1
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
2
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Johnson E, Salari K, Yang S. SETDB1: A perspective into immune cell function and cancer immunotherapy. Immunology 2023; 169:3-12. [PMID: 36524435 PMCID: PMC10121739 DOI: 10.1111/imm.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Oncogene SET Domain Bifurcated 1 (SETDB1)/ESET, an H3K9 methyltransferase, was originally discovered over two decades ago; however, its function in the immune response was not first reported until 2011. SETDB1 immune functions include B cell maturation, T cell activity regulation, and immune escape in cancer cells. In B lymphocytes, SETDB1 mediates the transition from pro-B to pre-B cells and represses endogenous retroviruses (ERV) to encourage B cell lineage differentiation and maturation. SETDB1 alters T cell function by methylating IL-2 and IL-17 promoters and mediating T cell lineage commitment and development. In addition, SETDB1 plays a critical role in ERV silencing within a variety of immune cells, which can indirectly weaken the immune response. Although SETDB1 is critical for normal immune cell function, overexpression in cancer cells negatively impacts immune cell fights against cancer through decreased tumour immunogenicity. Within cancer cells, SETDB1 overexpression represses production and infiltration of antitumour immune cells, mediates immune escape through TE and ERV silencing, represses the type I interferon pathway, and interferes in immune checkpoint blockade (ICB) outcomes by regulation of PD-L1 expression and IFN signalling. In this review, we further discuss the immunological mechanisms of SETDB1 in normal and cancerous cells and its implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleanor Johnson
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
4
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
5
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| |
Collapse
|
6
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
7
|
Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021; 20:171. [PMID: 34930302 PMCID: PMC8691037 DOI: 10.1186/s12943-021-01464-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms play vital roles not only in cancer initiation and progression, but also in the activation, differentiation and effector function(s) of immune cells. In this review, we summarize current literature related to epigenomic dynamics in immune cells impacting immune cell fate and functionality, and the immunogenicity of cancer cells. Some important immune-associated genes, such as granzyme B, IFN-γ, IL-2, IL-12, FoxP3 and STING, are regulated via epigenetic mechanisms in immune or/and cancer cells, as are immune checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, TIGIT) expressed by immune cells and tumor-associated stromal cells. Thus, therapeutic strategies implementing epigenetic modulating drugs are expected to significantly impact the tumor microenvironment (TME) by promoting transcriptional and metabolic reprogramming in local immune cell populations, resulting in inhibition of immunosuppressive cells (MDSCs and Treg) and the activation of anti-tumor T effector cells, professional antigen presenting cells (APC), as well as cancer cells which can serve as non-professional APC. In the latter instance, epigenetic modulating agents may coordinately promote tumor immunogenicity by inducing de novo expression of transcriptionally repressed tumor-associated antigens, increasing expression of neoantigens and MHC processing/presentation machinery, and activating tumor immunogenic cell death (ICD). ICD provides a rich source of immunogens for anti-tumor T cell cross-priming and sensitizing cancer cells to interventional immunotherapy. In this way, epigenetic modulators may be envisioned as effective components in combination immunotherapy approaches capable of mediating superior therapeutic efficacy.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgical Oncology, China Medical University, Shenyang, China
| | - Shudipto Wahed
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
8
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Naik A, Dalpatraj N, Thakur N. Global Histone H3 Lysine 4 Trimethylation (H3K4me3) Landscape Changes in Response to TGFβ. Epigenet Insights 2021; 14:25168657211051755. [PMID: 34671716 PMCID: PMC8521735 DOI: 10.1177/25168657211051755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
TGFβ expression acts as a biomarker of poor prognosis in prostate cancer. It plays a dual functional role in prostate cancer. In the early stages of the tumor, it acts as a tumor suppressor while at the later stages of tumor development, it promotes metastasis. The molecular mechanisms of action of TGFβ are largely understood through the canonical and non-canonical signal transduction pathways. Our understanding of the mechanisms that establish transient TGFβ stimulation into stable gene expression patterns remains incomplete. Epigenetic marks like histone H3 modifications are directly linked with gene expression and they play an important role in tumorigenesis. In this report, we performed chromatin immunoprecipitation-sequencing (ChIP-Seq) to identify the genome-wide regions that undergo changes in histone H3 Lysine 4 trimethylation (H3K4me3) occupancy in response to TGFβ stimulation. We also show that TGFβ stimulation can induce acute epigenetic changes through the modulation of H3K4me3 signals at genes belonging to special functional categories in prostate cancer. TGFβ induces the H3K4me3 on its own ligands like TGFβ, GDF1, INHBB, GDF3, GDF6, BMP5 suggesting a positive feedback loop. The majority of genes were found to be involved in the positive regulation of transcription from the RNA polymerase II promoter in response to TGFβ. Other functional categories were intracellular protein transport, brain development, EMT, angiogenesis, antigen processing, antigen presentation via MHC class II, lipid transport, embryo development, histone H4 acetylation, positive regulation of cell cycle arrest, and genes involved in mitotic G2 DNA damage checkpoints. Our results link TGFβ stimulation to acute changes in gene expression through an epigenetic mechanism. These findings have broader implications on epigenetic bases of acute gene expression changes caused by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
11
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
12
|
Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis. Int J Mol Sci 2021; 22:ijms22052778. [PMID: 33803458 PMCID: PMC7967218 DOI: 10.3390/ijms22052778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strategies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy.
Collapse
|
13
|
Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential. Cancer Res 2021; 81:525-534. [PMID: 33115801 DOI: 10.1158/0008-5472.can-20-2906] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic regulation of gene expression has been ultimately linked to cancer development, with posttranslational histone modifications representing attractive targets for disease monitoring and therapy. Emerging data have demonstrated histone lysine (K) methylation by methyltransferase SETDB1 as a common denominator of gene regulation in several cancer types. SETDB1 reversibly catalyzes the di- and trimethylation of histone 3 (H3) K9 in euchromatic regions of chromosomes, inhibiting gene transcription within these regions and promoting a switch from euchromatic to heterochromatic states. Recent studies have implicated aberrant SETDB1 activity in the development of various types of cancers, including brain, head and neck, lung, breast, gastrointestinal, ovarian, endometrial and prostate cancer, mesothelioma, melanoma, leukemias, and osteosarcoma. Although its role has not been fully elucidated in every case, most data point toward a pro-oncogenic potential of SETDB1 via the downregulation of critical tumor-suppressive genes. Less commonly, however, SETDB1 can also acquire a tumor-suppressive role, depending on cancer type and stage. Here we provide an updated overview of the cellular and molecular effects underlying SETDB1 activity in cancer development and progression along with current targeting strategies in different cancer types, with promising effects either as a standalone therapy or in conjunction with other therapeutic agents.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Zhang L, Tian S, Zhao M, Yang T, Quan S, Song L, Yang X. SUV39H1-Mediated DNMT1 is Involved in the Epigenetic Regulation of Smad3 in Cervical Cancer. Anticancer Agents Med Chem 2021; 21:756-765. [PMID: 32698743 DOI: 10.2174/1871520620666200721110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND SMAD3 is a pivotal intracellular mediator for participating in the activation of multiple immune signal pathways. OBJECTIVE The epigenetic regulation mechanism of the positive immune factor SMAD3 in cervical cancer remains unknown. Therefore, the epigenetic regulation on SMAD3 is investigated in this study. METHODS The methylation status of SMAD3 was detected by Methylation-Specific PCR (MS-PCR) and Quantitative Methylation-Specific PCR (MS-qPCR) in cervical cancer tissues and cell lines. The underlying molecular mechanisms of SUV39H1-DNMT1-SMAD3 regulation were elucidated using cervical cancer cell lines containing siRNA or/and over-expression systems. The regulation of DNMT1 by SUV39H1 was confirmed using Chromatin Immunoprecipitation-qPCR (ChIP-qPCR). The statistical methods used for comparing samples between groups were paired t-tests and one-way ANOVAs. RESULTS H3K9me3 protein regulated by SUV39H1 directly interacts with the DNMT1 promoter region to regulate its expression in cervical cancer cells, resulting in the reduced expression of the downstream target gene DNMT1. In addition, DNMT1 mediates the epigenetic modulation of the SMAD3 gene by directly binding to its promoter region. The depletion of DNMT1 effectively restores the expression of SMAD3 in vitro. Moreover, in an in vivo assay, the expression profile of SUV39H1-DNMT1 was found to correlate with SMAD3 expression in accordance with the expression at the cellular level. Notably, the promoter region of SMAD3 was hypermethylated in cervical cancer tissues, and this hypermethylation inhibited the subsequent gene expression. CONCLUSION These results indicate that SUV39H1-DNMT1 is a crucial SMAD3 regulatory axis in cervical cancer. SUV39H1-DNMT1 axis may provide a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shimin Quan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihua Song
- Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
The Role of TGFβ Signaling in Microglia Maturation and Activation. Trends Immunol 2020; 41:836-848. [PMID: 32741652 DOI: 10.1016/j.it.2020.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
The pleiotropic cytokine transforming growth factor-beta 1 (TGFβ1) plays pivotal roles in different cell types, including immune cells such as T cells, monocytes/macrophages, and microglia. Microglia are essential during physiological and pathological events. Maturation of postnatal microglia, as well as the regulation of the complex functional repertoire of microglia, needs to be carefully orchestrated. However, an understanding of how mammalian microglia maturation and disease-associated microglia activation is regulated remains fragmentary. Here, we summarize recent observations made by employing transgenic approaches to silence microglial TGFβ signaling in mice. These revealed that TGFβ1 and TGFβ signaling are indispensable for microglia maturation, adult microglia homeostasis, and the control of microglia activation in central nervous system pathologies.
Collapse
|
16
|
Lin YT, Wu KJ. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci 2020; 27:39. [PMID: 32114978 PMCID: PMC7050137 DOI: 10.1186/s12929-020-00632-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important process triggered during cancer metastasis. Regulation of EMT is mostly initiated by outside signalling, including TGF-β, growth factors, Notch ligand, Wnt, and hypoxia. Many signalling pathways have been delineated to explain the molecular mechanisms of EMT. In this review, we will focus on the epigenetic regulation of two critical EMT signalling pathways: hypoxia and TGF-β. For hypoxia, hypoxia-induced EMT is mediated by the interplay between chromatin modifiers histone deacetylase 3 (HDAC3) and WDR5 coupled with the presence of histone 3 lysine 4 acetylation (H3K4Ac) mark that labels the promoter regions of various traditional EMT marker genes (e.g. CDH1, VIM). Recently identified new hypoxia-induced EMT markers belong to transcription factors (e.g. SMO, GLI1) that mediate EMT themselves. For TGF-β-induced ΕΜΤ, global chromatin changes, removal of a histone variant (H2A.Z), and new chromatin modifiers (e.g. UTX, Rad21, PRMT5, RbBP5, etc) are identified to be crucial for the regulation of both EMT transcription factors (EMT-TFs) and EMT markers (EMT-Ms). The epigenetic mechanisms utilized in these two pathways may serve as good model systems for other signalling pathways and also provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan Dist., Taoyuan, 333, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan Dist., Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
17
|
Regulation of T cell differentiation and function by epigenetic modification enzymes. Semin Immunopathol 2019; 41:315-326. [PMID: 30963214 DOI: 10.1007/s00281-019-00731-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022]
Abstract
Peripheral naive CD4+ and CD8+ cells are developed in the thymus and proliferate and differentiate into various specialized T cell subsets upon activation by peptide-major histocompatibility complexes in periphery to execute different functions during immune responses. Cytokines, transcription factors, and a large number of intracellular molecules have been shown to affect T cell development, activation, and function. In addition, epigenetic modifications, such as histone modification and DNA methylation, regulate T cell biology. The epigenetic modifications are regulated by a range of DNA methyltransferases, DNA demethylation enzymes, and histone modification enzymes. Dysregulations of epigenetic modifications are closely associated with autoimmune diseases and tumorigenesis. Here, we review the current literature about the functions of DNA and histone modification enzymes in T cell development, activation, differentiation, and function.
Collapse
|
18
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 503] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Jones K, Bryant S, Luo J, Kiesler P, Koontz S, Warren J, Malech H, Kang E, Dveksler G. Recombinant Pregnancy-Specific Glycoprotein 1 Has a Protective Role in a Murine Model of Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:193-203. [PMID: 30253241 DOI: 10.1016/j.bbmt.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is an immune-mediated reaction that can occur after hematopoietic stem cell transplantation in which donor T cells recognize the host antigens as foreign, destroying host tissues. Establishment of a tolerogenic immune environment while preserving the immune response to infectious agents is required for successful bone marrow transplantation. Pregnancy-specific glycoprotein 1 (PSG1), which is secreted by the human placenta into the maternal circulation throughout pregnancy, likely plays a role in maintaining immunotolerance to prevent rejection of the fetus by the maternal immune system. We have previously shown that PSG1 activates the latent form of transforming growth factor β1 (TGF-β), a cytokine essential for the differentiation of tolerance-inducing CD4+FoxP3+ regulatory T cells (Tregs). Consistent with this observation, treatment of naïve murine T cells with PSG1 resulted in a significant increase in FoxP3+ cells that was blocked by a TGF-β receptor I inhibitor. We also show here that PSG1 can increase the availability of active TGF-β in vivo. As the role of CD4+FoxP3+ cells in the prevention of aGVHD is well established, we tested whether PSG1 has beneficial effects in a murine aGHVD transplantation model. PSG1-treated mice had reduced numbers of tissue-infiltrating inflammatory CD3+ T cells and had increased expression of FoxP3 in T cells compared with vehicle-treated mice. In addition, administration of PSG1 significantly inhibited aGVHD-associated weight loss and mortality. On the other hand, administration of PSG1 was less effective in managing aGVHD in the presence of an alloimmune reaction against a malignancy in a graft-versus-leukemia experimental model. Combined, this data strongly suggests that PSG1 could be a promising treatment option for patients with aGVHD following bone marrow transplantation for a nonmalignant condition, such as an autoimmune disorder or a genetic immunodeficiency.
Collapse
Affiliation(s)
- Karlie Jones
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah Bryant
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California
| | - Patricia Kiesler
- Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sherry Koontz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
20
|
Tamura R, Doi S, Nakashima A, Sasaki K, Maeda K, Ueno T, Masaki T. Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One 2018; 13:e0196844. [PMID: 29723250 PMCID: PMC5933785 DOI: 10.1371/journal.pone.0196844] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a major mediator of peritoneal fibrosis and reportedly affects expression of the H3K4 methyltransferase, SET7/9. SET7/9-induced H3K4 mono-methylation (H3K4me1) critically activates transcription of fibrosis-related genes. In this study, we examined the effect of SET7/9 inhibition on peritoneal fibrosis in mice and in human peritoneal mesothelial cells (HPMCs). We also examined SET7/9 expression in nonadherent cells isolated from the effluent of peritoneal dialysis (PD) patients. Murine peritoneal fibrosis was induced by intraperitoneal injection of methylglyoxal (MGO) into male C57/BL6 mice over 21 days. Sinefungin, a SET7/9 inhibitor, was administered subcutaneously just before MGO injection (10 mg/kg). SET7/9 expression was elevated in both MGO-injected mice and nonadherent cells isolated from the effluent of PD patients. SET7/9 expression was positively correlated with dialysate/plasma ratio of creatinine in PD patients. Sinefungin was shown immunohistochemically to suppress expression of mesenchymal cells and collagen deposition, accompanied by decreased H3K4me1 levels. Peritoneal equilibration tests showed that sinefungin attenuated the urea nitrogen transport rate from plasma and the glucose absorption rate from the dialysate. In vitro, sinefungin suppressed TGF-β1-induced expression of fibrotic markers and inhibited H3K4me1. These findings suggest that inhibiting the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuya Maeda
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
21
|
Zhang YG, Singhal M, Lin Z, Manzella C, Kumar A, Alrefai WA, Dudeja PK, Saksena S, Sun J, Gill RK. Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine. Gut Microbes 2018; 9:326-337. [PMID: 29381406 PMCID: PMC6219646 DOI: 10.1080/19490976.2018.1429878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Salmonella and Citrobacter are gram negative, members of Enterobacteriaceae family that are important causative agents of diarrhea and intestinal inflammation. TGF-β1 is a pleiotropic multifunctional cytokine that has been implicated in modulating the severity of microbial infections. How these pathogens alter the TGF-β1 signaling pathways in the intestine is largely unknown. Streptomycin-pretreated C57BL/6J mouse model colonized with S. typhimurium for 8 hours (acute) and 4 days (chronic) infection and FVB/N mice infected with C. rodentium for 6 days were utilized. Results demonstrated an increase in TGF-β1 receptor I expression (p<0.05) in S. typhimurium infected mouse ileum at both acute and chronic post-infection vs control. This was associated with activation of Smad pathways as evidenced by increased phosphorylated (p)-Smad2 and p-Smad3 levels in the nucleus. The inhibitory Smad7 mRNA levels showed a significant up regulation during acute phase of Salmonella infection but no change at 4d post-infection. In contrast to Salmonella, infection with Citrobacter caused drastic downregulation of TGF receptor I and II concomitant with a decrease in levels of Smad 2, 3, 4 and 7 expression in the mouse colon. We speculate that increased TGF-β1 signaling in response to Salmonella may be a host compensatory response to promote mucosal healing; while C. rodentium decreases TGF-β1 signaling pathways to promote inflammation and contribute to disease pathogenesis. These findings increase our understanding of how enteric pathogens subvert specific aspects of the host-cellular pathways to cause disease.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhijie Lin
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Anoop Kumar
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A. Alrefai
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K. Dudeja
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Jun Sun, Ph.D., AGAF, Associate Professor Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB Chicago, IL 60612
| | - Ravinder K. Gill
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Ravinder K. Gill, Ph.D., Associate Professor Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, 820 South Damen Avenue Chicago, IL 60612
| |
Collapse
|
22
|
Du D, Katsuno Y, Meyer D, Budi EH, Chen SH, Koeppen H, Wang H, Akhurst RJ, Derynck R. Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep 2017; 19:135-155. [PMID: 29233829 DOI: 10.15252/embr.201744250] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
During epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-β-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition. SETDB1 also controls stem cell generation, cancer cell motility, invasion, metastatic dissemination, as well as sensitivity to certain cancer drugs. These functions may explain the correlation of breast cancer patient survival with SETDB1 expression. At the molecular level, TGF-β induces SETDB1 recruitment by Smad3, to repress Smad3/4-activated transcription of SNAI1, encoding the EMT "master" transcription factor SNAIL1. Suppression of SNAIL1-mediated gene reprogramming by SETDB1 occurs through H3K9 methylation at the SNAI1 gene that represses its H3K9 acetylation imposed by activated Smad3/4 complexes. SETDB1 therefore defines a TGF-β-regulated balance between histone methylation and acetylation that controls EMT.
Collapse
Affiliation(s)
- Dan Du
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Yoko Katsuno
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Dominique Meyer
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Erine H Budi
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, Biophysics Graduate Program University of California at San Francisco, San Francisco, CA, USA
| | - Hartmut Koeppen
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, USA
| | - Hongjun Wang
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| | - Rosemary J Akhurst
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Na HH, Noh HJ, Cheong HM, Kang Y, Kim KC. SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB Rep 2017; 49:238-43. [PMID: 26949019 PMCID: PMC4915244 DOI: 10.5483/bmbrep.2016.49.4.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/29/2022] Open
Abstract
The efficacy of anticancer drugs depends on a variety of signaling pathways, which can be positively or negatively regulated. In this study, we show that SETDB1 HMTase is down-regulated at the transcriptional level by several anticancer drugs, due to its inherent instability. Using RNA sequence analysis, we identified FosB as being regulated by SETDB1 during anticancer drug therapy. FosB expression was increased by treatment with doxorubicin, taxol and siSETDB1. Moreover, FosB was associated with an increased rate of proliferation. Combinatory transfection of siFosB and siSETDB1 was slightly increased compared to transfection of siFosB. Furthermore, FosB was regulated by multiple kinase pathways. ChIP analysis showed that SETDB1 and H3K9me3 interact with a specific region of the FosB promoter. These results suggest that SETDB1-mediated FosB expression is a common molecular phenomenon, and might be a novel pathway responsible for the increase in cell proliferation that frequently occurs during anticancer drug therapy. [BMB Reports 2016; 49(4): 238-243]
Collapse
Affiliation(s)
- Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jung Noh
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyang-Min Cheong
- Division of Respiratory Viruses, Center for Disease Control and Prevention, Korea National Institute of Health, Osong 28160, Korea
| | - Yoonsung Kang
- Institute for Diagnostic Markers, Eudipia Inc, Osong 28160, Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
24
|
Jones K, Ballesteros A, Mentink-Kane M, Warren J, Rattila S, Malech H, Kang E, Dveksler G. PSG9 Stimulates Increase in FoxP3+ Regulatory T-Cells through the TGF-β1 Pathway. PLoS One 2016; 11:e0158050. [PMID: 27389696 PMCID: PMC4936685 DOI: 10.1371/journal.pone.0158050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
The pregnancy-specific glycoproteins (PSGs) are a family of proteins secreted by the syncytiotrophoblast of the placenta and are the most abundant trophoblastic proteins in maternal blood during the third trimester. The human PSG family consists of 10 protein-coding genes, some of which have a possible role in maintaining maternal immune tolerance to the fetus. PSG9 was reported as a potential predictive biomarker of pre-eclampsia, a serious complication of pregnancy that has been related to immunological dysfunction at the fetal-maternal interface. Therefore, we hypothesized that PSG9 may have an immunoregulatory role during pregnancy. We found that PSG9 binds to LAP and activates the latent form of TGF-β1. In addition, PSG9 induces the secretion of TGF-β1 from macrophages but not from CD4+ T-cells. TGF-β1 is required for the ex vivo differentiation of regulatory T-cells and, consistent with the ability of PSG9 to activate this cytokine, we observed that PSG9 induces the differentiation of FoxP3+ regulatory T-cells from naïve murine and human T-cells. Cytokines that are associated with inflammatory responses were also reduced in the supernatants of T-cells treated with PSG9, suggesting that PSG9, through its activation of TGFβ-1, could be a potent inducer of immune tolerance.
Collapse
Affiliation(s)
- Karlie Jones
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Angela Ballesteros
- National Institute on Deafness and other Communication Disorders, NIH, Bethesda, Maryland, United States of America
| | | | - James Warren
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Shemona Rattila
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Harry Malech
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Elizabeth Kang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Gabriela Dveksler
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
25
|
Benlhabib H, Guo W, Pierce BM, Mendelson CR. The miR-200 family and its targets regulate type II cell differentiation in human fetal lung. J Biol Chem 2015. [PMID: 26203191 DOI: 10.1074/jbc.m114.636068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II cell differentiation and expression of the major surfactant protein, SP-A, in mid-gestation human fetal lung (HFL) are induced by cAMP and inhibited by TGF-β. cAMP induction of SP-A promoter activity is mediated by increased phosphorylation and DNA binding of thyroid transcription factor-1 (TTF-1/Nkx2.1), a master regulator of lung development. To further define mechanisms for developmental induction of surfactant synthesis in HFL, herein, we investigated the potential roles of microRNAs (miRNAs, miRs). To identify and characterize differentially regulated miRNAs in mid-gestation HFL explants during type II pneumocyte differentiation in culture, we performed miRNA microarray of RNA from epithelial cells isolated from mid-gestation HFL explants before and after culture with or without Bt2cAMP. Interestingly, the miR-200 family was significantly up-regulated during type II cell differentiation; miR-200 induction was inversely correlated with expression of known targets, transcription factors ZEB1/2 and TGF-β2. miR-200 antagonists inhibited TTF-1 and surfactant proteins and up-regulated TGF-β2 and ZEB1 expression in type II cells. Overexpression of ZEB1 in type II cells decreased DNA binding of endogenous TTF-1, blocked cAMP stimulation of surfactant proteins, and inhibited miR-200 expression, whereas cAMP markedly inhibited ZEB1/2 and TGF-β. Importantly, overexpression of ZEB1 or miR-200 antagonists in HFL type II cells also inhibited LPCAT1 and ABCA3, enzymes involved in surfactant phospholipid synthesis and trafficking, and blocked lamellar body biogenesis. Our findings suggest that the miR-200 family and ZEB1, which exist in a double-negative feedback loop regulated by TGF-β, serve important roles in the developmental regulation of type II cell differentiation and function in HFL.
Collapse
Affiliation(s)
- Houda Benlhabib
- From the Departments of Biochemistry and Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Wei Guo
- From the Departments of Biochemistry and Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Brianne M Pierce
- From the Departments of Biochemistry and Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- From the Departments of Biochemistry and Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| |
Collapse
|
26
|
Kashiwagi I, Morita R, Schichita T, Komai K, Saeki K, Matsumoto M, Takeda K, Nomura M, Hayashi A, Kanai T, Yoshimura A. Smad2 and Smad3 Inversely Regulate TGF-β Autoinduction in Clostridium butyricum-Activated Dendritic Cells. Immunity 2015; 43:65-79. [PMID: 26141582 DOI: 10.1016/j.immuni.2015.06.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/03/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
Colonization with a mixture of Clostridium species has been shown to induce accumulation of induced regulatory T (iTreg) cells in the colon. Transforming growth factor-β (TGF-β) is an essential factor for iTreg cell induction; however, the relationship between Clostridium species and TGF-β remains to be clarified. Here we demonstrated that a gram-positive probiotic bacterial strain, Clostridium butyricum (C. butyricum), promoted iTreg cell generation in the intestine through induction of TGF-β1 from lamina propria dendritic cells (LPDCs). C. butyricum-mediated TGF-β1 induction was mainly Toll-like receptor 2 (TLR2) dependent, and the ERK-AP-1 kinase pathway played an important role. In addition, the autocrine TGF-β-Smad3 transcription factor signal was necessary for robust TGF-β expression in DCs, whereas Smad2 negatively regulated TGF-β expression. Smad2-deficient DCs expressed higher concentrations of TGF-β and were tolerogenic for colitis models. This study reveals a novel mechanism of TGF-β induction by Clostridia through a cooperation between TLR2-AP-1 and TGF-β-Smad signaling pathways.
Collapse
Affiliation(s)
- Ikkou Kashiwagi
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Takashi Schichita
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Keita Saeki
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Makoto Matsumoto
- Department of Immunology and Medical Zoology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatoshi Nomura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, Tokyo 114-0016, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan, and Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan.
| |
Collapse
|
27
|
Sasaki K, Doi S, Nakashima A, Irifuku T, Yamada K, Kokoroishi K, Ueno T, Doi T, Hida E, Arihiro K, Kohno N, Masaki T. Inhibition of SET Domain-Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis. J Am Soc Nephrol 2015; 27:203-15. [PMID: 26045091 DOI: 10.1681/asn.2014090850] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/12/2015] [Indexed: 12/13/2022] Open
Abstract
TGF-β1 activity results in methylation of lysine 4 of histone H3 (H3K4) through SET domain-containing lysine methyltransferase 7/9 (SET7/9) induction, which is important for the transcriptional activation of fibrotic genes in vitro. However, in vivo studies utilizing an experimental model of renal fibrosis are required to develop therapeutic interventions that target SET7/9. In this study, we investigated the signaling pathway of TGF-β1-induced SET7/9 expression and whether inhibition of SET7/9 suppresses renal fibrosis in unilateral ureteral obstruction (UUO) mice and kidney cell lines. Among the SET family, SET7/9 was upregulated on days 3 and 7 in UUO mice, and the upregulation was suppressed by TGF-β1 neutralizing antibody. TGF-β1 induced SET7/9 expression via Smad3 in normal rat kidney (NRK)-52E cells. In human kidney biopsy specimens from patients diagnosed with IgA nephropathy and membranous nephropathy, SET7/9 expression was positively correlated with the degree of interstitial fibrosis (r=0.59, P=0.001 in patients with IgA nephropathy; and r=0.58, P<0.05 in patients with membranous nephropathy). In addition, small interfering RNA-mediated knockdown of SET7/9 expression significantly attenuated renal fibrosis in UUO mice. Sinefungin, an inhibitor of SET7/9, also suppressed the expression of mesenchymal markers and extracellular matrix proteins and inhibited H3K4 mono-methylation (H3K4me1) in kidneys of UUO mice. Moreover, sinefungin had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and H3K4me1 in both NRK-52E and NRK-49F cells. In conclusion, sinefungin, a SET7/9 inhibitor, ameliorates renal fibrosis by inhibiting H3K4me1 and may be a candidate therapeutic agent.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Taisuke Irifuku
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kyoko Yamada
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Keiko Kokoroishi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Eisuke Hida
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Pathology, Hiroshima University Hospital, Hiroshima, Japan; and
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
28
|
Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, Hsu C, Lin LI, Lin YM, Shen CKJ, Tzeng TY. H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res 2014; 74:7333-43. [PMID: 25477335 DOI: 10.1158/0008-5472.can-13-3572] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant histone methylation is a frequent event during tumor development and progression. KMT1E (also known as SETDB1) is a histone H3K9 methyltransferase that contributes to epigenetic silencing of both oncogenes and tumor suppressor genes in cancer cells. In this report, we demonstrate that KMT1E acts as a metastasis suppressor that is strongly downregulated in highly metastatic lung cancer cells. Restoring KMT1E expression in this setting suppressed filopodia formation, migration, and invasive behavior. Conversely, loss of KMT1E in lung cancer cells with limited metastatic potential promoted migration in vitro and restored metastatic prowess in vivo. Mechanistic investigations indicated that KMT1E cooperates with the TGFβ-regulated complex SMAD2/3 to repress metastasis through ANXA2. Together, our findings defined an essential role for the KMT1E/SMAD2/3 repressor complex in TGFβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Pei-Chun Wu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Hsiang Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kuan-Hsien Chou
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Feng Huang
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wan-Ping Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Yih-Leh Huang
- Department of Medical Research, Buddhist Dalin Tzu Chi Hospital, Chiayi, Taiwan, Republic of China
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China. Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - C-K James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
29
|
Sidler C, Li D, Wang B, Kovalchuk I, Kovalchuk O. SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation. Front Genet 2014; 5:411. [PMID: 25484892 PMCID: PMC4240170 DOI: 10.3389/fgene.2014.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
While the majority of cancer patients are exposed to ionizing radiation during diagnostic and therapeutic procedures, age-dependent differences in radiation sensitivity are not yet well understood. Radiation sensitivity is characterized by the appearance of side effects to radiation therapy, such as secondary malignancies, developmental deficits, and compromised immune function. However, the knowledge of the molecular mechanisms that trigger these side effects is incomplete. Here we used an in vitro system and showed that low-senescent normal human diploid fibroblasts (WI-38) senesce in response to 5 Gy IR, while highly senescent cultures do not show changes in cell cycle regulation and only a slight increase in the percentage of senescent cells. Our study shows that this is associated with changes in the expression of genes responsible for cell cycle progression, apoptosis, DNA repair, and aging, as well as transcriptional and epigenetic regulators. Furthermore, we propose a role of the downregulation of SUV39H1 expression, a histone methyltransferase that specifically trimethylates H3K9, and the corresponding reduction in H3K9me3 levels in the establishment of IR-induced senescence.
Collapse
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
30
|
Abstract
The Dgcr14/Es2 gene is located in a chromosomal region the loss of which has been associated with DiGeorge syndrome, a cause of immunodeficiency, heart defects, and skeletal abnormalities. However, the role of DGCR14 protein remains to be elucidated. Here, I found that DGCR14 protein acts as a coactivator of RORγt in TH17 cells. Biochemical purification of the RORγ coregulator complex allowed me to identify the associated DGCR14 protein by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Overexpression of Dgcr14 mRNA enhanced RORγt-mediated transcriptional activity and facilitated TH17 cell differentiation. Furthermore, knockdown of Dgcr14 reduced Il17a mRNA expression. I also found that DGCR14 associated with ribosomal S6 kinase 2 (RSK2, also called RpS6ka3) and BAZ1B, both of which were recruited to the Il17a promoter during TH17 cell differentiation. Knockdown of Baz1b or RpS6ka3 also reduced Il17a mRNA expression, and Baz1b knockdown increased transcriptional suppressive histone marks (histone H3K9me3) on the Il17a promoter. My findings showed the roles of DGCR14, RSK2, and BAZ1B in the transcriptional regulation of Il17a mRNA during TH17 cell differentiation.
Collapse
|
31
|
Gillett A, Bergman P, Parsa R, Bremges A, Giegerich R, Jagodic M. A silent exonic SNP in kdm3a affects nucleic acids structure but does not regulate experimental autoimmune encephalomyelitis. PLoS One 2013; 8:e81912. [PMID: 24312603 PMCID: PMC3849365 DOI: 10.1371/journal.pone.0081912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures.
Collapse
Affiliation(s)
- Alan Gillett
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petra Bergman
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roham Parsa
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Bremges
- Center for Biotechnology and Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Robert Giegerich
- Center for Biotechnology and Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Tamiya T, Ichiyama K, Kotani H, Fukaya T, Sekiya T, Shichita T, Honma K, Yui K, Matsuyama T, Nakao T, Fukuyama S, Inoue H, Nomura M, Yoshimura A. Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell induction. THE JOURNAL OF IMMUNOLOGY 2013; 191:2360-71. [PMID: 23913959 DOI: 10.4049/jimmunol.1301276] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IL-9 is a pleiotropic cytokine that can regulate autoimmune and allergic responses. Th9 cells can develop from naive T cells or Th2 cells through stimulation by TGF-β in vitro. In this study, we demonstrated that Smad2 and Smad3 are necessary for IL-9 production from T cells in an OVA-induced asthma model using T cell-specific Smad2- and Smad3-deficient mice. Smad2 and Smad3 were also redundantly essential for TGF-β signaling to induce histone modifications for Il9 transcription. Although Smad2/3 was recruited to the Il9 promoter by TGF-β stimulation, they are not sufficient to activate the Il9 promoter. By the screening the transcription factors, we found that IFN regulatory factor 4 (IRF4) was essential for the Smad2/3-mediated Il9 promoter activation. In addition, Smad2/3 physically interacted with IRF4, and Smad2/3 did not bind to the Il9 promoter and could not induce Th9 in IRF4-deficient T cells. Similarly, IRF4 could not stimulate Il9 transcription in the absence of Smad2/3, and TGF-β enhanced IRF4 recruitment to the Il9 promoter in a Smad2/3-dependent manner. We propose that Smad2/3 and IRF4 cooperatively transactivate the Il9 promoter and play an important role in regulating allergic immune responses by inducing Th9 cells.
Collapse
Affiliation(s)
- Taiga Tamiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology 2013; 139:1-10. [PMID: 23347175 DOI: 10.1111/imm.12076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
34
|
CDK inhibitors suppress Th17 and promote iTreg differentiation, and ameliorate experimental autoimmune encephalomyelitis in mice. Biochem Biophys Res Commun 2013; 435:378-84. [PMID: 23665028 DOI: 10.1016/j.bbrc.2013.04.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. Several Smad-independent pathways including the JNK and the RhoA-ROCK pathways have been implicated in the induction of RORγt, the master regulator of Th17, however, molecular mechanisms underlying Smad-independent pathway remain largely unknown. To identify novel pathways involved in Th17 differentiation, we screened 285 chemical inhibitors for known signaling pathways. Among them, we found that Kenpaullone, a GSK3-β and CDK inhibitor, efficiently suppressed TGF-β-mediated RORγt induction and enhanced Foxp3 induction in primary T cells. Another CDK inhibitor, Roscovitine, but not other GSK3-β inhibitors, suppressed Th17 differentiation and enhanced iTreg development. Kenpaullone and Roscovitine suppressed experimental autoimmune encephalomyelitis (EAE), a typical Th17-mediated autoimmune disease model. These two compounds enhanced STAT5 phosphorylation and restored IL-2 production in the presence of TGF-β. These data suggest that CDK inhibitors modulate TGF-β-signaling pathways, which restore TGF-β-mediated suppression of IL-2 production, thereby modifying the Th17/iTreg balance.
Collapse
|
35
|
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
36
|
Robinson CM, Watson CJ, Baugh JA. Epigenetics within the matrix: a neo-regulator of fibrotic disease. Epigenetics 2012; 7:987-93. [PMID: 22894907 DOI: 10.4161/epi.21567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.
Collapse
Affiliation(s)
- Claire M Robinson
- The Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Bendfeldt H, Benary M, Scheel T, Frischbutter S, Abajyan A, Radbruch A, Herzel H, Baumgrass R. Stable IL-2 decision making by endogenous c-Fos amounts in peripheral memory T-helper cells. J Biol Chem 2012; 287:18386-97. [PMID: 22474330 DOI: 10.1074/jbc.m112.358853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytokine IL-2 performs opposite functions supporting efficient immune responses and playing a key role in peripheral tolerance. Therefore, precise fine-tuning of IL-2 expression is crucial for adjusting the immune response. Combining transcription factor analysis at the single cell and the single nucleus level using flow cytometry with statistical analysis, we showed that physiological differences in the expression levels of c-Fos and NFATc2, but not of c-Jun and NF-κBp65, are limiting for the decision whether IL-2 is expressed in a strongly activated human memory T-helper (Th) cell. Variation in the expression of c-Fos leads to substantial diversity of IL-2 expression in ∼40% of the memory Th cells. The remaining cells exhibit an equally high c-Fos expression level, thereby ensuring robustness in IL-2 response within the population. These findings reveal how memory Th cells benefit from regulated variation in transcription factor expression to achieve a certain stability and variability of cytokine expression in a controlled manner.
Collapse
Affiliation(s)
- Hanna Bendfeldt
- Deutsches Rheuma-Forschungszentrum Berlin, A. Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sugiyama Y, Kakoi K, Kimura A, Takada I, Kashiwagi I, Wakabayashi Y, Morita R, Nomura M, Yoshimura A. Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways. Int Immunol 2012; 24:253-65. [PMID: 22331441 DOI: 10.1093/intimm/dxr126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although transforming growth factor (TGF)-β1 is a well-known immunosuppressive cytokine, little is known about the role of its downstream transcription factors, Smad2 and Smad3, in the suppression of macrophage activation. Previous studies have demonstrated that Smad3 is critical for the suppression of LPS-mediated inducible nitric oxide (NO) synthase (iNOS) induction, although the role of Smad2 remains to be investigated. In this study, we found that iNOS induction was enhanced in Smad2-deficient bone marrow-derived macrophages (BMDMs) and peritoneal macrophages in vitro and tumor-associated macrophages in vivo, compared with wild-type (WT) macrophages. However, TGF-β1 still suppressed iNOS induction in Smad2-deficient macrophages. In Smad2/3 double knockout (KO) (Smad2/3 DKO) BMDMs, LPS-mediated NO/iNOS induction was more strongly elevated than in Smad2 or Smad3 single KO BMDMs, and its suppression by exogenous TGF-β1 was severely impaired. These data suggest that Smad2 and Smad3 redundantly regulate iNOS induction. Similarly, the production of IL-6 and TNFα, but not IL-10 was augmented in Smad2/3 DKO BMDMs, suggesting that Smad2 and Smad3 also redundantly suppressed some cytokines production. In Smad2/3 DKO macrophages, TLR3- as well as TLR4-mediated IRF3 activation and IFN-β production were strongly augmented, which resulted in hyper STAT1 phosphorylation. Furthermore, IFN-β- and IFN-γ-induced iNOS induction in the absence of TLR signaling and STAT1 transcriptional activity were augmented in Smad2/3 DKO BMDMs. These results suggest that Smad2 and Smad3 negatively regulate iNOS induction in macrophages by suppressing multiple steps in the IRF3-IFN-β-STAT1 pathway.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|