | - Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna 1200, Austria
| |
Collapse
|
12
|
Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020; 41:755-775. [PMID: 32893005 PMCID: PMC7470715 DOI: 10.1016/j.tips.2020.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic RNA molecules possess high potential for treating medical conditions if they can successfully reach the target cell upon administration. However, unmodified RNA molecules are rapidly degraded and cleared from the circulation. In addition, their large size and negative charge complicates their passing through the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient intracellular delivery of intact RNA molecules to the tissue of interest without inducing adverse effects. Here, we outline the recent developments in therapeutic RNA delivery and discuss the wide potential in manipulating the function of cells with RNAs. The focus is not only on the variety of delivery strategies but also on the versatile nature of RNA and its wide applicability. This wide applicability is especially interesting when considering the modular nature of nucleic acids. An optimal delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel,Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel,Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel,Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Godoy PM, Bhakta NR, Barczak AJ, Cakmak H, Fisher S, MacKenzie TC, Patel T, Price RW, Smith JF, Woodruff PG, Erle DJ. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep 2019; 25:1346-1358. [PMID: 30380423 PMCID: PMC6261476 DOI: 10.1016/j.celrep.2018.10.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular microRNAs (miRNAs) and other small RNAs are implicated in cellular communication and may be useful as disease biomarkers. We systematically compared small RNAs in 12 human biofluid types using RNA sequencing (RNA-seq). miRNAs and tRNA-derived RNAs (tDRs) accounted for the majority of mapped reads in all biofluids, but the ratio of miRNA to tDR reads varied from 72 in plasma to 0.004 in bile. miRNA levels were highly correlated across all biofluids, but levels of some miRNAs differed markedly between biofluids. tDR populations differed extensively between biofluids. Y RNA fragments were seen in all biofluids and accounted for >10% of reads in blood plasma, serum, and cerebrospinal fluid (CSF). Reads mapping exclusively to Piwi-interacting RNAs (piRNAs) were very rare, except in seminal plasma. These results demonstrate extensive differences in small RNAs between human biofluids and provide a useful resource for investigating extracellular RNA biology and developing biomarkers. Using a standardized sequencing-based approach, Godoy et al. characterize small RNAs in 12 normal human biofluids. They find that each biofluid contains an extensive collection of small RNAs that belong to multiple biotypes. The relative abundance of these RNAs varies widely between biofluids.
Collapse
Affiliation(s)
- Paula M Godoy
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA
| | - Andrea J Barczak
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA
| | - Hakan Cakmak
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, UCSF Box 0916, San Francisco, CA 94143, USA
| | - Susan Fisher
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, UCSF Box 0916, San Francisco, CA 94143, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, UCSF Box 0570, San Francisco, CA 94143, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Richard W Price
- Department of Neurology, University of California, San Francisco, UCSF Box 0870, San Francisco, CA 94143, USA
| | - James F Smith
- Department of Urology, University of California, San Francisco, UCSF Box 1695, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, University of California, San Francisco, UCSF Box 3118, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, UCSF Box 0130, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2019; 46:341-367. [PMID: 30806249 DOI: 10.1615/critrevbiomedeng.2018027166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.
Collapse
Affiliation(s)
- John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| |
Collapse
|
15
|
Li Y, Yang Y, Gan T, Zhou J, Hu F, Hao N, Yuan B, Chen Y, Zhang M. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol 2019; 55:69-80. [PMID: 31115506 PMCID: PMC6561626 DOI: 10.3892/ijo.2019.4808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Neutrophil infiltration is frequently observed in lung cancer tissues. Extracellular RNAs (exRNAs) may facilitate tumor progression. The present study investigated the cross-talk of tumor exRNAs and neutrophil extracellular traps (NETs) in lung cancer. Lewis lung carcinoma (LLC) cells were cultured with the deprived sera. And the cell culture supernatants (CCS) were analyzed in vitro and in vivo. The results revealed that exRNAs from lung cancer CCS promoted the inflammatory cytokine interleukin-1β and reduced the vascular cell adhesion molecule-1 expression in lung epithelial cells. Lung cancer CCS-treated epithelial cells induced the production of NETs. By contrast, NETs reduced the tight junction protein claudin-5 in epithelial cells. Furthermore, NETs caused the necrosis of epithelial cells, which resulted in the release of exRNAs. In mice, lung cancer cells instilled in the lung recruited neutrophils and initiated NETs. In patients with lung cancer, NETs were also observed. These results suggested that exRNAs in the cell culture supernatant may indirectly induce NETs and contribute to lung cancer oncogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yonglin Yang
- Department of Infectious Disease, Nanjing Medical University Nanjing First Hospital, Nanjing, Jiangsu 210006, P.R. China
| | - Tingting Gan
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiawei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Nannan Hao
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Baorui Yuan
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingshun Zhang
- Key Laboratory of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| |
Collapse
|
16
|
Abstract
Background: The nucleotide adenosine triphosphate (ATP) has long been known to drive and participate in countless intracellular processes. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin. Knowledge of the sources and effects of extracellular ATP in human skin may help shape new therapies for skin injury, inflammation, and numerous other cutaneous disorders. Objective: The objective of this review is to introduce the reader to current knowledge regarding the sources and effects of extracellular ATP in human skin and to outline areas in which further research is necessary to clarify the nature and mechanism of these effects. Conclusion: Extracellular ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity.
Collapse
Affiliation(s)
| | - Richard D. Granstein
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
17
|
Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells. J Immunol Res 2015; 2015:952184. [PMID: 26824052 PMCID: PMC4707322 DOI: 10.1155/2015/952184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs) is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs). However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs' immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1), and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.
Collapse
|
18
|
Chien KR, Zangi L, Lui KO. Synthetic chemically modified mRNA (modRNA): toward a new technology platform for cardiovascular biology and medicine. Cold Spring Harb Perspect Med 2014; 5:a014035. [PMID: 25301935 DOI: 10.1101/cshperspect.a014035] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past two decades, a host of new molecular pathways have been uncovered that guide mammalian heart development and disease. The ability to genetically manipulate these pathways in vivo have largely been dependent on the generation of genetically engineered mouse model systems or the transfer of exogenous genes in a variety of DNA vectors (plasmid, adenoviral, adeno-associated viruses, antisense oligonucleotides, etc.). Recently, a new approach to manipulate the gene program of the adult mammalian heart has been reported that will quickly allow the high-efficiency expression of virtually any protein in the intact heart of mouse, rat, porcine, nonhuman primate, and human heart cells via the generation of chemically modified mRNA (modRNA). The technology platform has important implications for delineating the specific paracrine cues that drive human cardiogenesis, and the pathways that might trigger heart regeneration via the rapid generation of modRNA libraries of paracrine factors for direct in vivo administration. In addition, the strategy can be extended to a variety of other cardiovascular tissues and solid organs across multiple species, and recent improvements in the core technology have supported moving toward the first human studies of modRNA in the next 2 years. These recent advances are reviewed along with projections of the potential impact of the technology for a host of other biomedical problems in the cardiovascular system.
Collapse
Affiliation(s)
- Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115
| | - Kathy O Lui
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
19
|
Nginamau ES, Maehle BO, Jonsson R. An experimental protocol for the fractionation and 2DE separation of HeLa and A-253 cell lysates suitable for the identification of the individual antigenic proteome in Sjögren's syndrome. Autoimmunity 2011; 44:652-63. [PMID: 21875379 DOI: 10.3109/08916934.2011.593598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease affecting exocrine glands, especially the salivary and lacrimal glands. Although most of the SS patients' sera have autoantibodies that can target a variety of antigens, it is not clear what determines which proteins will become autoantigens. The muscarinic receptor M3, an integral plasma membrane protein, has been proposed as a possible autoantigen in SS, and is endogenous in HeLa cells. The aim of this study was to develop a method that is able to separate and identify antigens recognised by sera from SS patients using lysates of HeLa and A-253 cells in 2D Western Blot (2DWB). The HeLa and A-253 cell lysates were fractionated in soluble and membrane-bound proteins, and the membrane-bound proteins were enriched for integral proteins. The fractions were tested using WB, confirming the presence of the main cell compartments. The rehydration solution containing ASB-14 performed better than the others in all three steps (active rehydration, focus and transfer), and efficiently separated the muscarinic receptor M3. The M3 receptor was also detected in lysates from A-253 cells. The presence of this receptor in this cell line has not been proven earlier. This work develops a suitable protocol to perform a mapping of the autoantibodies present in the sera of single SS patients, using lysates from epithelial cell lines that represent the main cell compartments as an antigen source. It is our future aim to use this protocol to perform a mapping of the antibodies present in the sera of individual SS patients.
Collapse
|
20
|
Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. mRNA as gene therapeutic: How to control protein expression. J Control Release 2011; 150:238-47. [DOI: 10.1016/j.jconrel.2010.10.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
21
|
Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010; 15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.
Collapse
|
22
|
Pineau I, Lacroix S. Endogenous signals initiating inflammation in the injured nervous system. Glia 2009; 57:351-61. [PMID: 18803306 DOI: 10.1002/glia.20763] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glial cells are known to respond to a variety of neural injuries and play an important role in tissue damage and repair in the injured nervous system. This glial response, which is initially characterized by the expression of proinflammatory cytokines and chemokines and the attraction of microglial cells toward sites of injury, literally occurs within seconds to minutes of the injury. This suggests that signals that are endogenous to the nervous system are responsible for initiating neuroinflammation. In this review, we summarize the most recent advances made in the identification of these endogenous signals and describe the receptors and signaling pathways by which these ligands stimulate the production of cytokines and chemokines. Among these endogenous damage signals are ligands for toll-like receptors, including several heat shock proteins and extracellular matrix components, as well as self-derived RNA and DNA and associated proteins. Growing evidence also suggests that nucleotides released upon injury and acting through P2 receptors, such as ATP and UTP or their analogues, could serve as endogenous signals for the rapid response of glial cells.
Collapse
Affiliation(s)
- Isabelle Pineau
- Department of Anatomy and Physiology, Laval University, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
23
|
Lichtnekert J, Vielhauer V, Zecher D, Kulkarni OP, Clauss S, Segerer S, Hornung V, Mayadas TN, Beutler B, Akira S, Anders HJ. Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. Am J Physiol Renal Physiol 2009; 296:F867-74. [PMID: 19158348 DOI: 10.1152/ajprenal.90213.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viral RNA or bacterial products can activate glomerular mesangial cells via a subset of Toll-like receptors (Tlr). Because Tlr2-deficient mice were recently found to have attenuated nephrotoxic serum nephritis (NSN), we hypothesized that endogenous Tlr agonists can activate glomerular mesangial cells. Primary mesangial cells from C57BL/6 mice expressed Tlr1-6 and Tlr11 mRNA at considerable levels and produced Il-6 when being exposed to the respective Tlr ligands. Exposure to necrotic cells activated cultured primary mesangial cells to produce Il-6 in a Tlr2/Myd88-dependent manner. Apoptotic cells activated cultured mesangial cells only when being enriched to high numbers. Apoptotic cell-induced Il-6 release was Myd88 dependent, and only purified apoptotic cell RNA induced Trif signaling in mesangial cells. Does Trif signaling contribute to disease activity in glomerulonephritis? To answer this question, we induced autologous NSN by injection of NS raised in rabbits in Trif-mutant and wild-type mice. Lack of Trif did not alter the functional and histomorphological abnormalities of NSN, including the evolution of anti-rabbit IgG and anti-rabbit-specific nephritogenic T cells. We therefore conclude that apoptotic cell RNA is a poor activator of Trif signaling in mesangial cells and that necrotic cells' releases rather activate mesangial cells via the Tlr2/Myd88 signaling pathway.
Collapse
Affiliation(s)
- Julia Lichtnekert
- Medizinische Poliklinik, Klinikum der Universität-Innenstadt, Pettenkoferstr. 8a, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Koedel U, Merbt UM, Schmidt C, Angele B, Popp B, Wagner H, Pfister HW, Kirschning CJ. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:200-13. [PMID: 17591966 PMCID: PMC1941591 DOI: 10.2353/ajpath.2007.060821] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endogenous molecules released from disrupted cells and extracellular matrix degradation products activate Toll-like receptors (TLRs) and, thus, might contribute to immune activation after tissue injury. Here, we show that aseptic, cold-induced cortical injury triggered an acute immune response that involves increased production of multiple cytokines/chemokines accompanied by neutrophil recruitment to the lesion site. We observed selective reductions in injury-induced cytokine/chemokine expression as well as in neutrophil accumulation in mice lacking the common TLR signaling adaptor MyD88 compared with wild-type mice. Notably, attenuation of the immune response was paralleled by a reduction in lesion size. Neutrophil depletion of wild-type mice and transplantation of MyD88-deficient bone marrow into lethally irradiated wild-type recipients had no substantial impact on injury-induced expression of cytokines/chemokines and on lesion development. In contrast to MyD88 deficiency, double deficiency of TLR2 and TLR4 -- despite the two receptors being activated by specific endogenous molecules associated to danger and signal through MyD88 -- altered neither immune response nor extent of tissue lesion size on injury. Our data indicate modulation of the neuroinflammatory response and lesion development after aseptic cortical injury through MyD88-dependent but TLR2/4-independent signaling by central nervous system resident nonmyeloid cells.
Collapse
Affiliation(s)
- Uwe Koedel
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians-University, Marchioninistr 15, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou H, Zhang D, Wang Y, Dai M, Zhang L, Liu W, Liu D, Tan H, Huang Z. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 2006; 347:200-7. [PMID: 16815301 DOI: 10.1016/j.bbrc.2006.06.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 06/13/2006] [Indexed: 11/28/2022]
Abstract
CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.
Collapse
Affiliation(s)
- Hongsheng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Geiger C, Regn S, Weinzierl A, Noessner E, Schendel DJ. A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma. J Transl Med 2005; 3:29. [PMID: 16045799 PMCID: PMC1188079 DOI: 10.1186/1479-5876-3-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/26/2005] [Indexed: 11/18/2022] Open
Abstract
We present a generic dendritic cell (DC) vaccine strategy for patients with renal cell carcinoma (RCC) based on the use of RNA as a source of multiplex tumor-associated antigens (TAAs). Instead of preparing RNA from tumor tissue of each individual RCC patient, we propose to substitute RNA prepared from a well characterized highly immunogenic RCC cell line (RCC-26 tumor cells) as a generic source of TAAs for loading of DCs. We demonstrate here that efficient RNA transfer can be achieved using lipofection of immature DCs, which are subsequently matured with a cytokine cocktail to express high levels of MHC and costimulatory molecules as well as the chemokine receptor CCR7. Neither RNA itself nor the lipid component impacted on the phenotype or the cytokine secretion of mature DCs. Following RNA loading, DCs derived from HLA-A2-positive donors were able to activate effector-memory cytotoxic T lymphocytes (CTLs) specific for a TAA ligand expressed by the RCC-26 cell line. CTL responses to RNA-loaded DCs reached levels comparable to those stimulated directly by the RCC-26 tumor cells. Furthermore, DCs expressing tumor cell RNA primed naïve T cells, yielding T cell lines with cytotoxicity and cytokine secretion after contact with RCC tumor cells. RCC-26 cell lines are available as good manufacturing practice (GMP)-certified reagents enabling this source of RNA to be easily standardized and adapted for clinical testing. In addition, well defined immune monitoring tools, including the use of RNA expressing B cell lines, are available. Thus, this DC vaccine strategy can be directly compared with an ongoing gene therapy trial using genetically-engineered variants of the RCC-26 cell line as vaccines for RCC patients with metastatic disease.
Collapse
Affiliation(s)
- Christiane Geiger
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Sybille Regn
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Andreas Weinzierl
- Institute of Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Dolores J Schendel
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| |
Collapse
|
27
|
Ceppi M, Ruggli N, Tache V, Gerber H, McCullough KC, Summerfield A. Double-stranded secondary structures on mRNA induce type I interferon (IFN ?/?) production and maturation of mRNA-transfected monocyte-derived dendritic cells. J Gene Med 2005; 7:452-65. [PMID: 15515120 DOI: 10.1002/jgm.685] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of dendritic cell (DC)-based vaccines using antigen-encoding mRNA requires identification of the critical parameters for efficient ex vivo loading of DCs. Exogenously delivered mRNA can induce DC activation, but the molecular mechanisms involved are unknown. The aim of the present study was to identify the means by which mRNA-dependent activation of DCs occurs. METHODS In vitro transcribed mRNA molecules were delivered into porcine monocyte-derived DCs (MoDCs) using different non-viral gene transfer procedures. Using the green fluorescent protein (GFP) as reporter gene, as well as rhodamine-labeled RNA, intracellular delivery and transfection efficiency were assessed by confocal microscopy and flow cytometry. DC activation was monitored in terms of MHC class II and CD80/86 upregulation, as well as the production of type I interferon (IFN-alpha/beta). RESULTS mRNA-lipofected MoDCs produced type I IFN and upregulated MHC class II and CD80/86. Computational analysis of the mRNA molecules predicted highly ordered secondary structures forming double-stranded RNA (dsRNA). This dsRNA was also detectable by immunofluorescence in mRNA-lipofected cells, using antibody specific for dsRNA. Digestion of the mRNA prior to lipofection with a double-strand-specific RNase, but not a single-strand-specific RNase, abrogated DC activation. Impairment of protein kinase R (PKR) with 2-aminopurine also interfered with the activation. CONCLUSIONS Double-stranded secondary structures on mRNA delivered by lipofection can activate MoDCs. This could have important implications for mRNA-based immunomodulation of DCs, DC-based immunotherapy, and formulation of RNA-based vaccines. In addition, this report describes the first in vitro steps towards development of a novel large animal model system to evaluate DC-based vaccines against infectious diseases.
Collapse
Affiliation(s)
- M Ceppi
- Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Bone marrow-derived dendritic cells (DCs) are the most potent antigen-presenting cells capable of activating naïve T cells. Loading DCs ex vivo with tumor antigens can stimulate potent antitumor immunity in tumor-bearing mice. This review describes the use of mRNA-encoded tumor antigens as a form of antigen loaded onto DCs, including our early experience from clinical trials in urological cancers. Transfection of DCs with mRNA is simple and effective. Comparative studies suggest that mRNA transfection is superior to other antigen-loading techniques in generating immunopotent DCs. The ability to amplify RNA from microscopic amounts of tumor tissue extends the use of DC vaccination to virtually every cancer patient. The striking observation from two phase I clinical trials, in patients with prostate cancer immunized with prostate-specific antigen mRNA-transfected DCs and patients with renal cancer immunized with autologous tumor RNA-transfected DCs, was that the majority of patients exhibited a vaccine-induced T-cell response. Suggestive evidence of clinically related responses was seen in both the trials. Immunization with mRNA-transfected DCs is a promising strategy to stimulate potent antitumor immunity and could serve as a foundation for developing effective treatments for cancer.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Surgery, Center for Genetic and Cellular Therapies, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
29
|
Marteau F, Communi D, Boeynaems JM, Suarez Gonzalez N. Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 2004; 76:796-803. [PMID: 15240747 DOI: 10.1189/jlb.0104032] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adenosine 5'-triphosphate (ATP), which is released from necrotic cells, induces a semimaturation state of dendritic cells (DC), characterized by the up-regulation of costimulatory molecules and the inhibition of proinflammatory cytokines. This action is mediated by cyclic adenosine monophosphate (cAMP) and involves the P2Y11 receptor. As DC express the ecto-enzyme CD39, which converts ATP into adenosine 5'-diphosphate (ADP), the effects of adenine nucleotides diphosphates on molecular signaling [intracellular calcium ([Ca2+]i), cAMP, extracellular signal-regulated kinase 1 (ERK1)], costimulatory molecule expression (CD83), and cytokine production [interleukin (IL)-12, tumor necrosis factor alpha (TNF-alpha), IL-10] were investigated in human monocyte-derived DC. ADP, 2-methylthio-ADP, and ADPbetaS had no effect on cAMP, increased [Ca2+]i, and stimulated the phosphorylation of ERK1. The effect on ERK1 was inhibited by AR-C69931MX, a P2Y12 and P2Y13 antagonist. On the contrary the effect on [Ca2+]i was neither inhibited by AR-C69931MX or by the P2Y1 antagonist MRS-2179. Both effects were inhibited by pertussis toxin. ADPbetaS alone was less potent for up-regulation of CD83 than ATPgammaS and did not increase the CD83 expression by DC stimulated with lipopolysaccharide (LPS). Similar to ATPgammaS, ADPbetaS inhibited the release of IL-12p40, IL-12p70, and TNF-alpha stimulated by LPS (1-100 ng/ml). The inhibitory effect of ADPbetaS on IL-12 release was neither reversed by AR-C69931MX or by MRS-2179. The two nucleotides had opposite effects on IL-10 production: inhibition by ADPbetaS and potentiation by ATPgammaS. In conclusion, ATP can modulate the function of DC, directly via a cAMP increase mediated by the P2Y11 receptor and indirectly via its degradation into ADP, which acts via Gi-coupled receptors coupled to ERK activation and calcium mobilization. These distinct mechanisms converge on the inhibition of inflammatory cytokine production, particularly IL-12, but have a differential effect on IL-10.
Collapse
Affiliation(s)
- Frédéric Marteau
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
30
|
Morse MA, Chui S, Clay TM, Lyerly HK. Recent areas of development for dendritic cell vaccines. ACTA ACUST UNITED AC 2004; 21:339-50. [PMID: 15338754 DOI: 10.1016/s0921-4410(03)21017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
31
|
Sheriff A, Gaipl US, Voll RE, Kalden JR, Herrmann M. Apoptosis and systemic lupus erythematosus. Rheum Dis Clin North Am 2004; 30:505-27, viii-ix. [PMID: 15261339 DOI: 10.1016/j.rdc.2004.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reduced clearance of dying cells by macrophages or increased apoptosis provokes accumulation of cellular fragments in various tissues. This process seems to induce the uptake of autoantigens from apoptotic nuclei or chromatin by dendritic cells (DCs). Then, the DCs present altered self-epitopes to naive T cells. Thus, autoreactive T cells are activated accidentally and may now provide T-cell help for B cells that present peptides processed from secondary necrotic/late apoptotic prey. Impaired phagocytic removal of early apoptotic cells may cause accumulation of secondary necrotic cells and debris in the germinal centers of secondary lymph organs. The latter bind complement and can, therefore, be trapped on the surfaces of follicular DCs (FDCs). B cells may get in contact with intracellular autoantigens that had been released during late stages of apoptotic cell death and are immobilized by FDCs. Consecutively, B cells that had, for example, gained specificity for nuclear auto-antigens during random somatic mutations can receive a short-term survival signal. After migration into the mantle zone, these autoreactive B cells may finally be activated by autoreactive CD4+ T helper cells. B cells then differentiate into memory or plasma cells. The plasma cells produce those pathogenic nuclear autoantibodies. Many defects are known with respect to the clearance of apoptotic cells and cell material, especially that of nuclear origin. Reflecting on the plethora of defects of clearance of apoptotic material already demonstrated in systemic lupus erythematosus, it is reasonable to argue that, for many patients, failure of clearance is at the heart of their disease.
Collapse
Affiliation(s)
- Ahmed Sheriff
- Institute for Clinical Immunology and Rheumatology, Medical Department III, University of Erlangen-Nüremberg, Glueckstrasse 4a, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
32
|
Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279:12542-50. [PMID: 14729660 DOI: 10.1074/jbc.m310175200] [Citation(s) in RCA: 773] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptors (TLRs) are the basic signaling receptors of the innate immune system. They are activated by molecules associated with pathogens or injured host cells and tissue. TLR3 has been shown to respond to double stranded (ds) RNA, a replication intermediary for many viruses. Here we present evidence that heterologous RNA released from or associated with necrotic cells or generated by in vitro transcription also stimulates TLR3 and induces immune activation. To assess RNA-mediated TLR3 activation, human embryonic kidney 293 cells stably expressing TLR3 and containing a nuclear factor-kappaB-dependent luciferase reporter were generated. Exposing these cells to in vitro transcribed RNA resulted in a TLR3-dependent induction of luciferase activity and interleukin-8 secretion. Treatment with in vitro transcribed mRNA activated nuclear factor-kappaB via TLR3 through a process that was dose-dependent and involved tyrosine phosphorylation. Furthermore, in vitro transcribed natural or 2'-fluoro-substituted mRNA induced the expression of TLR3, interferon regulatory factor-1, tumor necrosis factor-alpha, and interleukin-1 receptor-associated kinase-M mRNA in human dendritic cells (DCs). DCs responded to mRNA treatment by expressing activation markers, and this maturation was inhibited by antagonistic TLR3-specific antibody. Endogenous RNA released from or associated with necrotic cells also stimulated DCs, leading to interferon-alpha secretion, which could be abolished by pretreatment of necrotic cells with RNase. These results demonstrate that RNA, likely through secondary structure, is a potent host-derived activator of TLR3. This finding has potential physiologic relevance because RNA escaping from damaged tissue or contained within endocytosed cells could serve as an endogenous ligand for TLR3 that induces or otherwise modulates immune responses.
Collapse
Affiliation(s)
- Katalin Karikó
- Division of Neurosurgery and Infectious Diseases, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS. Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 2003; 64:104-12. [PMID: 12815166 DOI: 10.1124/mol.64.1.104] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2Y13 receptor has recently been identified as a new P2Y receptor sharing a high sequence homology with the P2Y12 receptor as well as similar functional properties: coupling to Gi and responsiveness to ADP (Communi et al., 2001). In the present study, the pharmacology of the P2Y13 receptor and its differences with that of the P2Y12 receptor have been further characterized in 1321N1 cells (binding of [33P]2-methylthio-ADP (2MeSADP) and of GTPgamma[35S]), 1321N1 cells coexpressing Galpha16 [AG32 cells: inositol trisphosphate (IP3) measurement, binding of GTPgamma[35S]) and Chinese hamster ovary (CHO)-K1 cells (cAMP assay)]. 2MeSADP was more potent than ADP in displacing [33P]2MeSADP bound to 1321N1 cells and increasing GTPgamma[35S] binding to membranes prepared from the same cells. Similarly, 2MeSADP was more potent than ADP in stimulating IP3 accumulation after 10 min in AG32 cells and increasing cAMP in pertussis toxin-treated CHO-K1 cells stimulated by forskolin. On the other hand, ADP and 2MeSADP were equipotent at stimulating IP3 formation in AG32 cells after 30 s and inhibiting forskolininduced cAMP accumulation in CHO-K1 cells. These differences in potency cannot be explained by differences in degradation rate, which in AG32 cells was similar for the two nucleotides. When contaminating diphosphates were enzymatically removed and assay of IP3 was performed after 30 s, ATP and 2MeSATP seemed to be weak partial agonists of the P2Y13 receptor expressed in AG32 cells. The stimulatory effect of ADP on the P2Y13 receptor in AG32 cells was antagonized by reactive blue 2, suramin, pyridoxal-phosphate-6-azophenyl-2',4'disulfonic acid, diadenosine tetraphosphate, and 2-(propylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (AR-C67085MX), but not by N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS-2179) (up to 100 microM). The most potent antagonist was N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (ARC69931MX) (IC50 = 4 nM), which behaved in a noncompetitive way. The active metabolite of clopidogrel was unable to displace bound 2MeSADP at concentrations up to 2 microM.
Collapse
Affiliation(s)
- Frederic Marteau
- Institute for Interdisciplinary Research, School of Medicine, and Department of Medical Chemistry, Erasme Hospital, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abraham EH, Salikhova AY, Rapaport E. ATP in the Treatment of Advanced Cancer. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01013-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
35
|
Abstract
The recognition that CD8(+) T-cell mediated Th1 immune responses were necessary to produce immunity to intracellular and transformed self pathogens led to intense interest in the delivery of nucleic acids, DNA, or RNA encoding candidate antigens, as vaccines. Antigen presenting cells (APC) encounter most protein and vaccine immunogens as extracellular proteins and, thus, present them on major histocompatibility complex (MHC) class II molecules leading to the activation of CD4(+) T cells. Protein antigens encoded by nucleic acids delivered to dendritic cell (DC) are produced inside the cell and, thus, can stimulate MHC class I mediated activation of CD8(+) T-cell immune responses. Unfortunately, DCs are not readily transfected with DNA (Akbari et al., 1999) resulting in the requirement for high concentrations of DNA and repeated immunizations to achieved immune responses. RNA, on the other hand, is readily taken up and expressed by DC, making it an alternative vaccine candidate. In this article, we will discuss immune responses developed, interactions between APC and RNA that activate and dictate DC activation, and preliminary studies using RNA in vivo and in vitro to develop protective immunity.
Collapse
Affiliation(s)
- Georgetta Cannon
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|