1
|
Yadav B, Bhattacharya SS, Rosen L, Nagpal R, Yadav H, Yadav JS. Oro-Respiratory Dysbiosis and Its Modulatory Effect on Lung Mucosal Toxicity during Exposure or Co-Exposure to Carbon Nanotubes and Cigarette Smoke. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:314. [PMID: 38334585 PMCID: PMC10856953 DOI: 10.3390/nano14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The oro-respiratory microbiome is impacted by inhalable exposures such as smoking and has been associated with respiratory health conditions. However, the effect of emerging toxicants, particularly engineered nanoparticles, alone or in co-exposure with smoking, is poorly understood. Here, we investigated the impact of sub-chronic exposure to carbon nanotube (CNT) particles, cigarette smoke extract (CSE), and their combination. The oral, nasal, and lung microbiomes were characterized using 16S rRNA-based metagenomics. The exposures caused the following shifts in lung microbiota: CNT led to a change from Proteobacteria and Bacteroidetes to Firmicutes and Tenericutes; CSE caused a shift from Proteobacteria to Bacteroidetes; and co-exposure (CNT+CSE) had a mixed effect, maintaining higher numbers of Bacteroidetes (due to the CNT effect) and Tenericutes (due to the CSE effect) compared to the control group. Oral microbiome analysis revealed an abundance of the following genera: Acinetobacter (CNT), Staphylococcus, Aggregatibacter, Allobaculum, and Streptococcus (CSE), and Alkalibacterium (CNT+CSE). These proinflammatory microbial shifts correlated with changes in the relative expression of lung mucosal homeostasis/defense proteins, viz., aquaporin 1 (AQP-1), surfactant protein A (SP-A), mucin 5b (MUC5B), and IgA. Microbiota depletion reversed these perturbations, albeit to a varying extent, confirming the modulatory role of oro-respiratory dysbiosis in lung mucosal toxicity. This is the first demonstration of specific oro-respiratory microbiome constituents as potential modifiers of toxicant effects in exposed lungs.
Collapse
Affiliation(s)
- Brijesh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| | - Sukanta S. Bhattacharya
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| | - Lauren Rosen
- Department of Pathology and Laboratory Medicine, University of Cincinnati, UC Health University Hospital Laboratory Medicine Building, Suite 110234 Goodman Street, Cincinnati, OH 45219-0533, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Internal Medicine-Digestive Diseases and Nutrition, University of South Florida, Tampa, FL 33613, USA
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA; (B.Y.)
| |
Collapse
|
2
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
3
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
4
|
Wang P, Zhang L, Liao Y, Du J, Xu M, Zhao W, Yin S, Chen G, Deng Y, Li Y, Xue X, Yang Y, Hu G, Chen Y. Effect of Intratracheal Instillation of ZnO Nanoparticles on Acute Lung Inflammation Induced by Lipopolysaccharides in Mice. Toxicol Sci 2020; 173:373-386. [PMID: 31804693 DOI: 10.1093/toxsci/kfz234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although studies have shown toxic effects of zinc oxide (ZnO) particles following inhalation, additional effects on injured lungs, which are characterized by dysfunction of the alveolar-capillary barriers, remain uncharacterized. To explore these additional effects, nano-sized ZnO (nZnO) and bulk-sized ZnO were applied to lipopolysaccharide (LPS)-challenged mouse lungs, which were used as a disease model of acute lung inflammation. An elevated Zn2+ concentration was detected in lung tissue after LPS plus nZnO exposure. Exposure to nZnO in LPS-challenged mice resulted in higher total cell number, proportion of neutrophils, and total protein level in bronchoalveolar lavage fluid. Intratracheal instillation of nZnO intensively aggravated LPS-induced lung inflammation that was accompanied by enhanced expression of interleukin-1β, interleukin-6, monocyte chemotactic protein-1α, and granulocyte-macrophage colony stimulating factor. Catalase, glutathione, and total superoxide dismutase levels were significantly decreased, and the malondialdehyde level was obviously increased in the LPS plus nZnO group. 8-Hydroxyguanosine, a marker for DNA damage, was highly concentrated in the lungs from the LPS plus nZnO group. Furthermore, nZnO increased lung apoptosis in an acute lung inflammation model. Taken together, this evidence indicates that nZnO aggravates lung inflammation related to LPS. This enhancement effect may be mediated via oxidative stress, which can lead to DNA damage and apoptosis. This work is important because of the ever-increasing exposure of people to ZnO nanoparticles in industry. The identification of the toxic effects of nZnO and possible mechanisms revealed in this study provide valuable information for future studies.
Collapse
Affiliation(s)
- Ping Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxia Liao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Juan Du
- Department of Inspection and Quarantine (Hygiene Detection Center), School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mengying Xu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Zhao
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Shuxian Yin
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guilan Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Deng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiran Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue Xue
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiming Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Mahalanobish S, Dutta S, Saha S, Sil PC. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 2020; 144:111588. [PMID: 32738376 DOI: 10.1016/j.fct.2020.111588] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In recent decades, the occurrence of chronic obstructive pulmonary disease (COPD) has been increased remarkably in the population. Cigarette smoke (Cs) plays one of the key roles for COPD development. In our study, we explored the ameliorative role of melatonin on COPD progression by using a Cs inhaled in vivo COPD and cigarette smoke extract (CSE)-treated in vitro L-132 (alveolar epithelial cell) models. Mice exposed to Cs (4hr/day for 4 weeks) exhibited abrupt increase of lactate dehydrogenase (LDH) level in broncho alveolar lavage fluid (BALF) and disrupted alveolar structure in lung tissue. Additionally, increased reactive oxygen species (ROS), decreased cellular antioxidant status with reduced GSH/GSSG ratio were also found in Cs exposed lung. Besides, Cs induced endoplasmic reticulum (ER) stress and mitochondrial dysfunctions causing the activation of NLRP3 inflammasome. Activated NLRP3 inflammasome caused Caspase-1 mediated release of IL-1β and IL-18 resulting in inflammatory outburst. Melatonin showed protection against COPD both in vitro and in vivo. Exhibiting its anti-inflammatory potential, melatonin also attenuated the lung inflammation. It activated the intracellular antioxidant Thioredoxin-1 (thereby suppressing the TXNIP/NLRP3 pathway) and inhibited the impaired mitophagy mediated inflammasome activation (upregulating PINK-1, Parkin, LC3B-II expression). Melatonin also improved the overall antioxidant status of the COPD lung via NRF-2-HO-1 axis restoration.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
6
|
Park JC, Hagiwara A, Park HG, Lee JS. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. MARINE POLLUTION BULLETIN 2020; 156:111080. [PMID: 32510351 DOI: 10.1016/j.marpolbul.2020.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Various xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited. This review covers information on the importance of GSTs as a biomarker for emerging chemicals and their response to wide ranges of environmental pollutants as well as in-depth phylogenetic analysis of marine invertebrates, including recently identified GSTs belonging to rotifers (Brachionus spp.) and copepods (Tigriopus japonicus and Paracyclopina nana), with unique class-specific features of GSTs, as well as a new suggestion of GST evolutionary pathway.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
7
|
Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1348-1364. [PMID: 33537148 PMCID: PMC7853656 DOI: 10.1039/d0en00230e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties. The results indicated that DNA damage and oxidative stress were the dominant mechanisms of action for all SWCNTs and, the toxicity level and characteristics varied with length, surface functionalization and electronic structure. Distinguishable molecular toxicity fingerprints were revealed for the two SWCNTs with varying length, with short SWCNT exhibiting higher toxicity level than the long one. In terms of surface properties, SWCNT functionalization, namely carboxylation and hydroxylation, led to elevated overall toxicity, especially genotoxicity, as compared to unmodified SWCNT. Carboxylated SWCNT induced a greater toxicity than the hydroxylated SWCNT. The nucleus is likely the primary target site for long, short, and carboxylated SWCNTs and mechanical perturbation is likely responsible for the DNA damage, specifically related to degradation of the DNA double helix structure. Finally, dramatically different electronic structure-dependent toxicity was observed with metallic SWCNT exerting much higher toxicity than the semiconducting one that exhibited minimal toxicity among all SWCNTs.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Corresponding authors: ,
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
- Corresponding authors: ,
| |
Collapse
|
8
|
Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, Ho LWC, Zhang L, Leung KCF, Choi PCL, Bian L, Tian XY, Chan MN, Choi CHJ. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS NANO 2019; 13:14048-14069. [PMID: 31725257 DOI: 10.1021/acsnano.9b06424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concerns over the health risks associated with airborne exposure to ultrafine particles [PM0.1, or nanoparticles (NPs)] call for a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey. We prepare a collection of polyethylene glycol-coated gold nanoparticles that bear defined functional groups commonly identified in atmospheric particulates (Au@PEG-X NPs, where X = OCH3, COOH, NH2, OH, or C12H25). Regardless of the functional group, these ∼50 nm NPs remain colloidally stable following aerosolization and incubation in bronchoalveolar lavage fluid (BALF), without pronouncedly crossing the air-blood barrier. The type of BALF proteins adhered onto the NPs is similar, but the composition of protein corona depends on functional group. By subjecting Balb/c mice to inhalation of Au@PEG-X NPs for 6 h, we demonstrate that the intrapulmonary distribution of NPs among the various types of cells (both found in BALF and isolated from the lavaged lung) and the acute inflammatory responses induced by inhalation are sensitive to the functional group of NPs and postinhalation period (0, 24, or 48 h). By evaluating the pairwise correlations between the three variables of "lung-nano" interactions (protein corona, intrapulmonary cellular-level distribution, and inflammatory response), we reveal strong statistical correlations between the (1) fractions of albumin or carbonyl reductase bound to NPs, (2) associations of inhaled NPs to neutrophils in BALF or macrophages in the lavaged lung, and (3) level of total protein in BALF. Our results provide insights into the effect of functional group on lung-nano interactions and health risks associated with inhalation of PM0.1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken Cham-Fai Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon , Hong Kong
| | | | | | | | | | | |
Collapse
|
9
|
Al-Badri AM, Bargooth AF, Al-Jebori JG, Zegyer EAK. Identification of carbon nanotube particles in liver tissue and its effects on apoptosis of birds exposed to air pollution. Vet World 2019; 12:1372-1377. [PMID: 31749569 PMCID: PMC6813606 DOI: 10.14202/vetworld.2019.1372-1377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim This study aimed to distinguish carbon nanotube (CNT) particles and their pathological effects on the liver of birds in areas with carbon emissions. Materials and Methods Twenty-one domestic ducks were collected from pure farmers and exposed to different sources of air pollution. Histological stains were used to detect the accumulation of carbon particles. In addition, acridine orange/ethidium bromide staining was used to detect apoptosis, and scanning electron microscope (SEM) technique was used to determine the morphological design of carbon particles. Results Light microscope results showed that the liver sections contain multiwalled CNTs (MWCNTs) which appear as black spots in the hepatic parenchyma. The histopathological changes of parenchyma include sinusoidal dilatation, infiltration, and congestion with frequently high number of macrophages. In general, early destruction of hepatic parenchyma was observed. Moreover, SEM results showed two morphological types of CNTs: The ball-shaped nanoparticles scattered as ultrafine carbon black and fiber form of carbon particles were recognized as MWCNTs in the hepatic tissue. Fluorescence microscopy results showed the early and progressive stages of apoptosis in the hepatic cells of birds in polluted areas, which can be related to the degree and exposure period to pollutants. Conclusion The study indicates that liver morbidity of birds living in the farms affected by the pollution of brick factories is higher than the birds living in farms affected by the pollution of oil fields.
Collapse
Affiliation(s)
| | - Ali Fayadh Bargooth
- Department of Biology, College of Education for Pure Sciences, Wasit University, Wasit, Iraq
| | - Jafar Ghazi Al-Jebori
- Department of Anatomy and Histology, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | |
Collapse
|
10
|
Gaté L, Knudsen KB, Seidel C, Berthing T, Chézeau L, Jacobsen NR, Valentino S, Wallin H, Bau S, Wolff H, Sébillaud S, Lorcin M, Grossmann S, Viton S, Nunge H, Darne C, Vogel U, Cosnier F. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure. Toxicol Appl Pharmacol 2019; 375:17-31. [PMID: 31075343 DOI: 10.1016/j.taap.2019.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 01/19/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.
Collapse
Affiliation(s)
- Laurent Gaté
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | | | - Carole Seidel
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Trine Berthing
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark.
| | - Laëtitia Chézeau
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France
| | | | - Sarah Valentino
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway.
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland.
| | - Sylvie Sébillaud
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Mylène Lorcin
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Stéphane Grossmann
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Stéphane Viton
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Hervé Nunge
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Christian Darne
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; Department for Micro- and Nanotechnology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| |
Collapse
|
11
|
Mahalanobish S, Saha S, Dutta S, Sil PC. Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis. Food Chem Toxicol 2019; 126:41-55. [PMID: 30769048 DOI: 10.1016/j.fct.2019.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 01/12/2023]
Abstract
Arsenic contaminated drinking water consumption is a serious health issue around the world. Chronic inorganic arsenic exposure has been associated with respiratory dysfunctions. It exerts various detrimental effects, disrupting normal cellular homeostasis and turning on severe pulmonary complications. This study elucidated the role of mangiferin, a natural xanthone, against arsenic induced lung toxicity. Chronic exposure of sodium arsenite (NaAsO2) at 10 mg/kg bw for 3 months abruptly increased the LDH release in broncho-alveolar lavage fluid, generated reactive oxygen species (ROS), impaired the antioxidant defense and distorted the alveoli architecture. It caused significant inflammatory outburst and promoted the apoptotic mode of cell death via upregulating the expressions of various proapoptotic molecules related to mitochondrial, extra-mitochondrial and ER stress mediated apoptotic pathway. Activation of inflammatory cascade led to disruption of alveolar capillary barrier and impaired Na+/K+-ATPase function that led to detaining of alveolar fluid clearance activity. Mangiferin due to its anti-inflammatory activity suppressed this inflammation and reduced inflammatory cell infiltration in lung tissue. It significantly restored the antioxidant balance and inhibited apoptosis in lung via upregulating Nrf2-HO1 axis.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
12
|
Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, Morales M. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:42-48. [PMID: 30690261 DOI: 10.1016/j.aquatox.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, due to the physical, chemical, electrical, thermal and mechanical properties of carbon nanotubes (CNT), its have been currently incorporated into biomedical products and they are employed in drug delivery drug administration, biosensor design, microbial treatments, consumer products, and new products containing CNT are expected in the future. CNT are hydrophobic and have a tendency to accumulate in sediments if they are released into aquatic ecosystems. Vertebrate studies have revealed concerns about the toxicity of carbon nanotubes, but there is very limited data on the toxic effects in aquatic invertebrate species. The aim of the present study is to determine the effects of MWCNT in Chironomus riparius at the molecular level, understanding its mode of action and analyzing the suitability of this species to monitor and assess risk of nanomaterials in aquatic ecosystems. To evaluate possible toxic effects caused by carbon nanotube environmental dispersion with regard to aquatic compartment, we study the mRNA levels of several related genes with DNA repairing mechanisms, cell stress response, cell apoptosis and cytoskeleton by Real-Time PCR and proposed a freshwater invertebrate C. riparius, which is a reference organism in aquatic toxicology. The obtained results show a transcriptional alteration of some genes included in this study, indicating that different cell processes are affected and providing one the first evidences in the mechanisms of action of MWCNT in invertebrates. Moreover, this data reinforces the need for further studies to assess the environmental risk of nanomaterial to prevent future damage to aquatic ecosystems.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Viviana Negri
- Laboratorio de Síntesis Orgánica e Imagen Molecular por Resonancia Magnética, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Adrian Esteban-Arranz
- Nanomedicine Lab, Faculty of Biology, Medicine and Health and National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Ballesteros
- Laboratorio de Síntesis Orgánica e Imagen Molecular por Resonancia Magnética, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Otsuka K, Yamada K, Taquahashi Y, Arakaki R, Ushio A, Saito M, Yamada A, Tsunematsu T, Kudo Y, Kanno J, Ishimaru N. Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes. PLoS One 2018; 13:e0205702. [PMID: 30372450 PMCID: PMC6205598 DOI: 10.1371/journal.pone.0205702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanomaterials are widely used in various fields. Although the toxicity of carbon nanotubes (CNTs) in pulmonary tissues has been demonstrated, the toxicological effect of CNTs on the immune system in the lung remains unclear. Methods and finding In this study, exposure to Taquann-treated multi-walled CNTs (T-CNTs) was performed using aerosols generated in an inhalation chamber. At 12 months after T-CNT exposure, alveolar inflammation with macrophage accumulation and hypertrophy of the alveolar walls were observed. In addition, fibrotic lesions were enhanced by T-CNT exposure. The macrophages in the bronchoalveolar lavage fluid of T-CNT-exposed mice were not largely shifted to any particular population, and were a mixed phenotype with M1 and M2 polarization. Moreover, the alveolar macrophages of T-CNT-exposed mice produced matrix metalloprotinase-12. Conclusions These results suggest that T-CNT exposure promoted chronic inflammation and fibrotic lesion formation in profibrotic macrophages for prolonged periods.
Collapse
Affiliation(s)
- Kunihiro Otsuka
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, Kanagawa, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Ushio
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masako Saito
- Department of Immunology and Parasitology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jun Kanno
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- * E-mail:
| |
Collapse
|
14
|
Mishra V, Baranwal V, Mishra RK, Sharma S, Paul B, Pandey AC. Immunotoxicological impact and biodistribution assessment of bismuth selenide (Bi 2Se 3) nanoparticles following intratracheal instillation in mice. Sci Rep 2017; 7:18032. [PMID: 29269782 PMCID: PMC5740059 DOI: 10.1038/s41598-017-18126-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Variously synthesized and fabricated Bi2Se3 nanoparticles (NPs) have recently been explored for their theranostic properties. Herein, we investigated the long term in-vivo biodistribution of Bi2Se3 NPs and systematically screened its immune-toxic potential over lungs and other secondary organs post intratracheal instillation. X-Ray CT scan and ICP MS results revealed significant particle localization and retention in lungs monitored for 1 h and 6 months time period respectively. Subsequent particle trafficking was observed in liver, the major reticuloendothelial organ followed by gradual but incomplete renal clearance. Pulmonary cytotoxicity was also found to be associated with persistent neutrophilic and ROS generation at all time points following NP exposure. The inflammatory markers along with ROS generation further promoted oxidative stress and exaggerated additional inflammatory pathways leading to cell death. The present study, therefore, raises serious concern about the hazardous effects of Bi2Se3 NPs and calls for further toxicity assessments through different administration routes and doses as well.
Collapse
Affiliation(s)
- Vani Mishra
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India.
- NMR Section, SAIF, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India.
| | - Vikas Baranwal
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India
| | - Rohit K Mishra
- Centre for Bioresource Innovation and Research (CBIR), Dept. of Microbiology, Swami Vivekanand University, Sagar, 470228, M.P., India.
- Centre for Medical Diagnostic and Research (CMDR), Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India.
| | - Shivesh Sharma
- Centre for Medical Diagnostic and Research (CMDR), Motilal Nehru National Institute of Technology (MNNIT), Allahabad, 211004, India
| | - Bholanath Paul
- Immunobiology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, 226001, India
| | - Avinash C Pandey
- Nanotechnology Application Centre (NAC), University of Allahabad, Allahabad, 211002, India
| |
Collapse
|
15
|
Ghasemi A, Amiri H, Zare H, Masroor M, Hasanzadeh A, Beyzavi A, Aref AR, Karimi M, Hamblin MR. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:151. [PMID: 30881265 PMCID: PMC6415915 DOI: 10.1007/s10404-017-1989-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Advanced nanomaterials such as carbon nano-tubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC). A LOC device requires a multidisciplinary contribution from different fields and offers automation, portability, and high-throughput screening along with a significant reduction in reagent consumption. Today, CNT can play a vital role in many parts of a LOC such as membrane channels, sensors and channel walls. This review paper provides an overview of recent trends in the use of CNT in LOC devices and covers challenges and recent advances in the field. CNTs are also reviewed in terms of synthesis, integration techniques, functionalization and superhydrophobicity. In addition, the toxicity of these nanomaterials is reviewed as a major challenge and recent approaches addressing this issue are discussed.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran 14588, Iran
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran 14588, Iran
| | - Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, P.O. Box 1684613114, Tehran, Iran
| | - Maryam Masroor
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Amir R. Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Isclamic Azad University, Teheran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
El-Yamany NA, Mohamed FF, Salaheldin TA, Tohamy AA, Abd El-Mohsen WN, Amin AS. Graphene oxide nanosheets induced genotoxicity and pulmonary injury in mice. ACTA ACUST UNITED AC 2017; 69:383-392. [PMID: 28359838 DOI: 10.1016/j.etp.2017.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Graphene and graphene-related materials have broadly applied in biomedical purposes due to their unique properties, thus safety evaluation of them is crucial. This study was performed to explore the genotoxic and pulmonary toxic potential of different doses of graphene oxide nanosheets' (GOs) in mice.A total of 90 male mature mice were randomly divided into six groups of fifteen mice per each, five groups were intraperitoneally injected by GO at doses of 10, 50, 100, 250 and 500μg/kg b.w once weekly in addition to the control group that was injected intraperitoneally with 0.2ml saline solution. Five animals from each group were euthanized after 7, 28 and 56days post treatment. Evaluation of genotoxicity was performed through detection of chromosomal aberrations in bone marrow while assessment of lung injury was made by determination of DNA fragmentation in lung specimens using the alkali Comet assay, pulmonary oxidative markers estimation and finally histopathological investigations. Results revealed that GOs induced variable structural chromosomal aberrations (SCA) in bone marrow and DNA damage of lung cells that were time and dose dependent and represented by increase in%DNA in comet tail, tail moment and tail length and decrease in% head DNA in nuclei of lung of GOs-treated mice versus control groups in addition, GOs induced various changes in pulmonary oxidative stress parameters that were affected by dose and duration of treatment compared with the control as well as various pulmonary histopathological alterations were detected indicating lung injury. CONCLUSION GO potentiate the induction of genotoxicity and pulmonary injury in mice in time and dose dependent manner.
Collapse
Affiliation(s)
- Nabil A El-Yamany
- Department of Zoology & Entomology, Faculty of Science, Helwan University, Egypt
| | - Faten F Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Taher A Salaheldin
- Mostafa Elsayed Nanotechnology Research Center, British University in Egypt, Egypt; Nanotechnology & Advanced Materials Central Lab, Agriculture Research Center, Egypt
| | - Amany A Tohamy
- Department of Zoology & Entomology, Faculty of Science, Helwan University, Egypt
| | | | - Adel S Amin
- Biotechnology Research Unit, Animal Reproduction Research Institute, Egypt
| |
Collapse
|
17
|
Kermanizadeh A, Jantzen K, Ward MB, Durhuus JA, Juel Rasmussen L, Loft S, Møller P. Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis. Nanotoxicology 2017; 11:184-200. [DOI: 10.1080/17435390.2017.1279359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Michael B. Ward
- Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre, University of Leeds, Leeds, UK
| | - Jon Ambæk Durhuus
- Department of Cellular and Molecular Medicine, University of Copenhagen, Center for Healthy Aging, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Center for Healthy Aging, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Tabish AM, Poels K, Byun HM, luyts K, Baccarelli AA, Martens J, Kerkhofs S, Seys S, Hoet P, Godderis L. Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS One 2017; 12:e0169886. [PMID: 28081255 PMCID: PMC5231360 DOI: 10.1371/journal.pone.0169886] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Aims This study aimed to investigate the effects of nanomaterial (NM) exposure on DNA methylation. Methods and Results Intra-tracheal administration of NM: gold nanoparticles (AuNPs) of 5-, 60- and 250-nm diameter; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at high dose of 2.5 mg/kg and low dose of 0.25 mg/kg for 48 h to BALB/c mice. Study showed deregulations in immune pathways in NM-induced toxicity in vivo. NM administration had the following DNA methylation effects: AuNP 60 nm induced CpG hypermethylation in Atm, Cdk and Gsr genes and hypomethylation in Gpx; Gsr and Trp53 showed changes in methylation between low- and high-dose AuNP, 60 and 250 nm respectively, and AuNP had size effects on methylation for Trp53. Conclusion Epigenetics may be implicated in NM-induced disease pathways.
Collapse
Affiliation(s)
- Ali M. Tabish
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Integrated Cardio Metabolic Centre, Huddinge, Sweden
- * E-mail:
| | - Katrien Poels
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Katrien luyts
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Johan Martens
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Stef Kerkhofs
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, KU Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at work, Heverlee, Belgium
| |
Collapse
|
19
|
Jia Y, Weng Z, Wang C, Zhu M, Lu Y, Ding L, Wang Y, Cheng X, Lin Q, Wu K. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncol Lett 2017; 13:206-214. [PMID: 28123543 PMCID: PMC5245142 DOI: 10.3892/ol.2016.5402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80.
Collapse
Affiliation(s)
- Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai 201318, P.R. China
| | - Chuanying Wang
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Mingjie Zhu
- Department of Pathology, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yongkun Wang
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xianhua Cheng
- School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Qing Lin
- Department of Radiology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kejin Wu
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
- Department of Breast Surgery, Shanghai Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
20
|
Kim DH, Puthumana J, Kang HM, Lee MC, Jeong CB, Han J, Hwang DS, Kim IC, Lee JW, Lee JS. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:115-124. [PMID: 27595654 DOI: 10.1016/j.aquatox.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Cartwright MM, Schmuck SC, Corredor C, Wang B, Scoville DK, Chisholm CR, Wilkerson HW, Afsharinejad Z, Bammler TK, Posner JD, Shutthanandan V, Baer DR, Mitra S, Altemeier WA, Kavanagh TJ. The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biol 2016; 9:264-275. [PMID: 27596734 PMCID: PMC5013253 DOI: 10.1016/j.redox.2016.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Inhalation of multiwalled carbon nanotubes (MWCNTs) during their manufacture or incorporation into various commercial products may cause lung inflammation, fibrosis, and oxidative stress in exposed workers. Some workers may be more susceptible to these effects because of differences in their ability to synthesize the major antioxidant and immune system modulator glutathione (GSH). Accordingly, in this study we examined the influence of GSH synthesis and gender on MWCNT-induced lung inflammation in C57BL/6 mice. GSH synthesis was impaired through genetic manipulation of Gclm, the modifier subunit of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis. Twenty-four hours after aspirating 25µg of MWCNTs, all male mice developed neutrophilia in their lungs, regardless of Gclm genotype. However, female mice with moderate (Gclm heterozygous) and severe (Gclm null) GSH deficiencies developed significantly less neutrophilia. We found no indications of MWCNT-induced oxidative stress as reflected in the GSH content of lung tissue and epithelial lining fluid, 3-nitrotyrosine formation, or altered mRNA or protein expression of several redox-responsive enzymes. Our results indicate that GSH-deficient female mice are rendered uniquely susceptible to an attenuated neutrophil response. If the same effects occur in humans, GSH-deficient women manufacturing MWCNTs may be at greater risk for impaired neutrophil-dependent clearance of MWCNTs from the lung. In contrast, men may have effective neutrophil-dependent clearance, but may be at risk for lung neutrophilia regardless of their GSH levels.
Collapse
Affiliation(s)
- Megan M Cartwright
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Charlie Corredor
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bingbing Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claire R Chisholm
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Hui-Wen Wilkerson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jonathan D Posner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Liu Z, Liu Y, Peng D. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:124-130. [PMID: 27669016 DOI: 10.1016/j.etap.2016.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.
Collapse
Affiliation(s)
- Zhenbao Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China.
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, PR China.
| |
Collapse
|
23
|
Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, Halappanavar S. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol 2016; 13:15. [PMID: 26979667 PMCID: PMC4792104 DOI: 10.1186/s12989-016-0125-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. METHODS Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. RESULTS Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0-30.4 μg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0-27.1 μg/mouse). CONCLUSIONS The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Jake K. Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
24
|
Lee JW, Kang HM, Won EJ, Hwang DS, Kim DH, Lee SJ, Lee JS. Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:67-79. [PMID: 26773353 DOI: 10.1016/j.aquatox.2015.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/25/2015] [Accepted: 12/29/2015] [Indexed: 05/06/2023]
Abstract
To examine the toxic effects of multi-walled carbon nanotubes (MWCNTs) in the marine environment, we first exposed the monogonont rotifer (Brachionus koreanus) to MWCNTs in the presence of copper. The acute toxicity of copper decreased significantly with a decrease in copper bioavailability resulting from MWCNT exposure. Furthermore, we examined the effects of MWCNT exposure on reproductive capacity, population growth rate, growth patterns, antioxidant systems, and mitogen-activated protein kinase (MAPK) activation. Reproductive capacity, population growth rate, and body growth rate were significantly suppressed in B. koreanus in response to 1.3-4mg/L MWCNT exposure. Furthermore, MWCNTs induced the generation of reactive oxygen species (ROS) and decreased the antioxidant enzymatic activities of catalase (CAT) and glutathione reductase (GR). However, the enzymatic activity of glutathione S-transferase (GST) was up-regulated after a 24 h-exposure to 100mg/L MWCNTs. Exposure to 100mg/L MCWNTs induced extracellular signal-regulated kinase (ERK) activation in B. koreanus, suggesting that p-ERK may mediate the adverse effects of MWCNTs in B. koreanus via the MAPK signaling pathway. Our results provide insight into the mechanistic basis of the ecotoxicological effects of MWCNTs in the marine environment.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
25
|
Lee JW, Won EJ, Kang HM, Hwang DS, Kim DH, Kim RK, Lee SJ, Lee JS. Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:9-19. [PMID: 26716406 DOI: 10.1016/j.aquatox.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are nanoparticles widely applicable in various industrial fields. However, despite the usefulness of MWCNTs in industry, their oxidative stress-induced toxicity, combined toxicity with metal, and mitogen-activated protein kinase (MAPK) activation have not been widely investigated in marine organisms. We used the intertidal copepod Tigriopus japonicus as a test organism to demonstrate the adverse effects induced by MWCNTs in aquatic test organisms. The dispersion of the MWCNTs in seawater was maintained over 48 h without aggregation. MWCNTs caused a decrease in acute copper toxicity compared to the copper-only group in response to 20 and 100 mg/L MWCNTs, but not in response to 4 mg/L MWCNT, indicating that MWCNT may suppress acute copper toxicity. Reactive oxygen species (ROS) and enzymatic activities of glutathione S-transferase (GST) and catalase were significantly down-regulated in response to 100 mg/L MWCNT exposure. Glutathione (GSH) and glutathione reductase (GR) activity did not change significantly, indicating that MWCNTs may cause failure of the antioxidant system in T. japonicus. However, MWCNT induced extracellular signal-regulated kinase (ERK) activation without p38 and c-jun NH2-terminal kinase (JNK) activation, suggesting that ERK activation plays a key role in cell signaling pathways downstream of CNT exposure. This suggests that this pathway can be used as a biomarker for CNT exposure in T. japonicus. This study provides a better understanding of the cellular-damage response to MWCNTs.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Rae-Kwon Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
26
|
Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:485343. [PMID: 26146619 PMCID: PMC4469764 DOI: 10.1155/2015/485343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022]
Abstract
Multiwall carbon nanotubes (MWCNTs) have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3), caspase-8 (Cas8), and caspase-9 (Cas9) gene expression relative to the controls, while catalase (CAT) and glutathione-S-transferase (GST) expression were reduced. At 14 days, CAT, GST, and metallothionein (MT) were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS) were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments.
Collapse
|
27
|
MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 2014; 284:16-32. [PMID: 25554681 DOI: 10.1016/j.taap.2014.12.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 11/20/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT(Small), 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT(Large), 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. Lung tissues were harvested 24h, 3 days and 28 days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT(Small) or CNT(Large) were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT(Large) elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT(Small). The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT(Large), which may eventually lead to the different responses observed at day 28.
Collapse
|
28
|
Cui H, Wu W, Okuhira K, Miyazawa K, Hattori T, Sai K, Naito M, Suzuki K, Nishimura T, Sakamoto Y, Ogata A, Maeno T, Inomata A, Nakae D, Hirose A, Nishimaki-Mogami T. High-temperature calcined fullerene nanowhiskers as well as long needle-like multi-wall carbon nanotubes have abilities to induce NLRP3-mediated IL-1β secretion. Biochem Biophys Res Commun 2014; 452:593-9. [PMID: 25181346 DOI: 10.1016/j.bbrc.2014.08.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 02/01/2023]
Abstract
Because multi-wall carbon nanotubes (MWCNTs) have asbestos-like shape and size, concerns about their pathogenicity have been raised. Contaminated metals of MWCNTs may also be responsible for their toxicity. In this study, we employed high-temperature calcined fullerene nanowhiskers (HTCFNWs), which are needle-like nanofibers composed of amorphous carbon having similar sizes to MWCNTs but neither metal impurities nor tubular structures, and investigated their ability to induce production a major proinflammatory cytokine IL-1β via the Nod-like receptor pyrin domain containing 3 (NLRP3)-containing flammasome-mediated mechanism. When exposed to THP-1 macrophages, long-HTCFNW exhibited robust IL-1β production as long and needle-like MWCNTs did, but short-HTCFNW caused very small effect. IL-1β release induced by long-HTCFNW as well as by long, needle-like MWCNTs was abolished by a caspase-1 inhibitor or siRNA-knockdown of NLRP3, indicating that NLRP3-inflammasome-mediated IL-1β production by these carbon nanofibers. Our findings indicate that the needle-like shape and length, but neither metal impurities nor tubular structures of MWCNTs were critical to robust NLRP3 activation.
Collapse
Affiliation(s)
- Hongyan Cui
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Weijia Wu
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Keiichiro Okuhira
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kun'ichi Miyazawa
- Fullerene Engineering Group, Materials Processing Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Hattori
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kimie Sai
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Mikihiko Naito
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kazuhiro Suzuki
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tetsuji Nishimura
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yoshimitsu Sakamoto
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo 169-0073, Japan
| | - Akio Ogata
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo 169-0073, Japan
| | - Tomokazu Maeno
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo 169-0073, Japan
| | - Akiko Inomata
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo 169-0073, Japan
| | - Dai Nakae
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, Tokyo 169-0073, Japan
| | - Akihiko Hirose
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoko Nishimaki-Mogami
- Division of Biochemistry and Metabolism, Division of Biochemistry and Molecular Biology, Division of Environmental Chemistry, Division of Risk Assessment, and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| |
Collapse
|
29
|
Belade E, Chrusciel S, Armand L, Simon-Deckers A, Bussy C, Caramelle P, Gagliolo JM, Boyer L, Lanone S, Pairon JC, Kermanizadeh A, Boczkowski J. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials. Arch Toxicol 2014; 89:1543-56. [PMID: 25098341 DOI: 10.1007/s00204-014-1324-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.
Collapse
Affiliation(s)
- Esther Belade
- University Paris est Val de Marne (UPEC), Créteil, 94000, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, Wang L, Bai R, Chen Z, Zhao Y, Chen C. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3799-3811. [PMID: 23650105 DOI: 10.1002/smll.201300607] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Multiwall carbon nanotubes (MWCNTs) have been widely used in many disciplines due to their unique physical and chemical properties, but have also raised great concerns about their possible negative health impacts, especially through occupational exposure. Although recent studies have demonstrated that MWCNTs induce granuloma formation and/or fibrotic responses in the lungs of rats or mice, their cellular and molecular mechanisms remain largely unaddressed. Here, it is reported that the TGF-β/Smad signaling pathway can be activated by MWCNTs and play a critical role in MWCNT-induced pulmonary fibrosis. Firstly, in vivo data show that spontaneously hypertensive (SH) rats administered long MWCNTs (20-50 μm) but not short MWCNTs (0.5-2 μm) exhibit increased fibroblast proliferation, collagen deposition and granuloma formation in lung tissue. Secondly, the in vivo experiments also indicate that only long MWCNTs can significantly activate macrophages and increase the production of transforming growth factor (TGF)-β1, which induces the phosphorylation of Smad2 and then the expression of collagen I/III and extracellular matrix (ECM) protease inhibitors in lung tissues. Finally, the present in vitro studies further demonstrate that the TGF-β/Smad signaling pathway is indeed necessary for the expression of collagen III in fibroblast cells. Together, these data demonstrate that MWCNTs stimulate pulmonary fibrotic responses such as fibroblast proliferation and collagen deposition in a TGF-β/Smad-dependent manner. These observations also suggest that tube length acts as an important factor in MWCNT-induced macrophage activation and subsequent TGF-β1 secretion. These in vivo and in vitro studies further highlight the potential adverse health effects that may occur following MWCNT exposure and provide a better understanding of the cellular and molecular mechanisms by which MWCNTs induce pulmonary fibrotic reactions.
Collapse
Affiliation(s)
- Peng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond) 2013; 8:969-81. [PMID: 23730696 PMCID: PMC3939602 DOI: 10.2217/nnm.13.49] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.
Collapse
Affiliation(s)
- Anna N Ilinskaya
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Kovacic P, Somanathan R. Nanoparticles: toxicity, radicals, electron transfer, and antioxidants. Methods Mol Biol 2013; 1028:15-35. [PMID: 23740111 DOI: 10.1007/978-1-62703-475-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, nanoparticles have received increasing attention in research and technology, including a variety of practical applications. The bioactivity appears to be related to the small particle size, in addition to inherent chemical activity as electron transfer (ET) agents, generators of reactive oxygen species (ROS) with subsequent oxidative stress (OS), and as antioxidants (AOs). The mechanism of toxicity, therapeutic action, and AO property is addressed based on the ET-ROS-OS approach. There are several main classes of ET functionalities, namely, quinones (or phenolic precursors), metal compounds, aromatic nitro compounds (or reduction products), and imine or iminium species. Most of the nanospecies fall within the metal category. Cell signaling is also discussed. This review discusses recent developments based on ET-ROS-OS-AO framework.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
33
|
Lindberg HK, Falck GCM, Singh R, Suhonen S, Järventaus H, Vanhala E, Catalán J, Farmer PB, Savolainen KM, Norppa H. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology 2012; 313:24-37. [PMID: 23266321 DOI: 10.1016/j.tox.2012.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022]
Abstract
Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10-30 nm × 1-2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ~40% other CNTs; <2 nm × 1-5 μm) in human mesothelial (MeT-5A) cells and bronchial epithelial (BEAS 2B) cells, using the single cell gel electrophoresis (comet) assay and the immunoslot blot assay for the detection of malondialdehyde (M1dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5-200 μg/cm(2), corresponding to 19-760 μg/ml) for 24 and 48h in the comet assay and for 48 and 72 h in the MN and M1dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm(2) of SWCNTs and (after 48 h) 80 μg/cm(2) of both CNTs. SWCNTs also elevated the level of M1dG DNA adducts at 1, 5, 10 and 40 μg/cm(2) after the 48-h treatment, but both CNTs decreased M1dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm(2) after the 24-h treatment and in M1dG adduct level at 5 μg/cm(2) after 48 h and 10 and 40 μg/cm(2) after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M1dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA-damaging effect of CNTs than BEAS 2B cells, despite the fact that more CNT fibres or clusters were seen in BEAS 2B than MeT-5A cells. M1dG DNA adducts were induced by SWCNTs but decreased after a 3-day exposure to MWCNTs and (in MeT-5A cells) SWCNTs, indicating that CNTs may lead to alterations in oxidative effects within the cells. Neither of the CNTs was able to produce chromosomal damage (MN).
Collapse
Affiliation(s)
- Hanna K Lindberg
- Nanosafety Research Center, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland; Safe New Technologies, Work Environment Development, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Impact of Nanomaterials on Health and Environment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/s13369-012-0324-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 2012; 261:121-33. [PMID: 22513272 DOI: 10.1016/j.taap.2012.03.023] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/23/2022]
Abstract
Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures.
Collapse
Affiliation(s)
- Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
36
|
Gopikrishnan R, Zhang K, Ravichandran P, Biradar S, Ramesh V, Goornavar V, Jeffers RB, Pradhan A, Hall JC, Baluchamy S, Ramesh GT. Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2301-2309. [PMID: 21823031 DOI: 10.1007/s10856-011-4405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20-25 nm in diameter and approximately 50-60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.
Collapse
Affiliation(s)
- Ramya Gopikrishnan
- Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Department of Biology, Norfolk State University, Norfolk, VA 23504, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|