1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. Coffee consumption, cancer, and healthy aging: epidemiological evidence and underlying mechanisms. GeroScience 2024:10.1007/s11357-024-01332-8. [PMID: 39266809 DOI: 10.1007/s11357-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
This comprehensive review examines the role of coffee consumption in promoting healthy aging and its potential impact on cancer prevention. Previous research has shown that moderate coffee intake may contribute to extending healthspan and enhancing longevity through beneficial effects on cardiometabolic health and key biological processes involved in aging. However, the relationship between coffee consumption and cancer risk remains controversial. This review synthesizes longitudinal observational and interventional data on the effects of coffee consumption on overall and site-specific cancers, explores underlying biological mechanisms, and discusses clinical and public health implications. Additionally, the review highlights evidence from Mendelian randomization (MR) studies to assess potential causal relationships. Our findings suggest that coffee consumption is associated with a reduced risk of several cancers, including skin, liver, prostate, and endometrial cancers, and may also lower cancer recurrence rates, particularly in colorectal cancer. These protective associations appear consistent across different demographic groups, with the most significant benefits observed at consumption levels of three or more cups per day. However, evidence is inconclusive for many other cancers, and coffee consumption is consistently linked to an increased risk of lung cancer. MR studies generally do not support a strong causal relationship for most cancers, though some suggest potential protective effects for hepatocellular, colorectal, and possibly prostate cancers, with mixed results for ovarian cancer and an increased risk for esophageal cancer and multiple myeloma. The protective effect of coffee on liver and prostate cancer is supported by both observational and MR studies. The potential anti-cancer benefits of coffee are attributed to its bioactive compounds, such as caffeine, chlorogenic acids, and diterpenes, which possess antioxidant and anti-inflammatory properties. These compounds may reduce oxidative stress, inhibit cancer cell proliferation, induce apoptosis, and modulate hormone levels. The review emphasizes the need for further research to clarify dose-response relationships, causal associations, and the biological mechanisms underlying these associations. While coffee consumption appears to contribute to cancer prevention and healthy aging, caution is warranted due to the increased risk of certain cancers, highlighting the complexity of its health effects.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 409 Tache Avenue, St. Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
da Fonseca DM, Rodrigues L, Sousa-Baptista J, Marcos-Tejedor F, Mota M, Cunha RA, Fernandes C, Gonçalves T. Caffeine Protects Keratinocytes from Trichophyton mentagrophytes Infection and Behaves as an Antidermatophytic Agent. Int J Mol Sci 2024; 25:8303. [PMID: 39125871 PMCID: PMC11311904 DOI: 10.3390/ijms25158303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Caffeine affords several beneficial effects on human health, acting as an antioxidant, anti-inflammatory agent, and analgesic. Caffeine is widely used in cosmetics, but its antimicrobial activity has been scarcely explored, namely against skin infection agents. Dermatophytes are the most common fungal agents of human infection, mainly of skin infections. This work describes the in vitro effect of caffeine during keratinocyte infection by Trichophyton mentagrophytes, one of the most common dermatophytes. The results show that caffeine was endowed with antidermatophytic activity with a MIC, determined following the EUCAST standards, of 8 mM. Caffeine triggered a modification of the levels of two major components of the fungal cell wall, β-(1,3)-glucan and chitin. Caffeine also disturbed the ultrastructure of the fungal cells, particularly the cell wall surface and mitochondria, and autophagic-like structures were observed. During dermatophyte-human keratinocyte interactions, caffeine prevented the loss of viability of keratinocytes and delayed spore germination. Overall, this indicates that caffeine can act as a therapeutic and prophylactic agent for dermatophytosis.
Collapse
Affiliation(s)
- Diogo M. da Fonseca
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Sousa-Baptista
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Félix Marcos-Tejedor
- Department of Medical Sciences, Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Toledo, Spain;
| | - Marta Mota
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Chantal Fernandes
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Yilmaz F, Aydemi̇r S, Yilmaz B, Ilgen O, Kurt S, Baykara B. Effects of dose-dependent chronic caffeine consumption in a rat burn wound model: Histopathological and immunohistochemical evaluation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1180-1186. [PMID: 39055867 PMCID: PMC11266734 DOI: 10.22038/ijbms.2024.76513.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Objectives Using histopathological and immunohistochemical methods, we aimed to examine the dose-dependent effects of chronic caffeine consumption on the recovery of burn wounds in an in vivo rat model. Materials and Methods Forty-five rats were randomly assigned to a high-dose group (20 mg/kg per day for eight weeks; n=15), a low-dose group (10 mg/kg per day for eight weeks; n=15), or a control group (n=15). The burn model was created in rats. The groups were separated into three subgroups (n=5) based on the day after injury (7th, 14th, or 21st day). The wound area, wound closure percentage, and histopathological and immunohistochemical reactivity were evaluated. Results Successful wound healing was noted in rats treated with low doses of caffeine, similar to the control group. Pathology revealed low re-epithelization, low inflammation, and high granulation in the high-dose group. In addition, there was a significant difference between the control and high-dose groups regarding the immunohistochemical reactivity of αVβ3 integrin, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) (P<0.05). Conclusion We demonstrated that chronic caffeine consumption in rats adversely affects the recovery process of wounds in a dose-dependent manner. This effect may occur through delayed wound healing via the molecules MMP-9, αVβ3 integrin, and VEGF. Treatment that modulates these molecules can lead to enhanced and quicker recovery of damaged skin in coffee lovers.
Collapse
Affiliation(s)
- Filiz Yilmaz
- Hitit University, Training and Research Hospital, IVF Center, Corum, Turkey
| | - Selma Aydemi̇r
- Dokuz Eylul University, Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Bayram Yilmaz
- Hitit University, Training and Research Hospital, Pathology Department, Corum, Turkey
| | - Orkun Ilgen
- Dokuz Eylul University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Sefa Kurt
- Dokuz Eylul University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Başak Baykara
- Dokuz Eylul University, Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| |
Collapse
|
4
|
Yoon S, Lee BK, Kim KP. Caffeine enhances chemosensitivity to irinotecan in the treatment of colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155120. [PMID: 37806154 DOI: 10.1016/j.phymed.2023.155120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common types of cancer. This disease arises from gene mutations and epigenetic alterations that transform colonic epithelial cells into colon adenocarcinoma cells, which display a unique gene expression pattern compared to normal cells. Specifically, CRC cells exhibit significantly higher expression levels of genes involved in DNA repair or replication, which is attributed to the accumulation of DNA breakage resulting from rapid cell cycle progression. PURPOSE This study aimed to investigate the in vivo effects of caffeine on CRC cells and evaluate its impact on the sensitivity of these cells to irinotecan, a topoisomerase I inhibitor widely used for CRC treatment. METHODS Two CRC cell lines, HCT116 and HT29, were treated with irinotecan and caffeine. Western blot analysis assessed protein expression levels in caffeine/irinotecan-treated CRC cells. Immunofluorescence staining determined protein localization, measured DNA breaks, and explored the effects of DNA damage reagents during cell cycle progression and flow cytometry analysis was used to measure cell viability. Fiber assays investigated DNA synthesis in DNA-damaged cells during S-phase, while the comet assay assessed DNA fragmentation caused by DNA breaks. RESULTS Our findings demonstrated that the combination of irinotecan and caffeine exhibits a synergistic effect in suppressing CRC cell proliferation and inducing cell death. Compared to treatment with only irinotecan or caffeine, the combined irinotecan and caffeine treatment was more effective in inducing DNA lesions by displacing RAD51 from DNA break sites and inhibiting DNA repair progression, leading to cell cycle arrest. This combination also resulted in more severe effects, including DNA fragmentation and mitotic catastrophe. CONCLUSION Caffeine could enhance the effectiveness of an existing drug for CRC treatment despite having little impact on the cell survival rate of CRC cells. Our findings suggest that the beneficial adjuvant effects of caffeine may not only be applicable to CRC but also to various other types of cancers at different stages of development.
Collapse
Affiliation(s)
- Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
5
|
Hooda R, Madke B, Choudhary A. Photoaging: Reversal of the Oxidative Stress Through Dietary Changes and Plant-Based Products. Cureus 2023; 15:e37321. [PMID: 37182009 PMCID: PMC10168638 DOI: 10.7759/cureus.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Redox flagging represents all life processes, and maintaining a physiological level of antioxidants is essential for the legitimate working of the cell. Genetics and environmental triggers are two major culminating factors for skin aging, both chronological and photoaging. The latter, however, relies principally upon the level of ultraviolet radiation (UVR) exposure and the skin phototype. Apart from causing DNA damage, UVR also stimulates the receptors present in keratinocytes as well as fibroblasts. This in turn leads to the breakdown of collagen and a breach in the generation of new collagen. It is speculated that the breakdown of collagen in the dermis is ensured by the defective restoration that ultimately hampers the structural integrity of skin, leading to wrinkled and atrophic skin. The skin has an admixture of various endogenous antioxidants that work synergistically with vitamins and minerals to maintain cellular equilibrium. Although, their role in safeguarding the cells against the detrimental effects induced by UVR is still questionable and requires further research. However, the advancement in the biology of skin has led to the development of strategies that aim at skin rejuvenation and retarding the progression of photoaging and its visible signs. Photoaging in this article is reviewed in light of current concepts in pathogenesis and its prevention. In addition, the article focuses on both prevailing and forthcoming treatment strategies primarily through plant-based products that will help slow down the process of photoaging.
Collapse
Affiliation(s)
- Reet Hooda
- Dermatology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | - Bhushan Madke
- Dermatology, Venereology, and Leprosy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Science, Wardha, IND
| | | |
Collapse
|
6
|
Long Y, Wang W, Zhang Y, Du F, Zhang S, Li Z, Deng J, Li J. Photoprotective Effects of Dendrobium nobile Lindl. Polysaccharides against UVB-Induced Oxidative Stress and Apoptosis in HaCaT Cells. Int J Mol Sci 2023; 24:ijms24076120. [PMID: 37047098 PMCID: PMC10094248 DOI: 10.3390/ijms24076120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
7
|
Mavrogonatou E, Angelopoulou M, Rizou SV, Pratsinis H, Gorgoulis VG, Kletsas D. Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation. Cell Death Dis 2022; 13:647. [PMID: 35879280 PMCID: PMC9314411 DOI: 10.1038/s41419-022-05106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Although UVB radiation is mainly absorbed by the epidermis, ~5-10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts' viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts' viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Maria Angelopoulou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Sophia V. Rizou
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harris Pratsinis
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Vassilis G. Gorgoulis
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece ,grid.417593.d0000 0001 2358 8802Biomedical Research Foundation, Academy of Athens, Athens, Greece ,grid.5379.80000000121662407Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK ,grid.5216.00000 0001 2155 0800Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,grid.8241.f0000 0004 0397 2876Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Kletsas
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
8
|
Hyperoside and Quercitrin in Houttuynia cordata Extract Attenuate UVB-Induced Human Keratinocyte Cell Damage and Oxidative Stress via Modulation of MAPKs and Akt Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020221. [PMID: 35204104 PMCID: PMC8868276 DOI: 10.3390/antiox11020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet radiation is a major environmental harmful factor on human skin. In this paper, we investigate the potential mechanism of Houttuynia cordata extract on UVB-induced HaCaT keratinocyte cell death and inflammation. We found that Houttuynia cordata ethyl acetate extract fraction (HC-EA) protected against UVB-induced cell damage. The HPLC results indicate that quercitrin and hyperoside are the major polyphenolics in HC-EA and are responsible for providing protection against UVB-induced cell death. These responses were associated with the regulation of caspase-9 and caspase-3 activation, which rescued HaCaT cells from UVB-induced apoptosis. In addition, HC-EA, quercitrin, and hyperoside attenuated UVB-induced inflammatory mediators, including IL-6, IL-8, COX-2, and iNOS. Furthermore, the treatment of cells with HC-EA and its active compounds abolished intracellular ROS and increased levels of heme oxygenase-1 and superoxide dismutase. UVB-induced ROS production mediated Akt and mitogen activated protein kinases (MAPKs) pathways, including p38, ERK, and JNK. Our results show HC-EA, quercitrin, and hyperoside decreased UVB-induced p38 and JNK phosphorylation, while increasing ERK and Akt phosphorylation. MAPKs and Akt mediated cell survival and death were confirmed by specific inhibitors to Akt and MAPKs. Thus, HC-EA, which contains quercitrin and hyperoside, protected keratinocyte from UVB-induced oxidative damage and inflammation through the modulation of MAPKs and Akt signaling.
Collapse
|
9
|
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. PLANTS (BASEL, SWITZERLAND) 2022; 11:220. [PMID: 35050108 PMCID: PMC8779981 DOI: 10.3390/plants11020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Antoni Garcia-Baeza
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Heriberto Rafael Vidal-Limon
- Centro de Biotecnología FEMSA, Instituto Tecnológico de Monterrey, Avenida Junco de la Vega, Col. Tecnológico, Montrerrey 65849, Mexico;
| | - Isaias Balderas-Renteria
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Mónica A. Ramírez-Cabrera
- Laboratorio de Farmacología Molecular y Modelos Biológicos, División de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Guerrero s/n, Col. Treviño, Monterrey 64570, Mexico;
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| |
Collapse
|
10
|
Chung BY, Park SH, Yun SY, Yu DS, Lee YB. Astaxanthin Protects Ultraviolet B-Induced Oxidative Stress and Apoptosis in Human Keratinocytes via Intrinsic Apoptotic Pathway. Ann Dermatol 2022; 34:125-131. [PMID: 35450317 PMCID: PMC8989909 DOI: 10.5021/ad.2022.34.2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ultraviolet radiation causes skin damage due to increased production of reactive oxygen species (ROS) and inflammatory intermediates and direct attack of DNA of skin cells. Astaxanthin is a reddish pigment that belongs to a group of chemicals called carotenoids and has protective effects as an antioxidant. Objective To determine the beneficial effects of astaxanthin on damaged human skin after exposure to ultraviolet radiation. Methods Normal human epidermal keratinocytes (NHEKs) were pre-treated with astaxanthin for 24 hours and exposed to ultraviolet B (UVB) irradiation. After 24 hours, the Cell Counting Kit-8 (CCK-8) assay measured cell viability, ROS assay and flow cytometry analysis assessed apoptosis, and western blotting was performed to determine expression of apoptosis-related proteins. Results Astaxanthin significantly inhibited UVB-induced NHEKs cytotoxicity. Pretreatment of NHEKs with astaxanthin reduced UVB-induced ROS production. Astaxanthin caused significant inhibition of UVB-induced apoptosis, as evidenced by flow cytometry analysis and western blotting. Conclusion These results suggest that astaxanthine has a beneficial effect of reducing damage caused by UVB by effectively inhibiting cell death and reducing ROS production in keratinocytes.
Collapse
Affiliation(s)
- Bom Yee Chung
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Korea
| | - Sang Ho Park
- Department of Clinical Research Laboratory, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - So Yeon Yun
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - Dong Soo Yu
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - Young Bok Lee
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Korea
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| |
Collapse
|
11
|
Rethinam S, Kavukcu SB, Türkmen H, Zengin ACA, Yaşa İ. Traditional Turkish Coffee with Medicinal Effect. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Traditional Turkish coffee (TTC) is highly associated with caffeine and is known as a mind and heart stimulant as it helps keep tiredness at bay. Daily consumption of TTC naturally benefits human health such as anti-cancer, anti-diabetic, improved energy, anti-depression, reduced risk of heart disease, etc. The TTC was derived from particular types of Arabic coffee beans (ACB), and the preparation method of TTC is unique from other types of coffee. The main objective of the study was to investigate the therapeutic and biological effects of TTC. The ACB powder was characterized physicochemically using UV-Vis spectroscopy, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). In vitro analysis using HaCaT (Human keratinocyte cell line) proved the biocompatibility of ACB powder. Case studies which were focusing on healthy individuals as the research populace were conducted using TTC. Consumption of TTC was found beneficially compared to other types of coffee. The TTC was obtained from ACB, which was characterized by spectroscopic techniques and displayed biocompatibility due to the results on HaCaT cell lines. The TTC has beneficial therapeutic effects on individuals. According to statistical analysis, the disease-affected ratio of diabetes, heart disease, and depression was significantly decreased.
Collapse
|
12
|
A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4420479. [PMID: 34567408 PMCID: PMC8460369 DOI: 10.1155/2021/4420479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms “Coffee and cancer” resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.
Collapse
|
13
|
Chung WH. Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms. J Microbiol Biotechnol 2021; 31:171-180. [PMID: 33397827 PMCID: PMC9706025 DOI: 10.4014/jmb.2011.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 0369, Republic of Korea,Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,Corresponding author Phone: +82-2-901-8737 Fax: +82-2-901-8386 E-mail:
| |
Collapse
|
14
|
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6690154. [PMID: 33628808 PMCID: PMC7889346 DOI: 10.1155/2021/6690154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles, resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust. Experimental results show that our model could achieve a better DTI prediction performance.
Collapse
|
15
|
Cytotoxic and genotoxic effects on human keratinocytes triggered by sphingomyelinase D from Loxosceles venom. Arch Toxicol 2020; 94:3563-3577. [DOI: 10.1007/s00204-020-02830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
16
|
Tokez S, Alblas M, Nijsten T, Pardo LM, Wakkee M. Predicting keratinocyte carcinoma in patients with actinic keratosis: development and internal validation of a multivariable risk-prediction model. Br J Dermatol 2020; 183:495-502. [PMID: 31856292 PMCID: PMC7496285 DOI: 10.1111/bjd.18810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with actinic keratosis (AK) are at increased risk for developing keratinocyte carcinoma (KC) but predictive factors and their risk rates are unknown. OBJECTIVES To develop and internally validate a prediction model to calculate the absolute risk of a first KC in patients with AK. METHODS The risk-prediction model was based on the prospective population-based Rotterdam Study cohort. We hereto analysed the data of participants with at least one AK lesion at cohort baseline using a multivariable Cox proportional hazards model and included 13 a priori defined candidate predictor variables considering phenotypic, genetic and lifestyle risk factors. KCs were identified by linkage of the data with the Dutch Pathology Registry. RESULTS Of the 1169 AK participants at baseline, 176 (15·1%) developed a KC after a median follow-up of 1·8 years. The final model with significant predictors was obtained after backward stepwise selection and comprised the presence of four to nine AKs [hazard ratio (HR) 1·68, 95% confidence interval (CI) 1·17-2·42], 10 or more AKs (HR 2·44, 95% CI 1·65-3·61), AK localization on the upper extremities (HR 0·75, 95% CI 0·52-1·08) or elsewhere except the head (HR 1·40, 95% CI 0·98-2·01) and coffee consumption (HR 0·92, 95% CI 0·84-1·01). Evaluation of the discriminative ability of the model showed a bootstrap validated concordance index (c-index) of 0·60. CONCLUSIONS We showed that the risk of KC in patients with AK can be calculated with the use of four easily assessable predictor variables. Given the c-index, extension of the model with additional, currently unknown predictor variables is desirable. Linked Comment: Kim et al. Br J Dermatol 2020; 183:415-416.
Collapse
Affiliation(s)
- S Tokez
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - M Alblas
- Department of Public Health, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - T Nijsten
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - L M Pardo
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - M Wakkee
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Visconti M, Haidari W, Feldman S. Therapeutic use of caffeine in dermatology: A literature review. JOURNAL OF DERMATOLOGY & DERMATOLOGIC SURGERY 2020. [DOI: 10.4103/jdds.jdds_52_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Genotoxic effect of caffeine in Yarrowia lipolytica cells deficient in DNA repair mechanisms. Arch Microbiol 2019; 201:991-998. [PMID: 31025056 DOI: 10.1007/s00203-019-01658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023]
Abstract
Caffeine is a compound that can exert physiological-beneficial effects in the organism. Nevertheless, there are controversies about its protective-antioxidant and/or its negative genotoxic effect. To abound on the analysis of the possible genotoxic/antioxidant effect of caffeine, we used as research model the yeast Yarrowia lipolytica parental strain, and mutant strains (∆rad52 and ∆ku80), which are deficient in the DNA repair mechanisms. Caffeine (5 mM) showed a cytostatic effect on all strains, but after 72 h of incubation the parental and ∆ku80 strains were able to recover of this inhibitory effect on growth, whereas ∆rad52 was unable to recover. When cells were pre-incubated with caffeine and H2O2 or incubated with a mixture of both agents, a higher inhibitory effect on growth of mutant strains was observed and this effect was noticeably greater for the Δrad52 strain. The toxic effect of caffeine appears to be through a mechanism of DNA damage (genotoxic effect) that involves DSB generation since, in all tested conditions, the growth of Δrad52 strain (cells deficient in HR DNA repair mechanism) was more severely affected.
Collapse
|
19
|
Coffee consumption and risk of nonmelanoma skin cancer: a dose-response meta-analysis. Eur J Cancer Prev 2019; 27:164-170. [PMID: 27902644 DOI: 10.1097/cej.0000000000000322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have evaluated the associations between coffee consumption and the risk of skin cancer; however, the results were not conclusive. This systematic review and meta-analysis of the cohort and case-control studies was carried out to determine the association between coffee intake and the risk of nonmelanoma skin cancer. Studies were identified by searching the PubMed and MEDLINE databases (to November 2015). Study-specific risk estimates were pooled under the random-effects model. We separately estimated the relative risk of the three conditions, for exposure to different doses of coffee consumption, kind of study design, and analysis restricted to the basal cell carcinoma type. The summary relative risks for nonmelanoma skin cancer were 0.96 [95% confidence interval (CI): 0.92-0.99] for one cup of coffee, 0.92 (95% CI: 0.88-0.97) for one to two cups of coffee, 0.89 (95% CI: 0.86-0.93) for two to three cups of coffee, and 0.81 (95% CI: 0.77-0.85) for more than three cups of coffee per day, respectively. This meta-analysis suggested that caffeinated coffee might have chemopreventive effects against basal cell carcinoma dose dependently. However, other prospective studies are warranted to confirm these effects.
Collapse
|
20
|
Oh CC, Jin A, Yuan JM, Koh WP. Coffee, tea, caffeine, and risk of nonmelanoma skin cancer in a Chinese population: The Singapore Chinese Health Study. J Am Acad Dermatol 2019; 81:395-402. [PMID: 30731173 DOI: 10.1016/j.jaad.2019.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although epidemiologic studies in populations of European descent suggest a possible chemoprotective effect of caffeine against nonmelanoma skin cancer (NMSC), data in Asian populations are lacking. OBJECTIVES We examined the relationship of coffee, tea, and caffeine consumption with NMSC risk among Chinese in Singapore. METHODS We used data from the Singapore Chinese Health Study, a prospective cohort of 63,257 men and women who were 45 to 74 years old at recruitment from 1993 to 1998. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by using multivariable Cox proportional hazard models. RESULTS Coffee drinking was associated with reduced NMSC risk in a dose-dependent manner (P trend < .0001). Compared with those who drank coffee less than weekly, those who drank 3 or more cups per day had a lower risk of basal cell carcinoma (HR, 0.54; 95% CI, 0.31-0.93) and a lower risk of squamous cell carcinoma (HR, 0.33; 95% CI, 0.13-0.84). Compared with nondrinkers of black tea, daily drinkers of black tea also had a reduced risk of NMSC (HR, 0.70; 95% CI, 0.52-0.94). Caffeine intake reduced NMSC risk in a stepwise manner (P trend = .0025); subjects with a caffeine intake of 400 mg/d or more had the lowest risk (HR, 0.59; 95% CI, 0.34-1.04). CONCLUSION Consumption of caffeinated drinks such as coffee and black tea may reduce the risk of NMSC among Chinese.
Collapse
Affiliation(s)
- Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore.
| | - Aizhen Jin
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| |
Collapse
|
21
|
Tectorigenin, a Flavonoid-Based Compound of Leopard Lily Rhizome, Attenuates UV-B-Induced Apoptosis and Collagen Degradation by Inhibiting Oxidative Stress in Human Keratinocytes. Nutrients 2018; 10:nu10121998. [PMID: 30562977 PMCID: PMC6316707 DOI: 10.3390/nu10121998] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/10/2023] Open
Abstract
Ultraviolet (UV) light, a major risk factor for external skin photoaging, induces oxidative stress in skin. UV causes a breakdown of skin homeostasis by impairing the extracellular matrix and inducing cell death. Tectorigenin, a constituent of leopard lily (Belamcanda chinensis L.) rhizome, has been reported to possess antioxidant, hair-darkening, and anti-inflammatory activities; however, the effect of tectorigenin on UV-B-induced skin damage is unknown. Here, we investigated the anti-skin-damage effects of tectorigenin against UV-B-stimulated oxidative stress in human keratinocytes. We irradiated HaCaT cells with UV-B (25 mJ/cm2), followed by treatment with tectorigenin for 24 h. We found that tectorigenin decreased the levels of intracellular reactive oxygen species by increasing the expression of anti-oxidative enzymes, such as glutathione and catalase. Furthermore, tectorigenin inhibited apoptosis by reducing caspase-3- and Bcl-2-associated protein-X levels, and increasing Bcl-2 protein levels. Tectorigenin also decreased matrix metalloproteinase-1 levels and increased type 1 collagen levels, thus preventing collagen degradation. These data demonstrate that tectorigenin exerts anti-skin-damage effects in human keratinocytes by attenuating UV-B-induced hyper-oxidation, apoptosis, and collagen degradation.
Collapse
|
22
|
Martić R, Krajišnik D, Milić J. Antioxidants of plant origin in cosmetic products: Physicochemical properties and photoprotective potential. ARHIV ZA FARMACIJU 2018. [DOI: 10.5937/arhfarm1801001m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
23
|
Chang YL, Hsu YJ, Chen Y, Wang YW, Huang SM. Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget 2017; 8:101461-101474. [PMID: 29254178 PMCID: PMC5731888 DOI: 10.18632/oncotarget.21464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Caffeine, theophylline, and theobromine are the most well-known members of methylxanthines. Caffeine-induced serine/arginine-rich splicing factor 2, SRSF2, and SRSF3 are required for the alternative splicing of a subset of cancer-associated genes. However, it remains to be investigated whether and how theophylline and theobromine as well as caffeine exert their antitumor effects through mediating the alternative splicing process. Here, we reveal that theophylline down-regulated SRSF3 expression and switched p53 from alpha into a beta isoform as caffeine did in HeLa and MCF-7 cells via the reverse-transcriptase polymerase chain reaction and Western blot analysis. Further functional studies show that theophylline induced cellular apoptosis, senescence, and decreased colony formation. Interestingly, theophylline had a suppressive effect on cellular proliferation, whereas caffeine enhanced cellular proliferation rates via the 5-bromo-2-deoxyuridine analysis. Theophylline and caffeine had no effect on MCF-10A cells, which is a normal breast cell line. Our results provide an insight that theophylline as well as caffeine could be repurposed as antitumor leading compounds via the downregulation of splicing factor SRSF3 and its target genes.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying Chen
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Wen Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
24
|
Li X, Cornelis MC, Liang L, Song F, De Vivo I, Giovannucci E, Tang JY, Han J. A genome-wide analysis of gene-caffeine consumption interaction on basal cell carcinoma. Carcinogenesis 2016; 37:1138-1143. [PMID: 27797824 PMCID: PMC5137266 DOI: 10.1093/carcin/bgw107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
Animal models have suggested that oral or topical administration of caffeine could inhibit ultraviolet-induced carcinogenesis via the ataxia telangiectasia and rad3 (ATR)-related apoptosis. Previous epidemiological studies have demonstrated that increased caffeine consumption is associated with reduced risk of basal cell carcinoma (BCC). To identify common genetic markers that may modify this association, we tested gene-caffeine intake interaction on BCC risk in a genome-wide analysis. We included 3383 BCC cases and 8528 controls of European ancestry from the Nurses' Health Study and Health Professionals Follow-up Study. Single nucleotide polymorphism (SNP) rs142310826 near the NEIL3 gene showed a genome-wide significant interaction with caffeine consumption (P = 1.78 × 10-8 for interaction) on BCC risk. There was no gender difference for this interaction (P = 0.64 for heterogeneity). NEIL3, a gene belonging to the base excision DNA repair pathway, encodes a DNA glycosylase that recognizes and removes lesions produced by oxidative stress. In addition, we identified several loci with P value for interaction <5 × 10-7 in gender-specific analyses (P for heterogeneity between genders < 0.001) including those mapping to the genes LRRTM4, ATF3 and DCLRE1C in women and POTEA in men. Finally, we tested the associations between caffeine consumption-related SNPs reported by previous genome-wide association studies and risk of BCC, both individually and jointly, but found no significant association. In sum, we identified a DNA repair gene that could be involved in caffeine-mediated skin tumor inhibition. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, Tianjin 300060, China
- National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
- Center for Pharmacoepidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
In Vitro Chemopreventive Properties of Green Tea, Rooibos and Honeybush Extracts in Skin Cells. Molecules 2016; 21:molecules21121622. [PMID: 27897996 PMCID: PMC6273016 DOI: 10.3390/molecules21121622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022] Open
Abstract
The chemopreventive properties of the herbal teas rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) have been demonstrated on mouse skin in vivo but the underlying mechanisms are not clear. The aim of the current study was to determine the anti-proliferative and pro-apoptotic activity of methanol and aqueous extracts of rooibos and two Cyclopia species in different skin cells, using green tea (Camellia sinensis) as a benchmark. Extracts were also characterised for their major individual polyphenols by high performance liquid chromatography and spectroscopically for the total polyphenol (TP) groups. The methanol extract of rooibos, containing higher levels of polyphenols than its aqueous extract, displayed similar activity to green tea as it selectively targeted premalignant cells by inhibiting cell proliferation at lower concentrations whilst inducing apoptosis via membrane depolarisation at higher concentrations. Specific roles of the major rooibos dihydrochalcones and flavanol/proanthocyanidin-type (FLAVA) compounds are likely to be involved. The aqueous extracts of the Cyclopia species were more active against cell proliferation and at inducing apoptosis which was associated with a higher FLAVA content and a reduced TP/FLAVA ratio. In contrast, their methanol extracts exhibited a cytoprotective effect against apoptosis which was related to their monomeric xanthone and flavanone content. The underlying chemopreventive properties of green tea and the herbal teas appear to be associated with diverse and complex monomeric/polymeric polyphenolic cell interactions.
Collapse
|
26
|
Downs RM, Hughes MA, Kinsey ST, Johnson MC, Baumgarner BL. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes. Biochem Biophys Res Commun 2016; 480:61-68. [PMID: 27717822 DOI: 10.1016/j.bbrc.2016.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release.
Collapse
Affiliation(s)
- R M Downs
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA
| | - M A Hughes
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA
| | - S T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - M C Johnson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - B L Baumgarner
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, USA.
| |
Collapse
|
27
|
Magcwebeba T, Swart P, Swanevelder S, Joubert E, Gelderblom W. Anti-Inflammatory Effects of Aspalathus linearis and Cyclopia spp. Extracts in a UVB/Keratinocyte (HaCaT) Model Utilising Interleukin-1α Accumulation as Biomarker. Molecules 2016; 21:molecules21101323. [PMID: 27706097 PMCID: PMC6274390 DOI: 10.3390/molecules21101323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) radiation is one of the major predisposing risk factors of skin cancer. The anticancer and photoprotective effects of unoxidized rooibos (Aspalathus linearis) and honeybush (Cyclopia) herbal teas, containing high levels of dihydrochalones and xanthones, respectively, have been demonstrated in skin cancer models in vivo. In the current study, the anti-inflammatory effects of methanol and aqueous extracts of these herbal teas were investigated in a UVB/HaCaT keratinocyte model with intracellular interleukin-1α (icIL-1α) accumulation as a biomarker. Extracts of green tea (Camellia sinensis) served as benchmark. Both extracts of green tea and rooibos, as well as the aqueous extract of C. intermedia, enhanced UVB-induced inhibition of cell viability, proliferation and induction of apoptosis, facilitating the removal of icIL-1α. The underlying mechanisms may involve mitochondrial dysfunction exhibiting pro-oxidant responses via polyphenol-iron interactions. The methanol extracts of honeybush, however, protected against UVB-induced reduction of cell growth parameters, presumably via antioxidant mechanisms that prevented the removal of highly inflamed icIL-1α-containing keratinocytes via apoptosis. The dual antioxidant and/or pro-oxidant role of the polyphenolic herbal tea constituents should be considered in developing preventive strategies against UVB-induced skin carcinogenesis. The indirect removal of UVB damaged keratinocytes by herbal tea extracts via apoptosis may find application in the prevention of photo-induced inflammation.
Collapse
Affiliation(s)
- Tandeka Magcwebeba
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (Infruitec-Nietvoorbij), Private Bag X5026, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Wentzel Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa.
| |
Collapse
|
28
|
Magcwebeba TU, Riedel S, Swanevelder S, Swart P, De Beer D, Joubert E, Andreas Gelderblom WC. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro. ACTA ACUST UNITED AC 2016; 68:1440-1453. [PMID: 27671741 DOI: 10.1111/jphp.12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. METHODS The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. KEY FINDINGS Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. CONCLUSIONS The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo.
Collapse
Affiliation(s)
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, Tygerberg, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Dalene De Beer
- Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Wentzel Christoffel Andreas Gelderblom
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa. .,Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville, South Africa.
| |
Collapse
|
29
|
Mallet JD, Dorr MM, Drigeard Desgarnier MC, Bastien N, Gendron SP, Rochette PJ. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes. PLoS One 2016; 11:e0162212. [PMID: 27611318 PMCID: PMC5017652 DOI: 10.1371/journal.pone.0162212] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/18/2016] [Indexed: 01/13/2023] Open
Abstract
Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced.
Collapse
Affiliation(s)
- Justin D. Mallet
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| | - Marie M. Dorr
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| | - Marie-Catherine Drigeard Desgarnier
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| | - Nathalie Bastien
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| | - Sébastien P. Gendron
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| | - Patrick J. Rochette
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec City, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec City, Québec, Canada
- Département d’Ophtalmologie et ORL—chirurgie cervico-faciale, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
30
|
Caini S, Cattaruzza MS, Bendinelli B, Tosti G, Masala G, Gnagnarella P, Assedi M, Stanganelli I, Palli D, Gandini S. Coffee, tea and caffeine intake and the risk of non-melanoma skin cancer: a review of the literature and meta-analysis. Eur J Nutr 2016; 56:1-12. [PMID: 27388462 DOI: 10.1007/s00394-016-1253-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Laboratory studies suggested that caffeine and other nutrients contained in coffee and tea may protect against non-melanoma skin cancer (NMSC). However, epidemiological studies conducted so far have produced conflicting results. METHODS We performed a literature review and meta-analysis of observational studies published until February 2016 that investigated the association between coffee and tea intake and NMSC risk. We calculated summary relative risk (SRR) and corresponding 95 % confidence intervals (95 % CI) by using random effects with maximum likelihood estimation. RESULTS Overall, 37,627 NMSC cases from 13 papers were available for analysis. Intake of caffeinated coffee was inversely associated with NMSC risk (SRR for those in the highest vs. lowest category of intake: 0.82, 95 % CI 0.75-0.89, I 2 = 48 %), as well as intake of caffeine (SRR 0.86, 95 % CI 0.80-0.91, I 2 = 48 %). In subgroup analysis, these associations were limited to the basal cell cancer (BCC) histotype. There was no association between intake of decaffeinated coffee (SRR 1.01, 95 % CI 0.85-1.21, I 2 = 0) and tea (0.88, 95 % CI 0.72-1.07, I 2 = 0 %) and NMSC risk. There was no evidence of publication bias affecting the results. The available evidence was not sufficient to draw conclusions on the association between green tea intake and NMSC risk. CONCLUSIONS Coffee intake appears to exert a moderate protective effect against BCC development, probably through the biological effect of caffeine. However, the observational nature of studies included, subject to bias and confounding, suggests taking with caution these results that should be verified in randomized clinical trials.
Collapse
Affiliation(s)
- Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy.
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Faculty of Medicine, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | - Benedetta Bendinelli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Giulio Tosti
- Division of Dermatoncological Surgery, European Institute of Oncology, Milan, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Melania Assedi
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Scientific Institute of Romagna for the Study and Treatment of Cancer, IRCSS, IRST, Meldola, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
31
|
Coffee Consumption and Melanoma: A Systematic Review and Meta-Analysis of Observational Studies. Am J Clin Dermatol 2016; 17:113-23. [PMID: 26547919 DOI: 10.1007/s40257-015-0165-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Laboratory and animals studies have suggested a possible protective effect of coffee consumption on the development of melanoma. However, the results of epidemiological studies investigating this association have been inconclusive. OBJECTIVE A systematic review and meta-analysis of published studies was conducted to evaluate any association between coffee consumption and melanoma. METHODS Observational studies were searched for in MEDLINE, EMBASE, and the Cochrane Central Register from inception to September 1, 2015. The Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines were followed in conducting this study. RESULTS We identified nine observational studies with a total of 927,173 study participants, of which 3787 had melanoma. With random-effects modeling, the pooled relative risks (RR) for melanoma among regular coffee drinkers was 0.75 (95 % confidence interval [CI] 0.63-0.89, p = 0.001) compared with controls. Visual inspection of a funnel plot suggested publication bias, although Egger's test (p = 0.981) delineated no small-study effects. The pooled relative risks for melanoma among decaffeinated coffee drinkers was, however, not statistically significant at 0.92 (95 % CI 0.82-1.05, p = 0.215). CONCLUSION There is some evidence for the beneficial effects of regular coffee consumption on melanoma. More prospective cohort studies with systematic quantification of coffee consumption would be necessary to further elucidate this association.
Collapse
|
32
|
Verkouteren JA, Smedinga H, Steyerberg EW, Hofman A, Nijsten T. Predicting the Risk of a Second Basal Cell Carcinoma. J Invest Dermatol 2015; 135:2649-2656. [DOI: 10.1038/jid.2015.244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022]
|
33
|
Bosch R, Philips N, Suárez-Pérez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, González S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel) 2015; 4:248-68. [PMID: 26783703 PMCID: PMC4665475 DOI: 10.3390/antiox4020248] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
Photoaging and photocarcinogenesis are primarily due to solar ultraviolet (UV) radiation, which alters DNA, cellular antioxidant balance, signal transduction pathways, immunology, and the extracellular matrix (ECM). The DNA alterations include UV radiation induced thymine-thymine dimers and loss of tumor suppressor gene p53. UV radiation reduces cellular antioxidant status by generating reactive oxygen species (ROS), and the resultant oxidative stress alters signal transduction pathways such as the mitogen-activated protein kinase (MAPK), the nuclear factor-kappa beta (NF-κB)/p65, the janus kinase (JAK), signal transduction and activation of transcription (STAT) and the nuclear factor erythroid 2-related factor 2 (Nrf2). UV radiation induces pro-inflammatory genes and causes immunosuppression by depleting the number and activity of the epidermal Langerhans cells. Further, UV radiation remodels the ECM by increasing matrixmetalloproteinases (MMP) and reducing structural collagen and elastin. The photoprotective strategies to prevent/treat photoaging and photocarcinogenesis include oral or topical agents that act as sunscreens or counteract the effects of UV radiation on DNA, cellular antioxidant balance, signal transduction pathways, immunology and the ECM. Many of these agents are phytochemical derivatives and include polyphenols and non-polyphenols. The flavonoids are polyphenols and include catechins, isoflavones, proanthocyanidins, and anthocyanins, whereas the non-flavonoids comprise mono phenolic acids and stilbenes. The natural sources of polyphenols include tea, cocoa, grape/wine, soy, pomegranate, and Polypodium leucotomos. The non-phenolic phytochemicals include carotenoids, caffeine and sulphoraphance (SFN). In addition, there are other phytochemical derivatives or whole extracts such as baicalin, flavangenol, raspberry extract, and Photomorphe umbellata with photoprotective activity against UVB radiation, and thereby carcinogenesis.
Collapse
Affiliation(s)
- Ricardo Bosch
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | - Jorge A Suárez-Pérez
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Angeles Juarranz
- Biology Department, Universidad Autónoma de Madrid, Madrid 28903, Spain.
| | - Avani Devmurari
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | | | - Salvador González
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10022, USA.
- Ramon y Cajal Hospital, Alcala University, Madrid 28034, Spain.
| |
Collapse
|
34
|
Tea, coffee, and caffeine and early-onset basal cell carcinoma in a case-control study. Eur J Cancer Prev 2015; 23:296-302. [PMID: 24841641 DOI: 10.1097/cej.0000000000000037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tea and coffee are hypothesized to play a protective role in skin carcinogenesis through bioactive components, such as caffeine, yet the epidemiologic evidence is mixed. Existing data support an inverse association with basal cell carcinoma (BCC), more so than for melanoma or squamous cell carcinoma. To understand whether tea, coffee, and caffeine are related to early-onset BCC, we evaluated data from 767 non-Hispanic Whites under age 40 in a case-control study in Connecticut. BCC cases (n=377) were identified through Yale's Dermatopathology database. Controls (n=390) were randomly sampled from individuals in the same database with benign skin diagnoses and frequency matched to cases on age, sex, and biopsy site. Participants completed an in-person interview including assessment of caffeinated coffee and hot tea. We calculated multivariate odds ratios (ORs) and 95% confidence intervals (CIs) with unconditional logistic regression for regular consumption and frequency and duration measures. Combined regular consumption of caffeinated coffee plus hot tea was inversely associated with early-onset BCC (OR=0.60, 95% CI=0.38-0.96). Those in the highest category of caffeine from these sources had a 43% reduced risk of BCC compared with nonconsumers (OR=0.57, 95% CI=0.34-0.95, P-trend=0.037). Our findings suggest a modest protective effect for caffeinated coffee plus tea in relation to early-onset BCC that may, in part, be due to caffeine. This study adds to the growing body of literature suggesting potential health benefits from these beverages.
Collapse
|
35
|
Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res 2014; 74:5925-33. [PMID: 25320180 DOI: 10.1158/0008-5472.can-14-1308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability, and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here, we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted expression of COX-2 by repressing AMPK signaling, thereby increasing cell proliferation and survival in the skin epidermis. SIRT6 expression in skin keratinocytes was increased by exposure to UVB light through activation of the AKT pathway. Clinically, we found that SIRT6 was upregulated in human skin squamous cell carcinoma. Taken together, our results provide evidence that SIRT6 functions as an oncogene in the epidermis and suggest greater complexity to its role in epithelial carcinogenesis.
Collapse
Affiliation(s)
- Mei Ming
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Weinong Han
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois
| | - Nagalingam R Sundaresan
- Department of Surgery, Committee on Cellular and Molecular Physiology, University of Chicago, Chicago, Illinois. Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chu-Xia Deng
- National Institute of Diabetes, Digestive and Kidney Diseases, US NIH, Bethesda, Maryland
| | - Mahesh P Gupta
- Department of Surgery, Committee on Cellular and Molecular Physiology, University of Chicago, Chicago, Illinois
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Wagner JT, Podrabsky JE. Extreme tolerance and developmental buffering of UV-C induced DNA damage in embryos of the annual killifish Austrofundulus limnaeus. ACTA ACUST UNITED AC 2014; 323:10-30. [PMID: 25387429 DOI: 10.1002/jez.1890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/16/2014] [Accepted: 08/15/2014] [Indexed: 11/09/2022]
Abstract
Free-living aquatic embryos are often at risk of exposure to ultraviolet radiation (UV-R). Successful completion of embryonic development depends on efficient removal of DNA lesions, and thus many aquatic embryos have mechanisms to reverse DNA lesions induced by UV-R. However, little is known of how embryos that are able to enter embryonic dormancy may respond to UV-R exposure and subsequent DNA damage. Embryos of the annual killifish Austrofundulus limnaeus are unique among vertebrates because their normal embryonic development includes (1) a complete dispersion of embryonic blastomeres prior to formation of the definitive embryonic axis, and (2) entry into a state of metabolic depression and developmental arrest termed diapause. Here, we show that developing and diapausing embryos of A. limnaeus have exceptional tolerance of UV-C radiation and can successfully complete embryonic development after receiving substantial doses of UV-C, especially if allowed to recover in full-spectrum light. Recovery in full-spectrum light permits efficient removal of the most common type of DNA lesion induced by UV-R: cyclobutane pyrimidine dimers. Interestingly, whole-mount embryo TUNEL assays suggest that apoptosis may not be a major contributor to cell death in embryos UV-C irradiated during dispersion/reaggregation or diapause. We also observed embryo mortality to be significantly delayed by several weeks in diapausing embryos irradiated and allowed to recover in the dark. These atypical responses to UV-R induced DNA damage may be due to the unique annual killifish life history and provide insight into DNA damage repair and recognition mechanisms during embryonic dormancy.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Portland State University, Portland, Oregon
| | | |
Collapse
|
37
|
Kim S, You DH, Han T, Choi EM. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:301-7. [PMID: 25463682 DOI: 10.1016/j.jphotobiol.2014.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
We investigated the effect of 80% methanol extract of laver (Porphyra yezoensis) on the UVB-exposed HaCaT cells, human keratinocytes. The laver extract showed absorbance spectrum characteristic of porphyra-334 or shinorine, major mycosporine-like amino acids (MAAs) in red algae, and contained phenolic compounds. UVB exposure decreased cell viability and increased apoptotic cell fractions, and it also decreased the ratio of reduced (GSH) to oxidized glutathione (GSSG) and the total glutathione content. Post-treatment with the laver extract significantly increased the net viability and also the apoptotic cell fractions of UVB-exposed cells. The extract caused increase in GSH/GSSG ratio, yet it exacerbated the decrease in glutathione content in the UVB-exposed cells. These effects of the laver extract were also manifested in the sham-exposed cells, suggesting that those effects might be general phenomena caused by the laver extract. The extract treatment enhanced the UVB-induced phosphorylation of JNK and ERK, affecting more the latter. Our results suggest that the post-treatment with laver extract may protect UVB-exposed skin cells not only by increasing overall cell proliferation but also by enhancing apoptosis of damaged cells, via activating JNK and ERK signaling pathways, in which modulation of the content and redox status of glutathione may take significant parts.
Collapse
Affiliation(s)
- Saerong Kim
- Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea
| | - Dong Hun You
- Department of Cosmetic Science and Management, Incheon National University, Incheon 406-772, Republic of Korea
| | - Taejun Han
- Department of Cosmetic Science and Management, Incheon National University, Incheon 406-772, Republic of Korea; Department of Marine Sciences, Incheon National University, Incheon 406-772, Republic of Korea
| | - Eun-Mi Choi
- Department of Chemistry, Incheon National University, Incheon 406-772, Republic of Korea; Department of Cosmetic Science and Management, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
38
|
Ming M, Zhao B, Qiang L, He YY. Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochem Photobiol 2014; 91:242-7. [PMID: 25039758 DOI: 10.1111/php.12318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 01/10/2023]
Abstract
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression-dependent or -independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB-induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB-induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression-independent mechanism in the tumor-promoting action of these immunosuppressants.
Collapse
Affiliation(s)
- Mei Ming
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | |
Collapse
|
39
|
Bai Y, Yuan H, Li J, Tang Y, Pu C, Han P. Relationship between bladder cancer and total fluid intake: a meta-analysis of epidemiological evidence. World J Surg Oncol 2014; 12:223. [PMID: 25033957 PMCID: PMC4127191 DOI: 10.1186/1477-7819-12-223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/04/2014] [Indexed: 02/05/2023] Open
Abstract
Objectives Epidemiological findings regarding the association between total fluid intake and bladder cancer risk have yielded varying results. Our objective is to examine the possible associations between total fluid intake and bladder cancer risk. Methods Databases searched include the EMBASE and PUBMED, from inception to February 2014, with no limits on study language. We also reviewed the reference lists of identified studies. Stratified analyses were performed. A random-effect model was used to summarize the estimates of odds ratio (OR) with 95% confidence intervals (CI). Results Overall,17 case-control and four cohort studies were included. The overall OR of bladder cancer for the highest versus the lowest fluid intake was 1.06 (95% CI: 0.88-1.27). In the subgroup analyses, the overall ORs for coffee, green, and black tea intake were 1.17 (95% CI: 1.03-1.33), 0.76 (95% CI: 0.66-0.95), and 0.80 (95% CI: 0.65-0.97), respectively. A significantly decreased risk was observed in Asian people (OR 0.27; 95% CI: 0.10-0.72). Among smokers, a suggestive inverse association was observed between total fluid intake and overall bladder cancer risk (OR 0.80; 95% CI: 0.62-1.02). Conclusions Although this meta-analysis suggested that greater consumption of fluid may have a protective effect on bladder cancer in Asian people, there was no convincing evidence on this association because of the limitations of the individual trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, Guoxue Xiang#37, Chengdu, Sichuan 610041, China.
| |
Collapse
|
40
|
Ojeh N, Stojadinovic O, Pastar I, Sawaya A, Yin N, Tomic-Canic M. The effects of caffeine on wound healing. Int Wound J 2014; 13:605-13. [PMID: 25041108 DOI: 10.1111/iwj.12327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/17/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022] Open
Abstract
The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Faculty of Medical Sciences, The University of the West Indies, St. Michael, Barbados.
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Natalie Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
Phytochemical modulation of the Akt/mTOR pathway and its potential use in cutaneous disease. Arch Dermatol Res 2014; 306:861-71. [DOI: 10.1007/s00403-014-1480-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
42
|
Thongrakard V, Ruangrungsi N, Ekkapongpisit M, Isidoro C, Tencomnao T. Protection from UVB Toxicity in Human Keratinocytes by Thailand Native Herbs Extracts. Photochem Photobiol 2014; 90:214-24. [PMID: 23931284 DOI: 10.1111/php.12153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
Thai traditional medicine employs a wide range of indigenous herbs in the forms of tincture or tea for the cure of skin and systemic inflammatory diseases. The protection by Thai plants extracts against UVB DNA damage and cytotoxicity was investigated in human keratinocytes. Petroleum ether, dichloromethane and ethanol extracts were prepared from 15 Thai herb species, and the total phenolic and flavonoid contents, the antioxidant and UV-absorbing properties were assessed by standard procedures. Cytoprotective effects were evaluated on the basis of cell survival, caspase-3 activity and pyrimidine dimers determination. High total phenolic and flavonoid contents were found in the ethanol and dichloromethane fractions. Dichloromethane extract of turmeric was shown to possess the highest antioxidant activity. The maximum UV absorptions were found in the ethanol extract of turmeric and in the dichloromethane extract of ginger. These extracts stimulated the synthesis of Thioredoxin 1, an antioxidant protein, and could protect human HaCaT keratinocytes from UV-induced DNA damage and cytotoxicity. The present data support the utilization of turmeric and ginger extracts in anti-UV cosmetic pharmaceuticals.
Collapse
Affiliation(s)
- Visa Thongrakard
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Nijsiri Ruangrungsi
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Ekkapongpisit
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Tewin Tencomnao
- Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
43
|
Maru GB, Gandhi K, Ramchandani A, Kumar G. The Role of Inflammation in Skin Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:437-69. [DOI: 10.1007/978-3-0348-0837-8_17] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Conney AH, Lu YP, Lou YR, Kawasumi M, Nghiem P. Mechanisms of Caffeine-Induced Inhibition of UVB Carcinogenesis. Front Oncol 2013; 3:144. [PMID: 23785666 PMCID: PMC3683821 DOI: 10.3389/fonc.2013.00144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 12/31/2022] Open
Abstract
Sunlight-induced non-melanoma skin cancer is the most prevalent cancer in the United States with more than two million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on non-melanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect. Mechanism studies indicate that caffeine has a sunscreen effect that inhibits UVB-induced formation of thymine dimers and sunburn lesions in the epidermis of mice. In addition, caffeine administration has a biological effect that enhances UVB-induced apoptosis thereby enhancing the elimination of damaged precancerous cells, and caffeine administration also enhances apoptosis in tumors. Caffeine administration enhances UVB-induced apoptosis by p53-dependent and p53-independent mechanisms. Exploration of the p53-independent effect indicated that caffeine administration enhanced UVB-induced apoptosis by inhibiting the UVB-induced increase in ATR-mediated formation of phospho-Chk1 (Ser345) and abolishing the UVB-induced decrease in cyclin B1 which resulted in caffeine-induced premature and lethal mitosis in mouse skin. In studies with cultured primary human keratinocytes, inhibition of ATR with siRNA against ATR inhibited Chk1 phosphorylation and enhanced UVB-induced apoptosis. Transgenic mice with decreased epidermal ATR function that were irradiated chronically with UVB had 69% fewer tumors at the end of the study compared with irradiated littermate controls with normal ATR function. These results, which indicate that genetic inhibition of ATR (like pharmacologic inhibition of ATR via caffeine) inhibits UVB-induced carcinogenesis support the concept that ATR-mediated phosphorylation of Chk1 is an important target for caffeine’s inhibitory effect on UVB-induced carcinogenesis.
Collapse
Affiliation(s)
- Allan H Conney
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, NJ , USA ; Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology , Guangzhou , China
| | | | | | | | | |
Collapse
|
45
|
Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, Wyman C, Kanaar R. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res 2013; 41:6475-89. [PMID: 23666627 PMCID: PMC3711438 DOI: 10.1093/nar/gkt375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair.
Collapse
Affiliation(s)
- Alex N Zelensky
- Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The Smc5/Smc6/MAGE complex confers resistance to caffeine and genotoxic stress in Drosophila melanogaster. PLoS One 2013; 8:e59866. [PMID: 23555814 PMCID: PMC3610895 DOI: 10.1371/journal.pone.0059866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022] Open
Abstract
The SMC5/6 protein complex consists of the Smc5, Smc6 and Non-Smc-Element (Nse) proteins and is important for genome stability in many species. To identify novel components in the DNA repair pathway, we carried out a genetic screen to identify mutations that confer reduced resistance to the genotoxic effects of caffeine, which inhibits the ATM and ATR DNA damage response proteins. This approach identified inactivating mutations in CG5524 and MAGE, homologs of genes encoding Smc6 and Nse3 in yeasts. The fact that Smc5 mutants are also caffeine-sensitive and that Mage physically interacts with Drosophila homologs of Nse proteins suggests that the structure of the Smc5/6 complex is conserved in Drosophila. Although Smc5/6 proteins are required for viability in S. cerevisiae, they are not essential under normal circumstances in Drosophila. However, flies carrying mutations in Smc5, Smc6 and MAGE are hypersensitive to genotoxic agents such as ionizing radiation, camptothecin, hydroxyurea and MMS, consistent with the Smc5/6 complex serving a conserved role in genome stability. We also show that mutant flies are not compromised for pre-mitotic cell cycle checkpoint responses. Rather, caffeine-induced apoptosis in these mutants is exacerbated by inhibition of ATM or ATR checkpoint kinases but suppressed by Rad51 depletion, suggesting a functional interaction involving homologous DNA repair pathways that deserves further scrutiny. Our insights into the SMC5/6 complex provide new challenges for understanding the role of this enigmatic chromatin factor in multi-cellular organisms.
Collapse
|
47
|
Song F, Qureshi AA, Han J. Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Res 2012; 72:3282-9. [PMID: 22752299 DOI: 10.1158/0008-5472.can-11-3511] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies in animals suggest that caffeine administration helps prevent squamous cell skin cancer development, but there have been limited epidemiologic studies on the association between caffeine consumption and skin cancer risk. Using data from the Nurses' Health Study and the Health Professionals Follow-up Study, we prospectively examined risks of basal cell carcinoma (BCC, 22,786 cases), squamous cell carcinoma (SCC, 1,953 cases), and melanoma (741 cases) in relation to caffeine intake. Cox proportional hazard models were used to calculate relative risks (RR) and 95% confidence intervals (CI). The amount of caffeine intake from all dietary sources was inversely associated with BCC risk. Compared with the lowest quintile, the highest quintile had the lowest risk (RR, 0.82 in women; 95% CI:,0.77-0.86 and RR, 0.87 in men; 95% CI, 0.81-0.94; Ptrend<0.0001 in both). A significant inverse association was also found between caffeinated coffee consumption and BCC risk. Compared with individuals who consumed caffeinated coffee less than 1 cup per month, women who consumed more than 3 cups/d had the lowest risk (RR, 0.79; 95% CI, 0.74-0.85; Ptrend<0.0001) and the RR for men was 0.90 (95% CI, 0.80-1.01; Ptrend=0.003). Caffeine from other dietary sources (tea, cola, and chocolate) was also inversely associated with BCC risk. Decaffeinated coffee consumption was not associated with a similar decrease in BCC risk. In contrast, caffeine intake was not found to be inversely associated with risks of SCC or melanoma. Our findings argue that caffeine intake in men and women is inversely associated with risk of BCC.
Collapse
Affiliation(s)
- Fengju Song
- Department of Dermatology, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Abstract
Skin cancer is the most common cancer in the U.S., while DNA-damaging UVB radiation from the sun remains the major environmental risk factor. Reducing skin cancer incidence is becoming an urgent issue. The energy-sensing enzyme 5’-AMP-activated protein kinase (AMPK) plays a key role in the regulation of cellular lipid and protein metabolism in response to stimuli such as exercise and changes in fuel availability. However, the role AMPK in the response of skin cells to UVB damage and in skin cancer prevention remains unknown. Here we show that AMPK activation is reduced in human and mouse squamous cell carcinoma as compared with normal skin, and by UVB irradiation, suggesting that AMPK is a tumor suppressor. At the molecular level, AMPK deletion reduced the expression of the DNA repair protein xeroderma pigmentosum C (XPC) and UVB-induced DNA repair. AMPK activation by its activators AICAR (5-aminoimidazole-4-carboxamide ribonucleoside) and metformin (N’,N’-dimethylbiguanide), the most widely used anti-diabetic drug, increased the expression of XPC expression and UVB-induced DNA repair in mouse skin, normal human epidermal keratinocytes, and AMPK wild-type cells but not in AMPK deficient cells, indicating an AMPK-dependent mechanism. Topical treatment with AICAR and metformin not only delayed onset of UVB-induced skin tumorigenesis but also reduced tumor multiplicity. Furthermore, AMPK deletion increased ERK activation and cell proliferation, while AICAR and metformin inhibited ERK activation and cell proliferation in keratinocytes, mouse skin, AMPK wild-type and AMPK deficient cells, suggesting an AMPK-independent mechanism. Finally, in UVB-damaged tumor-bearing mice, both topical and systemic metformin prevented the formation of new tumors and suppressed growth of established tumors. Our findings not only suggest that AMPK is a tumor suppressor in the skin by promoting DNA repair and controlling cell proliferation, but also demonstrate previously unknown mechanisms by which the AMPK activators prevent UVB-induced skin tumorigenesis.
Collapse
|
49
|
Zhou Y, Tian C, Jia C. A dose-response meta-analysis of coffee consumption and bladder cancer. Prev Med 2012; 55:14-22. [PMID: 22564775 DOI: 10.1016/j.ypmed.2012.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND A number of studies have examined the association between coffee consumption and risk of bladder cancer, but uncertainty about the dose-response relationship remains. MATERIALS AND METHODS A comprehensive search was performed to identify all observational studies providing quantitative estimates between bladder cancer risk and coffee consumption. Dose-response relationship was assessed by restricted cubic spline model and bivariate random-effect meta-regression. RESULTS 23 case-control studies with 7690 cases and 13,507 controls, and 5 cohort studies with 700 cases and 229,099 participants, met the inclusion criteria. Compared with non-drinkers and for case-control studies, the pooled smoking-adjusted RRs(95% CI) of bladder cancer were 1.07(1.02-1.13) for 1 cup/day, 1.15(1.05-1.26) for 2 cups/day, 1.22(1.08-1.38) for 3 cups/day, and 1.29(1.12-1.48) for 4 cups/day. For cohort studies, the pooled smoking-adjusted RRs of bladder cancer were 1.09(95% CI, 0.89-1.34) for 1 cup/day, 1.13(95% CI, 0.82-1.55) for 2 cups/day, 1.09(95% CI, 0.77-1.56) for 3 cups/day, and 1.01(95% CI, 0.69-1.48) for 4 cups/day. CONCLUSIONS Although data from case-control studies suggested that coffee was a risk factor for bladder cancer, there was no conclusive evidence on this association because of inconsistencies between case-control and cohort studies.
Collapse
Affiliation(s)
- Yunping Zhou
- Department of Epidemiology and Health Statistics, Shandong University, PR China
| | | | | |
Collapse
|
50
|
Farrell AW, Halliday GM, Lyons JG. Chromatin structure following UV-induced DNA damage-repair or death? Int J Mol Sci 2011; 12:8063-85. [PMID: 22174650 PMCID: PMC3233456 DOI: 10.3390/ijms12118063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/05/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury.
Collapse
Affiliation(s)
- Andrew W Farrell
- Discipline of Dermatology, Bosch Institute, Sydney Cancer Centre, The University of Sydney, NSW 2006, Australia; E-Mails: (A.W.F.); (J.G.L.)
| | | | | |
Collapse
|