1
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
2
|
Kasica NP, Zhou X, Jester HM, Holland CE, Ryazanov AG, Forshaw TE, Furdui CM, Ma T. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer’s disease model mice independent of brain amyloid β pathology. Front Aging Neurosci 2022; 14:959326. [PMID: 36158543 PMCID: PMC9500344 DOI: 10.3389/fnagi.2022.959326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Maintenance of memory and synaptic plasticity depends on de novo protein synthesis, and accumulating evidence implicates a role of dysregulated mRNA translation in cognitive impairments associated with Alzheimer’s disease (AD). Accumulating evidence demonstrates hyper-phosphorylation of translation factor eukaryotic elongation factor 2 (eEF2) in the hippocampi of human AD patients as well as transgenic AD model mice. Phosphorylation of eEF2 (at the Thr 56 site) by its only known kinase, eEF2K, leads to inhibition of general protein synthesis. A recent study suggests that amyloid β (Aβ)-induced neurotoxicity could be associated with an interaction between eEF2 phosphorylation and the transcription factor nuclear erythroid 2-related factor (NRF2)-mediated antioxidant response. In this brief communication, we report that global homozygous knockout of the eEF2K gene alleviates deficits of long-term recognition and spatial learning in a mouse model of AD (APP/PS1). Moreover, eEF2K knockout does not alter brain Aβ pathology in APP/PS1 mice. The hippocampal NRF2 antioxidant response in the APP/PS1 mice, measured by expression levels of nicotinamide adenine dinucleotide plus hydrogen (NADPH) quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), is ameliorated by suppression of eEF2K signaling. Together, the findings may contribute to our understanding of the molecular mechanisms underlying AD pathogenesis, indicating that suppression of eEF2K activity could be a beneficial therapeutic option for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole P. Kasica
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hannah M. Jester
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Caroline E. Holland
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alexey G. Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Tom E. Forshaw
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Cristina M. Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Tao Ma,
| |
Collapse
|
3
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
4
|
Rathor N, Chung HK, Song JL, Wang SR, Wang JY, Rao JN. TRPC1-mediated Ca 2+ signaling enhances intestinal epithelial restitution by increasing α4 association with PP2Ac after wounding. Physiol Rep 2021; 9:e14864. [PMID: 33991460 PMCID: PMC8123541 DOI: 10.14814/phy2.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Gut epithelial restitution after superficial wounding is an important repair modality regulated by numerous factors including Ca2+ signaling and cellular polyamines. Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs) and its activation increases epithelial restitution by inducing Ca2+ influx after acute injury. α4 is a multiple functional protein and implicated in many aspects of cell functions by modulating protein phosphatase 2A (PP2A) stability and activity. Here we show that the clonal populations of IECs stably expressing TRPC1 (IEC-TRPC1) exhibited increased levels of α4 and PP2A catalytic subunit (PP2Ac) and that TRPC1 promoted intestinal epithelial restitution by increasing α4/PP2Ac association. The levels of α4 and PP2Ac proteins increased significantly in stable IEC-TRPC1 cells and this induction in α4/PP2Ac complexes was accompanied by an increase in IEC migration after wounding. α4 silencing by transfection with siRNA targeting α4 (siα4) or PP2Ac silencing destabilized α4/PP2Ac complexes in stable IEC-TRPC1 cells and repressed cell migration over the wounded area. Increasing the levels of cellular polyamines by stable transfection with the Odc gene stimulated α4 and PP2Ac expression and enhanced their association, thus also promoting epithelial restitution after wounding. In contrast, depletion of cellular polyamines by treatment with α-difluoromethylornithine reduced α4/PP2Ac complexes and repressed cell migration. Ectopic overexpression of α4 partially rescued rapid epithelial repair in polyamine-deficient cells. These results indicate that activation of TRPC1-mediated Ca2+ signaling enhances cell migration primarily by increasing α4/PP2Ac associations after wounding and this pathway is tightly regulated by cellular polyamines.
Collapse
Affiliation(s)
- Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jia-Le Song
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
5
|
Wang J, Chen G, Qian H, Shang Q, Xiao J, Liang M, Gao B, Li T, Liu X. PP2A-C may be a promising candidate for postmortem interval estimation. Int J Legal Med 2021; 135:837-844. [PMID: 33409557 DOI: 10.1007/s00414-020-02466-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023]
Abstract
Determining the postmortem interval (PMI) is an important task in forensic pathology. However, a reliable means of determining the PMI between 24 h and approximately 7 days after death has not yet been established. A previous study demonstrated that subunit A of protein phosphatase 2A (PP2A-A) is a promising candidate to estimate the PMI during the first 96 h. However, more detailed work is still needed to investigate PP2A's function in PMI estimation. PP2A is a serine/threonine phosphatase consisting of three subunits (PP2A-A, PP2A-B, and PP2A-C), and its activation is reflected by Tyr-307 phosphorylation of the catalytic subunit (P-PP2A-C). In this study, we speculated that the other two subunits of PP2A and the activation of PP2A may play different roles in estimating the PMI. For this purpose, mice were euthanized and stored at different temperatures (4, 15, and 25 °C). At each temperature, the musculus vastus lateralis was collected at different time points (0, 24, 48, and 96 h) to investigate the degradation of PP2A-B, PP2A-C, and P-PP2A-C (Tyr-307). Homocysteine (Hcy) was used to establish a hyperhomocysteinemia animal model to explore the effects of plasma Hcy on PMI estimation. The data showed not only that PP2A-C was more stable than PP2A-B, but also that it was not affected by homocysteine (Hcy). These characteristics make PP2A-C a promising candidate for short-term (24 h to 48 h) PMI estimation.
Collapse
Affiliation(s)
- Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Qiao Y, Zhou Y, Song C, Zhang X, Zou Y. MID1 and MID2 regulate cell migration and epithelial-mesenchymal transition via modulating Wnt/β-catenin signaling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1021. [PMID: 32953821 PMCID: PMC7475493 DOI: 10.21037/atm-20-5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The ubiquitin E3 ligase activity has been ascribed to MID1, the causative gene of X-linked OS, and its homologue, MID2. Both alpha4, the common MID protein partner, and PP2Ac in MID-alpha4-PP2Ac complexes can be ubiquitylated. Ubiquitylation of alpha4 converted its function toward PP2Ac from protective to destructive, while PP2A also affected MID protein phosphorylation and their subsequent trafficking on microtubules. It was believed that disruption of the function of MID1-alpha4-PP2A complex was vital to the pathogenesis of craniofacial malformation, the most prominent clinical manifestation of OS, although the detailed molecular mechanisms was not unravelled. Methods The cellular level of PP2A and phosphor-PP2A in cells overexpressing MID1/MID2 or in cells with siRNA mediated MID1/MID2 gene silencing was analyzed using Western blot. The Wnt signaling in these cells was further monitored using TCF/LEF luciferase reporter assay and the cellular level of β-catenin was also verified using western blot. Given the crosstalk of E-cadherin and Wnt via the common effector β-catenin, the potential influences of MID1/MID2 on the cell migration and epithelial-mesenchymal transition (EMT) were investigated using wound healing assay and immunofluorescence for E-cadherin and vimentin, respectively. Results Here, we presented the increased phosphorylation of PP2Ac in cells overexpressing MID1/MID2, and vice versa, in vitro, while the cellular level of total PP2Ac was unaffected. In addition, β-catenin, the effector of canonical Wnt signaling, was downregulated in cells overexpressing MID1/MID2 and upregulated in cells with siRNA mediated MID1/MID2 gene silencing. Down-regulated Wnt/β-catenin signaling by Okadaic acid, a specific inhibitor of PP2A, was partially rescued by siRNA mediated MID1/MID2 gene silencing. In consistent, an activated EMT and accelerated cell migration in cells with MID1/MID2 gene silencing were observed, and vice versa. Conclusions The results in this study indicated roles for MID1 and MID2 in regulating cell migration/EMT via modulating Wnt/β-catenin signaling, which might help to understand the molecular etiology of the facial abnormalities that are usually the consequences of defective neural crest cells migration and EMT at the early stage of craniofacial development.
Collapse
Affiliation(s)
- Yingying Qiao
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yuan Zhou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Xin Zhang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
8
|
TRIM E3 Ubiquitin Ligases in Rare Genetic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:311-325. [PMID: 32274764 DOI: 10.1007/978-3-030-38266-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TRIM family comprises proteins characterized by the presence of the tripartite motif composed of a RING domain, one or two B-box domains and a coiled-coil region. The TRIM shared domain structure underscores a common biochemical function as E3 ligase within the ubiquitination cascade. The TRIM proteins represent one of the largest E3 ligase families counting in human more than 70 members. These proteins are implicated in a plethora of cellular processes such as apoptosis, cell cycle regulation, muscular physiology, and innate immune response. Consistently, their alteration results in several pathological conditions emphasizing their medical relevance. Here, the genetic and pathogenetic mechanisms of rare disorders directly caused by mutations in TRIM genes will be reviewed. These diseases fall into different pathological areas, from malformation birth defects due to developmental abnormalities, to neurological disorders and progressive teenage neuromuscular disorders. In many instances, TRIM E3 ligases act on several substrates thus exerting pleiotropic activities: the need of unraveling disease-specific TRIM pathways for a precise targeting therapy avoiding dramatic side effects will be discussed.
Collapse
|
9
|
Jiang S, Li D, Liang Z, Wang Y, Pei X, Tang J. High expression of IGBP1 correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Biol Markers 2019; 35:33-40. [PMID: 31875416 DOI: 10.1177/1724600819896374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Immunoglobulin binding protein 1 (IGBP1) is an important signal transduction regulator that mediates various functions. However, its expression profile, role, and clinical significance in cancers are uncertain. The purpose of this study was to determine the expression profile and the prognostic significance of IGBP1 in esophageal squamous cell carcinoma (ESCC). METHODS Polymerase chain reaction assay, western blotting, and immunohistochemistry (IHC) assay were performed to examine IGBP1 expression in ESCC tissues and matched adjacent non-cancerous tissues. Moreover, IHC was used to evaluate IGBP1 expression in archived 190 paraffin-embedded ESCC specimens. Statistical analyses were applied to evaluate the prognostic value and the correlations between IGBP1 expression and the clinical parameters. RESULTS We found that the messenger RNA and protein levels of IGBP1 were up-regulated in the ESCC tissues compared with their adjacent non-cancerous tissues. High expression of IGBP1 in ESCC patients was positively associated with T classification (P=0.013) and vital status (P=0.03). The ESCC patients with higher IGBP1expression had a shorter survival time than those with lower IGBP1 expression. Importantly, multivariate analysis demonstrated that the expression of IGBP1 was an independent prognostic factor for ESCC (P< 0.05). CONCLUSIONS We provide the first evidence that increased IGBP1 expression correlates with poor prognosis of ESCC, and that IGBP1 may be a tumor promoter of ESCC, which provide a promising prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Sicong Jiang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanhua Wang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - XiaoFeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jianjun Tang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
10
|
Kim EJ, Park MK, Kang GJ, Byun HJ, Kim HJ, Yu L, Kim B, Chae HS, Chin YW, Shim JG, Lee H, Lee CH. YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A. JOURNAL OF ONCOLOGY 2019; 2019:3542537. [PMID: 31485224 PMCID: PMC6702825 DOI: 10.1155/2019/3542537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
Lung cancer is the number 1 cause of cancer-related casualties in the world. Appropriate diagnostic markers and novel targets for lung cancer are needed. Chitooligosaccharide deacetylase homolog (YDJC) catalyzes the deacetylation of acetylated carbohydrates; however, the role of YDJC in lung cancer progression has yet to be studied. A549 lung cancer orthotopic mouse model was used for mice experiments. We found that YDJC overexpression contributes to lung cancer progression in an orthotopic mouse model. Long-term treatment (48 h) induces YDJC expression in sphingosylphosphorylcholine (SPC)-induced epithelial-mesenchymal transition (EMT). Gene silencing of YDJC (siYDJC) reduced N-cadherin expression and increased E-cadherin expression in SPC-induced EMT. Overexpression of YDJC reverses them but overexpression of the deacetylase deficient mutant YDJCD13A could not. Interestingly, overexpression of CDC16, a YDJC binding partner, suppressed EMT. ERK2 is activated in siCDC16-induced EMT. YDJC overexpression reduces expression of protein phosphatase 2A (PP2A), whereas CDC16 overexpression induces PP2A expression. YDJC overexpression induced ubiquitination of PP2A but YDJCD13A could not. CDC16 overexpression increased the ubiquitination of YDJC. These results suggest that YDJC contributes to the progression of lung cancer via enhancing EMT by inducing the ubiquitination of PP2A. Therefore, YDJC might be a new target for antitumor therapy against lung cancer.
Collapse
Affiliation(s)
- Eun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Gyeoung-Jin Kang
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Jung Byun
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Lu Yu
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Boram Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hee-Sung Chae
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Young-Won Chin
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Jae Gal Shim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| |
Collapse
|
11
|
Ahn HK, Yoon JT, Choi I, Kim S, Lee HS, Pai HS. Functional characterization of chaperonin containing T-complex polypeptide-1 and its conserved and novel substrates in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2741-2757. [PMID: 30825377 PMCID: PMC6506772 DOI: 10.1093/jxb/erz099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 05/31/2023]
Abstract
Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mammals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. Cycloheximide-chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions of CCT chaperonin in plants and its conserved and novel substrates.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Sumin Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Ho-Seok Lee
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Zanchetta ME, Meroni G. Emerging Roles of the TRIM E3 Ubiquitin Ligases MID1 and MID2 in Cytokinesis. Front Physiol 2019; 10:274. [PMID: 30941058 PMCID: PMC6433704 DOI: 10.3389/fphys.2019.00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a post-translational modification that consists of ubiquitin attachment to target proteins through sequential steps catalysed by activating (E1), conjugating (E2), and ligase (E3) enzymes. Protein ubiquitination is crucial for the regulation of many cellular processes not only by promoting proteasomal degradation of substrates but also re-localisation of cellular factors and modulation of protein activity. Great importance in orchestrating ubiquitination relies on E3 ligases as these proteins recognise the substrate that needs to be modified at the right time and place. Here we focus on two members of the TRIpartite Motif (TRIM) family of RING E3 ligases, MID1, and MID2. We discuss the recent findings on these developmental disease-related proteins analysing the link between their activity on essential factors and the regulation of cytokinesis highlighting the possible consequence of alteration of this process in pathological conditions.
Collapse
Affiliation(s)
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Wright KM, Du H, Massiah MA. Structural and functional observations of the P151L MID1 mutation reveal alpha4 plays a significant role in X-linked Opitz Syndrome. FEBS J 2017; 284:2183-2193. [PMID: 28548391 DOI: 10.1111/febs.14121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
Mutations of human MID1 are associated with X-linked Opitz G Syndrome (XLOS), which is characterized by midline birth defects. XLOS-observed mutations within the MID1 B-box1 domain are associated with cleft lip/palate, wide-spaced eyes and hyperspadias. Three of the four XLOS-observed mutations in the B-box1 domain results in unfolding but the structural and functional effects of the P151L mutation is not characterized. Here, we demonstrate that the P151L mutation does not disrupt the overall tertiary structure of the B-box1 domain and the adjacent domains. In fact, MID1 E3 ligase activity is slightly enhanced. However, the P151L mutation disrupted the ability of MID1 to catalyze the poly-ubiquitination of alpha4, a novel regulator of PP2A. This observation is consistent with results observed with the other three structure-destabilizing B-box1 mutations in targeting alpha4 but not PP2A. Alpha4 is shown to bind and sequester the catalytic subunit of PP2A and protect it from MID1-mediated ubiquitination and as a result, an increase in alpha4 can contribute to an increase in PP2A, playing a greater role in midline development during embryogenesis.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Chemistry and Center of Biomolecular Science, George Washington University, DC, USA
| | - Haijuan Du
- Department of Chemistry and Center of Biomolecular Science, George Washington University, DC, USA
| | - Michael A Massiah
- Department of Chemistry and Center of Biomolecular Science, George Washington University, DC, USA
| |
Collapse
|
14
|
Eleftheriadou O, Boguslavskyi A, Longman MR, Cowan J, Francois A, Heads RJ, Wadzinski BE, Ryan A, Shattock MJ, Snabaitis AK. Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy. Basic Res Cardiol 2017; 112:37. [PMID: 28526910 PMCID: PMC5438423 DOI: 10.1007/s00395-017-0625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023]
Abstract
Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACβ > PP2ACα > PP4C > PP6C), NRVM (PP2ACβ > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACβ > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACα, PP2ACβ, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (γH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of γH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium.
Collapse
Affiliation(s)
- Olga Eleftheriadou
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Andrii Boguslavskyi
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Michael R Longman
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Jonathan Cowan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Asvi Francois
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Richard J Heads
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Michael J Shattock
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Andrew K Snabaitis
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
15
|
Park MK, Lee CH. Effects of cerulein on keratin 8 phosphorylation and perinuclear reorganization in pancreatic cancer cells: Involvement of downregulation of protein phosphatase 2A and alpha4. ENVIRONMENTAL TOXICOLOGY 2016; 31:2090-2098. [PMID: 26303380 DOI: 10.1002/tox.22186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Toxicants can perturb cellular homeostasis by modifying phosphorylation-based signaling. In the present study, we examined the effects of cerulein, an inducer of acute pancreatitis, on keratin 8 (K8) phosphorylation. We found that cerulein dose-dependently induced K8 phosphorylation and perinuclear reorganization in PANC-1 cells, thus leading to migration and invasion. The extracellular signal-regulated kinases (ERK) inhibitor U0126 suppressed cerulein-induced phosphorylation of serine 431 and reorganization of K8. Cerulein reduced the expressions of protein phosphatase 2A (PP2A) via ubiqutination and alpha4. PP2A's involvement in K8 phosphorylation of PANC-1 cells was also confirmed by the observation that PP2A gene silencing resulted in K8 phosphorylation and migration of PANC-1 cells. Overall, these results suggest that cerulein induced phosphorylation and reorganization through ERK activation by downregulating PP2A and alpha4, leading to increased migration and invasion of PANC-1 cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2090-2098, 2016.
Collapse
Affiliation(s)
- Mi Kyung Park
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea
| |
Collapse
|
16
|
Lazarus MB, Levin RS, Shokat KM. Discovery of new substrates of the elongation factor-2 kinase suggests a broader role in the cellular nutrient response. Cell Signal 2016; 29:78-83. [PMID: 27760376 DOI: 10.1016/j.cellsig.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/25/2016] [Accepted: 10/13/2016] [Indexed: 12/25/2022]
Abstract
Elongation Factor-2 Kinase (eEF2K) in an unusual mammalian enzyme that has one known substrate, elongation factor-2. It belongs to a class of kinases, called alpha kinases, that has little sequence identity to the >500 conventional protein kinases, but performs the same reaction and has similar catalytic residues. The phosphorylation of eEF2 blocks translation elongation, which is thought to be critical to regulating cellular energy usage. Here we report a system for discovering new substrates of alpha kinases and identify the first new substrates of eEF2K including AMPK and alpha4, and determine a sequence motif for the kinase that shows a requirement for threonine residues as the target of phosphorylation. These new substrates suggest that eEF2K has a more diverse role in regulating cellular energy usage that involves multiple pathways and regulatory feedback.
Collapse
Affiliation(s)
- Michael B Lazarus
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rebecca S Levin
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus. Sci Rep 2016; 6:30813. [PMID: 27489114 PMCID: PMC4973239 DOI: 10.1038/srep30813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition.
Collapse
|
18
|
LeNoue-Newton ML, Wadzinski BE, Spiller BW. The three Type 2A protein phosphatases, PP2Ac, PP4c and PP6c, are differentially regulated by Alpha4. Biochem Biophys Res Commun 2016; 475:64-9. [PMID: 27169767 PMCID: PMC6484841 DOI: 10.1016/j.bbrc.2016.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
Alpha4 is a non-canonical regulatory subunit of Type 2A protein phosphatases that interacts directly with the phosphatase catalytic subunits (PP2Ac, PP4c, and PP6c) and is upregulated in a variety of cancers. Alpha4 modulates phosphatase expression levels and activity, but the molecular mechanism of this regulation is unclear, and the extent to which the various Type 2A catalytic subunits associate with Alpha4 is also unknown. To determine the relative fractions of the Type 2A catalytic subunits associated with Alpha4, we conducted Alpha4 immunodepletion experiments in HEK293T cells and found that a significant fraction of total PP6c is associated with Alpha4, whereas a minimal fraction of total PP2Ac is associated with Alpha4. To facilitate studies of phosphatases in the presence of mutant or null Alpha4 alleles, we developed a facile and rapid method to simultaneously knockdown and rescue Alpha4 in tissue culture cells. This approach has the advantage that levels of endogenous Alpha4 are dramatically reduced by shRNA expression thereby simplifying interpretation of mutant phenotypes. We used this system to show that knockdown of Alpha4 preferentially impacts the expression of PP4c and PP6c compared to expression levels of PP2Ac.
Collapse
Affiliation(s)
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Benjamin W Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Zhang X, Damacharla D, Ma D, Qi Y, Tagett R, Draghici S, Kowluru A, Yi Z. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic β-cells. Mol Cell Endocrinol 2016; 424:1-11. [PMID: 26780722 PMCID: PMC4779412 DOI: 10.1016/j.mce.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases. We hypothesize that PP2A regulates signaling cascades in pancreatic β-cells in the context of glucose-stimulated insulin secretion (GSIS). Using co-immunoprecipitation (co-IP) and tandem mass spectrometry, we globally identified the protein interaction partners of the PP2A catalytic subunit (PP2Ac) in insulin-secreting pancreatic β-cells. Among the 514 identified PP2Ac interaction partners, 476 were novel. This represents the first global view of PP2Ac protein-protein interactions caused by hyperglycemic conditions. Additionally, numerous PP2Ac partners were found involved in a variety of signaling pathways in the β-cell function, such as insulin secretion. Our data suggest that PP2A interacts with various signaling proteins necessary for physiological insulin secretion as well as signaling proteins known to regulate cell dysfunction and apoptosis in the pancreatic β-cells.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Divyasri Damacharla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Sangodkar J, Farrington C, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283:1004-24. [PMID: 26507691 PMCID: PMC4803620 DOI: 10.1111/febs.13573] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Caroline Farrington
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly McClinch
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David B. Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goutham Narla
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
21
|
Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ, Lee CH. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1157-69. [PMID: 26876307 DOI: 10.1016/j.bbamcr.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK.
Collapse
Affiliation(s)
- Eun Ji Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung-Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
22
|
Yabe R, Miura A, Usui T, Mudrak I, Ogris E, Ohama T, Sato K. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. PLoS One 2015; 10:e0145226. [PMID: 26678046 PMCID: PMC4683032 DOI: 10.1371/journal.pone.0145226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.
Collapse
Affiliation(s)
- Ryotaro Yabe
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Akane Miura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Ingrid Mudrak
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Egon Ogris
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
- * E-mail:
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| |
Collapse
|
23
|
Li B, Zhou T, Zou Y. Mid1/Mid2 expression in craniofacial development and a literature review of X-linked opitz syndrome. Mol Genet Genomic Med 2015; 4:95-105. [PMID: 26788540 PMCID: PMC4707030 DOI: 10.1002/mgg3.183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Opitz syndrome (OS) is a genetic disorder that affects mainly the development of midline structures, including the craniofacial region, embryonic heart, and urogenital system. The manifestations of X‐linked OS are believed to be results of a malfunctioned gene, MID1, whose product has been shown to have ubiquitin E3 ligase activity and regulate the turnover of microtubular protein phosphatase 2Ac. MID2, a homolog of MID1, shares high structural and functional similarities with MID1. Identification of a missense mutation in MID2 in an Indian family causing overlapping phenotypes with OS provided the first evidence that MID2 might be involved in similar pathogenesis. Methods The clinic features and the genetic findings of all reported X‐linked OS were collectively summarized in this research. Real‐time RT‐PCR and in situ hybridization were used in the expression studies of Mid1/Mid2 in mouse embryos. Results Up‐to‐date, 88 different mutations have been identified in MID1 and most mutations occurred on the conserved amino acids of MID1 and MID2. Expression studies using real‐time RT‐PCR implicated a tendency of a mutually repressive expression pattern between Mid1 and Mid2 in mouse embryos. Further investigations using in situ hybridization revealed strong expressions of Mid1 and Mid2 in the epithelium of approaching facial prominences and downregulated expressions after fusion in mouse embryos. Conclusions Our results support the hypothesis of functional redundancy of Mid1/Mid2 and their potential roles in regulating tissue remodelling in early development.
Collapse
Affiliation(s)
- Bijun Li
- Department of Biology Jinan University Guangzhou China
| | - Tianhong Zhou
- Department of Biology Jinan University Guangzhou China
| | - Yi Zou
- Department of Biology Jinan University Guangzhou China
| |
Collapse
|
24
|
Zhao Y, Zeng C, Massiah MA. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLoS One 2015; 10:e0124377. [PMID: 25874572 PMCID: PMC4395243 DOI: 10.1371/journal.pone.0124377] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/01/2015] [Indexed: 11/25/2022] Open
Abstract
The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β) and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD) simulation for the A130V mutant (>6 Å) and after 30 ns for A130T mutant (>6 Å). Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.
Collapse
Affiliation(s)
- Yunjie Zhao
- Department of Physics, The George Washington University, Washington, District of Columbia, United States of America
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, District of Columbia, United States of America
- Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Michael A. Massiah
- Department of Chemistry, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
25
|
Lee CW, Yang FC, Chang HY, Chou H, Tan BCM, Lee SC. Interaction between salt-inducible kinase 2 and protein phosphatase 2A regulates the activity of calcium/calmodulin-dependent protein kinase I and protein phosphatase methylesterase-1. J Biol Chem 2015; 289:21108-19. [PMID: 24841198 DOI: 10.1074/jbc.m113.540229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salt-inducible kinase 2 (SIK2) is the only AMP-activated kinase (AMPK) family member known to interact with protein phosphatase 2 (PP2A). However, the functional aspects of this complex are largely unknown. Here we report that the SIK2-PP2A complex preserves both kinase and phosphatase activities. In this capacity,SIK2 attenuates the association of the PP2A repressor, the protein phosphatase methylesterase-1 (PME-1), thus preserving the methylation status of the PP2A catalytic subunit. Furthermore, the SIK2-PP2A holoenzyme complex dephosphorylates and inactivates Ca2(+)/calmodulin-dependent protein kinase I (CaMKI), an upstream kinase for phosphorylating PME-1/Ser(15). The functionally antagonistic SIK2-PP2A and CaMKI and PME-1 networks thus constitute a negative feedback loop that modulates the phosphatase activity of PP2A. Depletion of SIK2 led to disruption of the SIK2-PP2A complex, activation of CaMKI, and downstream effects, including phosphorylation of HDAC5/Ser(259), sequestration of HDAC5 in the cytoplasm, and activation of myocyte-specific enhancer factor 2C (MEF2C)-mediated gene expression. These results suggest that the SIK2-PP2A complex functions in the regulation of MEF2C-dependent transcription. Furthermore, this study suggests that the tightly linked regulatory loop comprised of the SIK2-PP2A and CaMKI and PME-1 networks may function in fine-tuning cell proliferation and stress response.
Collapse
|
26
|
Archuleta TL, Spiller BW. A gatekeeper chaperone complex directs translocator secretion during type three secretion. PLoS Pathog 2014; 10:e1004498. [PMID: 25375170 PMCID: PMC4222845 DOI: 10.1371/journal.ppat.1004498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ∼20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors. Type Three Secretion Systems (T3SS) are essential virulence factors found in many pathogenic Gram-negative bacteria. These machines aid infection by delivering bacterial proteins into host cells where these proteins modulate host processes and help establish a niche for the bacteria. Protein delivery occurs in a highly regulated manner in which proteins involved in early steps in infection, or necessary to build the secretion conduit, are typically secreted before other substrates, a phenomenon termed secretion hierarchy. This study presents the structure of a molecular complex that physically links one class of early substrates, components of the secretion pore termed translocators, to a gatekeeper protein, a protein that has been implicated in the secretion hierarchy. Disruption of this interaction in Shigella disrupts the secretion of translocators, while supporting increased secretion of effectors, resulting in phenotypes indistinguishable from a gatekeeper deletion, and leading to the conclusion that a gatekeeper-chaperone-translocator complex is a critical component of the T3SS.
Collapse
Affiliation(s)
- Tara L. Archuleta
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Benjamin W. Spiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tomasella A, Blangy A, Brancolini C. A receptor-interacting protein 1 (RIP1)-independent necrotic death under the control of protein phosphatase PP2A that involves the reorganization of actin cytoskeleton and the action of cofilin-1. J Biol Chem 2014; 289:25699-710. [PMID: 25096578 PMCID: PMC4162173 DOI: 10.1074/jbc.m114.575134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/28/2014] [Indexed: 02/02/2023] Open
Abstract
Cell death by necrosis is emerging not merely as a passive phenomenon but as a cell-regulated process. Here, by using different necrotic triggers, we prove the existence of two distinct necrotic pathways. The mitochondrial reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone elicits necrosis characterized by the involvement of RIP1 and Drp1. However, G5, a non-selective isopeptidase inhibitor, triggers a distinct necrotic pathway that depends on the protein phosphatase PP2A and the actin cytoskeleton. PP2A catalytic subunit is stabilized by G5 treatment, and its activity is increased. Furthermore, PP2Ac accumulates into the cytoplasm during necrosis similarly to HMGB1. We have also defined in the actin-binding protein cofilin-1 a link between PP2A, actin cytoskeleton, and necrotic death. Cofilin-1-severing/depolymerization activity is negatively regulated by phosphorylation of serine 3. PP2A contributes to the dephosphorylation of serine 3 elicited by G5. Finally, a cofilin mutant that mimics phosphorylated Ser-3 can partially rescue necrosis in response to G5.
Collapse
Affiliation(s)
- Andrea Tomasella
- From the Dipartimento di Scienze Mediche e Biologiche Università degli Studi di Udine, P.le Kolbe 4-33100 Udine, Italy and
| | - Anne Blangy
- CNRS UMR 5237 CRBM Montpellier University 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Claudio Brancolini
- From the Dipartimento di Scienze Mediche e Biologiche Università degli Studi di Udine, P.le Kolbe 4-33100 Udine, Italy and
| |
Collapse
|
28
|
Wright KM, Wu K, Babatunde O, Du H, Massiah MA. XLOS-observed mutations of MID1 Bbox1 domain cause domain unfolding. PLoS One 2014; 9:e107537. [PMID: 25216264 PMCID: PMC4162623 DOI: 10.1371/journal.pone.0107537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
MID1 catalyzes the ubiquitination of the protein alpha4 and the catalytic subunit of protein phosphatase 2A. Mutations within the MID1 Bbox1 domain are associated with X-linked Opitz G syndrome (XLOS). Our functional assays have shown that mutations of Ala130 to Val or Thr, Cys142 to Ser and Cys145 to Thr completely disrupt the polyubiquitination of alpha4. Using NMR spectroscopy, we characterize the effect of these mutations on the tertiary structure of the Bbox1 domain by itself and in tandem with the Bbox2 domain. The mutation of either Cys142 or Cys145, each of which is involved in coordinating one of the two zinc ions, results in the collapse of signal dispersion in the HSQC spectrum of the Bbox1 domain indicating that the mutant protein structure is unfolded. Each mutation caused the coordination of both zinc ions, which are ∼ 13 Å apart, to be lost. Although Ala130 is not involved in the coordination of a zinc ion, the Ala130Thr mutant Bbox1 domain yields a poorly dispersed HSQC spectrum similar to those of the Cys142Ser and Cys145Thr mutants. Interestingly, neither cysteine mutation affects the structure of the adjacent Bbox2 domain when the two Bbox domains are engineered in their native tandem Bbox1-Bbox2 protein construct. Dynamic light scattering measurements suggest that the mutant Bbox1 domain has an increased propensity to form aggregates compared to the wild type Bbox1 domain. These studies provide insight into the mechanism by which mutations observed in XLOS affect the structure and function of the MID1 Bbox1 domain.
Collapse
Affiliation(s)
- Katharine M. Wright
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Omotolani Babatunde
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Haijuan Du
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
29
|
Du H, Wu K, Didoronkute A, Levy MVA, Todi N, Shchelokova A, Massiah MA. MID1 catalyzes the ubiquitination of protein phosphatase 2A and mutations within its Bbox1 domain disrupt polyubiquitination of alpha4 but not of PP2Ac. PLoS One 2014; 9:e107428. [PMID: 25207814 PMCID: PMC4160256 DOI: 10.1371/journal.pone.0107428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/14/2014] [Indexed: 01/05/2023] Open
Abstract
MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.
Collapse
Affiliation(s)
- Haijuan Du
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Alma Didoronkute
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Marcus V. A. Levy
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Nimish Todi
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Anna Shchelokova
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
30
|
McDonald WJ, Thomas LN, Koirala S, Too CKL. Progestin-inducible EDD E3 ubiquitin ligase binds to α4 phosphoprotein to regulate ubiquitination and degradation of protein phosphatase PP2Ac. Mol Cell Endocrinol 2014; 382:254-261. [PMID: 24145130 DOI: 10.1016/j.mce.2013.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Mammalian α4 phosphoprotein binds to the protein phosphatase 2A catalytic subunit (PP2Ac) to regulate PP2A activity, and to poly(A)-binding protein (PABP) and progestin-inducible EDD E3 ubiquitin ligase. This study showed induction of the EDD protein by progesterone, 17β-estradiol and prolactin in breast cancer cells. Co-immunoprecipitation analyses, using lysates of COS-1 cells transfected with α4-deletion constructs, showed the α4 N-terminus binding to endogenous PP2Ac and PABP, and the C-terminus to EDD. Monoubiquitinated α4 in MCF-7 cells was unaffected by EDD-targeting siRNA (siEDD) nor by non-targetting siNT, thus, EDD does not ubiquitinate α4. PP2Ac is polyubiquitinated, and 36-kDa PP2Ac only was detected in siEDD- or siNT-transfected cells. However, treatment with proteasomal inhibitor MG132 showed polyubiquitinated-PP2Ac molecules (∼65-250kDa) abundantly in siNT controls but low in siEDD-transfectants, implicating PP2Ac as an EDD substrate. Finally, progesterone induction of EDD in MCF-7 cells correlated with decreased PP2Ac levels, further implicating hormone-inducible EDD in PP2Ac turnover.
Collapse
Affiliation(s)
- William J McDonald
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lynn N Thomas
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samir Koirala
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Catherine K L Too
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Obstetrics & Gynaecology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
31
|
Geetha TS, Michealraj KA, Kabra M, Kaur G, Juyal RC, Thelma BK. Targeted deep resequencing identifies MID2 mutation for X-linked intellectual disability with varied disease severity in a large kindred from India. Hum Mutat 2014; 35:41-4. [PMID: 24115387 DOI: 10.1002/humu.22453] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 09/19/2013] [Indexed: 11/11/2022]
Abstract
We report a novel missense mutation (c.1040G>A, p.Arg347Gln) in MID2, which encodes ubiquitin ligase E3, as the likely cause of X-linked mental retardation in a large kindred. The mutation was observed in all affected and obligate carriers but not in any unaffected males of the family or in population controls (n = 200). When transiently expressed in HEK293T cell line, the mutation was found to abolish the function of the COS domain in the protein. The GFP-tagged mutant protein accumulated in the cytoplasm instead of binding to the cytoskeleton resulting in its altered subcellular localization. Screening of coding exons of this gene in additional 480 unrelated individuals with idiopathic intellectual disability identified another novel variation p.Asn343Ser. This study highlights the growing role of the ubiquitin pathway in intellectual disability and also, the difference in MID2 determined phenotype observed in this study compared with that of its paralogue MID1 reported in literature.
Collapse
Affiliation(s)
- Thenral S Geetha
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
Structural basis of protein phosphatase 2A stable latency. Nat Commun 2013; 4:1699. [PMID: 23591866 PMCID: PMC3644067 DOI: 10.1038/ncomms2663] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 01/28/2023] Open
Abstract
The catalytic subunit of protein phosphatase 2A (PP2Ac) is stabilized in a latent form by α4, a regulatory protein essential for cell survival and biogenesis of all PP2A complexes. Here we report the structure of α4 bound to the N-terminal fragment of PP2Ac. This structure suggests that α4 binding to the full-length PP2Ac requires local unfolding near the active site, which perturbs the scaffold subunit binding site at the opposite surface via allosteric relay. These changes stabilize an inactive conformation of PP2Ac and convert oligomeric PP2A complexes to the α4 complex upon perturbation of the active site. The PP2Ac–α4 interface is essential for cell survival and sterically hinders a PP2A ubiquitination site, important for the stability of cellular PP2Ac. Our results show that α4 is a scavenger chaperone that binds to and stabilizes partially folded PP2Ac for stable latency, and reveal a mechanism by which α4 regulates cell survival, and biogenesis and surveillance of PP2A holoenzymes. The protein α4 is essential for the formation, stability and activity of protein phosphatase 2A (PP2A) complexes. Here the authors solve the crystal structure of a truncated PP2A bound to α4 and show that α4 binds to a partially folded form of the protein, stabilizing the enzyme in an inactive state.
Collapse
|
33
|
Du H, Huang Y, Zaghlula M, Walters E, Cox TC, Massiah MA. The MID1 E3 ligase catalyzes the polyubiquitination of Alpha4 (α4), a regulatory subunit of protein phosphatase 2A (PP2A): novel insights into MID1-mediated regulation of PP2A. J Biol Chem 2013; 288:21341-21350. [PMID: 23740247 DOI: 10.1074/jbc.m113.481093] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha4 (α4) is a key regulator of protein phosphatase 2A (PP2A) and mTOR in steps essential for cell-cycle progression. α4 forms a complex with PP2A and MID1, a microtubule-associated ubiquitin E3 ligase that facilitates MID1-dependent regulation of PP2A and the dephosphorylation of MID1 by PP2A. Ectopic overexpression of α4 is associated with hepatocellular carcinomas, breast cancer, and invasive adenocarcinomas. Here, we provide data suggesting that α4 is regulated by ubiquitin-dependent degradation mediated by MID1. In cells stably expressing a dominant-negative form of MID1, significantly elevated levels of α4 were observed. Treatment of cells with the specific proteasome inhibitor, lactacystin, resulted in a 3-fold increase in α4 in control cells and a similar level in mutant cells. Using in vitro assays, individual MID1 E3 domains facilitated monoubiquitination of α4, whereas full-length MID1 as well as RING-Bbox1 and RING-Bbox1-Bbox2 constructs catalyzed its polyubiquitination. In a novel non-biased functional screen, we identified a leucine to glutamine substitution at position 146 within Bbox1 that abolished MID1-α4 interaction and the subsequent polyubiquitination of α4, indicating that direct binding to Bbox1 was necessary for the polyubiquitination of α4. The mutant had little impact on the RING E3 ligase functionality of MID1. Mass spectrometry data confirmed Western blot analysis that ubiquitination of α4 occurs only within the last 105 amino acids. These novel findings identify a new role for MID1 and a mechanism of regulation of α4 that is likely to impact the stability and activity level of PP2Ac.
Collapse
Affiliation(s)
- Haijuan Du
- From the Department of Chemistry, George Washington University, Washington, D. C. 20052
| | - Yongzhao Huang
- the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute and
| | - Manar Zaghlula
- From the Department of Chemistry, George Washington University, Washington, D. C. 20052
| | - Erica Walters
- From the Department of Chemistry, George Washington University, Washington, D. C. 20052
| | - Timothy C Cox
- the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute and; Department of Pediatrics, University of Washington, Seattle, Washington 98101, and; the Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Michael A Massiah
- From the Department of Chemistry, George Washington University, Washington, D. C. 20052,.
| |
Collapse
|
34
|
Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmström L, Aebersold R. Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry. Science 2012; 337:1348-52. [PMID: 22984071 DOI: 10.1126/science.1221483] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franz Herzog
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang N, Leung HT, Mazalouskas MD, Watkins GR, Gomez RJ, Wadzinski BE. Essential roles of the Tap42-regulated protein phosphatase 2A (PP2A) family in wing imaginal disc development of Drosophila melanogaster. PLoS One 2012; 7:e38569. [PMID: 22701670 PMCID: PMC3368869 DOI: 10.1371/journal.pone.0038569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Protein ser/thr phosphatase 2A family members (PP2A, PP4, and PP6) are implicated in the control of numerous biological processes, but our understanding of the in vivo function and regulation of these enzymes is limited. In this study, we investigated the role of Tap42, a common regulatory subunit for all three PP2A family members, in the development of Drosophila melanogaster wing imaginal discs. RNAi-mediated silencing of Tap42 using the binary Gal4/UAS system and two disc drivers, pnr- and ap-Gal4, not only decreased survival rates but also hampered the development of wing discs, resulting in a remarkable thorax cleft and defective wings in adults. Silencing of Tap42 also altered multiple signaling pathways (HH, JNK and DPP) and triggered apoptosis in wing imaginal discs. The Tap42RNAi-induced defects were the direct result of loss of regulation of Drosophila PP2A family members (MTS, PP4, and PPV), as enforced expression of wild type Tap42, but not a phosphatase binding defective Tap42 mutant, rescued fly survivorship and defects. The experimental platform described herein identifies crucial roles for Tap42•phosphatase complexes in governing imaginal disc and fly development.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hung-Tat Leung
- Department of Biological Sciences, Grambling State University, Grambling, Louisiana, United States of America
| | - Matthew D. Mazalouskas
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Guy R. Watkins
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rey J. Gomez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
36
|
Watkins GR, Wang N, Mazalouskas MD, Gomez RJ, Guthrie CR, Kraemer BC, Schweiger S, Spiller BW, Wadzinski BE. Monoubiquitination promotes calpain cleavage of the protein phosphatase 2A (PP2A) regulatory subunit α4, altering PP2A stability and microtubule-associated protein phosphorylation. J Biol Chem 2012; 287:24207-15. [PMID: 22613722 DOI: 10.1074/jbc.m112.368613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4's activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.
Collapse
Affiliation(s)
- Guy R Watkins
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 2012; 280:644-61. [PMID: 22443683 DOI: 10.1111/j.1742-4658.2012.08579.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein phosphatase type 2A (PP2A) enzymes constitute a large family of Ser/Thr phosphatases with multiple functions in cellular signaling and physiology. The composition of heterotrimeric PP2A holoenzymes, resulting from the combinatorial assembly of a catalytic C subunit, a structural A subunit, and regulatory B-type subunit, provides the essential determinants for substrate specificity, subcellular targeting, and fine-tuning of phosphatase activity, largely explaining why PP2A is functionally involved in so many diverse physiological processes, sometimes in seemingly opposing ways. In this review, we highlight how PP2A holoenzyme biogenesis and enzymatic activity are controlled by a sophisticatedly coordinated network of five PP2A modulators, consisting of α4, phosphatase 2A phosphatase activator (PTPA), leucine carboxyl methyl transferase 1 (LCMT1), PP2A methyl esterase 1 (PME-1) and, potentially, target of rapamycin signaling pathway regulator-like 1 (TIPRL1), which serve to prevent promiscuous phosphatase activity until the holoenzyme is completely assembled. Likewise, these modulators may come into play when PP2A holoenzymes are disassembled following particular cellular stresses. Malfunctioning of these cellular control mechanisms contributes to human disease. The potential therapeutic benefits or pitfalls of interfering with these regulatory mechanisms will be briefly discussed.
Collapse
Affiliation(s)
- Ward Sents
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
38
|
The microtubule-associated C-I subfamily of TRIM proteins and the regulation of polarized cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:105-18. [PMID: 23631003 DOI: 10.1007/978-1-4614-5398-7_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRIM proteins are multidomain proteins that typically assemble into large molecular complexes, the composition of which likely explains the diverse functions that have been attributed to this group of proteins. Accumulating data on the roles of many TRIM proteins supports the notion that those that share identical C-terminal domain architectures participate in the regulation of similar cellular processes. At least nine different C-terminal domain compositions have been identified. This chapter will focus on one subgroup that possess a COS motif, FNIII and SPRY/B30.2 domain as their C-terminal domain arrangement. This C-terminal domain architecture plays a key role in the interaction of all six members of this subgroup with the microtubule cytoskeleton. Accumulating evidence on the functions of some of these proteins will be discussed to highlight the emerging similarities in the cellular events in which they participate.
Collapse
|
39
|
Du H, Massiah MA. NMR studies of the C-terminus of alpha4 reveal possible mechanism of its interaction with MID1 and protein phosphatase 2A. PLoS One 2011; 6:e28877. [PMID: 22194938 PMCID: PMC3237570 DOI: 10.1371/journal.pone.0028877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/16/2011] [Indexed: 12/17/2022] Open
Abstract
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1.
Collapse
Affiliation(s)
- Haijuan Du
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
40
|
Migueleti DLS, Smetana JHC, Nunes HF, Kobarg J, Zanchin NIT. Identification and characterization of an alternatively spliced isoform of the human protein phosphatase 2Aα catalytic subunit. J Biol Chem 2011; 287:4853-62. [PMID: 22167190 DOI: 10.1074/jbc.m111.283341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation.
Collapse
Affiliation(s)
- Deivid L S Migueleti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, SãoPaulo, Brazil
| | | | | | | | | |
Collapse
|
41
|
Barr FA, Elliott PR, Gruneberg U. Protein phosphatases and the regulation of mitosis. J Cell Sci 2011; 124:2323-34. [PMID: 21709074 DOI: 10.1242/jcs.087106] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | | | |
Collapse
|