1
|
Benner O, Karr CH, Quintero-Gonzalez A, Tamkun MM, Chanda S. The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons. J Biol Chem 2025; 301:108235. [PMID: 39880095 DOI: 10.1016/j.jbc.2025.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
The Shab family voltage-gated K+ channels (i.e., Kv2.1, Kv2.2) are widely expressed in mammalian brain and regulate neuronal action-potential firing. In addition to their canonical functions, the Kv2 proteins help establish direct attachments between plasma membrane and endoplasmic reticulum (ER), also known as ER-plasma membrane junctions. However, the biochemical properties and molecular organization of these ion channels have not yet been described in human neurons. Here, we have performed a systematic analysis of endogenous expression, post-translational modification, and subcellular distribution of the major components of Kv2 complex in neurons derived from human stem cells. We found that both Kv2.1, Kv2.2, and their auxiliary subunit AMIGO1 are significantly upregulated during early neurogenesis, localize at the cell surface, and already begin to assemble with each other. Human Kv2.1 and AMIGO1, but not Kv2.2, undergo substantial post-translational modification including phosphorylation and/or N-linked glycosylation. Acute pharmacological inhibition with Kv2 blockers also revealed their functional activation in human neurons. These proteins formed prominent clusters at cell bodies, dendritic branches, and axon initial segments. Interestingly, a large fraction of them also exhibited considerable accumulation at human presynaptic terminals, where they aggregated with the local ER network. This synaptic localization of Kv2 subunits was primarily restricted to presynaptic regions, as they demonstrated limited enrichment at postsynaptic densities. These results were highly reproducible in multiple stem cell lines used and alternative differentiation protocols tested, confirming that human presynaptic compartments can actively recruit the Shab family K+ ion channels.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Charles H Karr
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Michael M Tamkun
- Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
2
|
Antonucci S, Caron G, Dikwella N, Krishnamurty SS, Harster A, Zarrin H, Tahanis A, Heuvel FO, Danner SM, Ludolph AC, Grycz K, Bączyk M, Zytnicki D, Roselli F. Spinal motoneuron excitability is homeostatically-regulated through β-adrenergic neuromodulation in wild-type and presymptomatic SOD1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586570. [PMID: 38585891 PMCID: PMC10996613 DOI: 10.1101/2024.03.25.586570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Homeostatic feedback loops are essential to stabilize the activity of neurons and neuronal networks. It has been hypothesized that, in the context of Amyotrophic Lateral Sclerosis (ALS), an excessive gain in feedback loops might hyper- or hypo-excite motoneurons (MNs) and contribute to the pathogenesis. Here, we investigated how the neuromodulation of MN intrinsic properties is homeostatically controlled in presymptomatic adult SOD1(G93A) mice and in the age-matched control WT mice. First, we determined that β2 and β3- adrenergic receptors, which are Gs-coupled receptors and subject to tight and robust feedback loops, are specifically expressed in spinal MNs of both SOD1 and WT mice at P45. We then demonstrated that these receptors elicit a so-far overlooked neuromodulation of the firing and excitability properties of MNs. These electrical properties are homeostatically regulated following receptor engagement, which triggers ion channel transcriptional changes and downregulates those receptors. These homeostatic feedbacks are not dysregulated in presymptomatic SOD1 mice, and they set the MN excitability upon β-adrenergic neuromodulation.
Collapse
Affiliation(s)
| | - Guillaume Caron
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | - Anthony Harster
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | | | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | - Albert C. Ludolph
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| | - Kamil Grycz
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Marcin Bączyk
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Daniel Zytnicki
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Francesco Roselli
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| |
Collapse
|
3
|
Wan D, Lu T, Li C, Hu C. Glucocorticoids Rapidly Modulate Ca V1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons. J Neurosci 2024; 44:e0179242024. [PMID: 39299804 PMCID: PMC11551909 DOI: 10.1523/jneurosci.0179-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.
Collapse
Affiliation(s)
- Di Wan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China,
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| |
Collapse
|
4
|
Casas M, Dickson EJ. Channels, Transporters, and Receptors at Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241305593. [PMID: 39742107 PMCID: PMC11686659 DOI: 10.1177/25152564241305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER). We discuss the molecular composition and functional significance of these proteins in shaping both organelle and cellular functions, highlighting their importance in excitable cells and their influence on intracellular calcium signaling. Key MCSs examined include ER-plasma membrane, ER-mitochondria, and ER-lysosome contacts. This review addresses our current knowledge of the ion channels found within these contacts, the dynamic regulation of MCSs, their importance in various physiological processes, and their potential implications in pathological conditions.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Eamonn James Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Matsumoto C, O'Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Fernando Santana L. The formation of K V2.1 macro-clusters is required for sex-specific differences in L-type Ca V1.2 clustering and function in arterial myocytes. Commun Biol 2023; 6:1165. [PMID: 37963972 PMCID: PMC10645748 DOI: 10.1038/s42003-023-05527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
In arterial myocytes, the canonical function of voltage-gated CaV1.2 and KV2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, KV2.1 also plays a sex-specific role by promoting the clustering and activity of CaV1.2 channels. However, the impact of KV2.1 protein organization on CaV1.2 function remains poorly understood. We discovered that KV2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of KV2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the KV2.1 clustering site (KV2.1S590A) eliminated KV2.1 macro-clustering and sex-specific differences in CaV1.2 cluster size and activity. We propose that the degree of KV2.1 clustering tunes CaV1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
Affiliation(s)
- Collin Matsumoto
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Samantha C O'Dwyer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Declan Manning
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | | | - Paula Rhana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Zhihui Fong
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Casas M, Murray KD, Hino K, Vierra NC, Simó S, Trimmer JS, Dixon RE, Dickson EJ. NPC1-dependent alterations in K V2.1-Ca V1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease. Nat Commun 2023; 14:4553. [PMID: 37507375 PMCID: PMC10382591 DOI: 10.1038/s41467-023-39937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes communicate through cholesterol transfer at endoplasmic reticulum (ER) contact sites. At these sites, the Niemann Pick C1 cholesterol transporter (NPC1) facilitates the removal of cholesterol from lysosomes, which is then transferred to the ER for distribution to other cell membranes. Mutations in NPC1 result in cholesterol buildup within lysosomes, leading to Niemann-Pick Type C (NPC) disease, a progressive and fatal neurodegenerative disorder. The molecular mechanisms connecting NPC1 loss to NPC-associated neuropathology remain unknown. Here we show both in vitro and in an animal model of NPC disease that the loss of NPC1 function alters the distribution and activity of voltage-gated calcium channels (CaV). Underlying alterations in calcium channel localization and function are KV2.1 channels whose interactions drive calcium channel clustering to enhance calcium entry and fuel neurotoxic elevations in mitochondrial calcium. Targeted disruption of KV2-CaV interactions rescues aberrant CaV1.2 clustering, elevated mitochondrial calcium, and neurotoxicity in vitro. Our findings provide evidence that NPC is a nanostructural ion channel clustering disease, characterized by altered distribution and activity of ion channels at membrane contacts, which contribute to neurodegeneration.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Matsumoto C, O’Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Santana LF. The formation of K V2.1 macro-clusters is required for sex-specific differences in L-type Ca V1.2 clustering and function in arterial myocytes. RESEARCH SQUARE 2023:rs.3.rs-3136085. [PMID: 37502980 PMCID: PMC10371172 DOI: 10.21203/rs.3.rs-3136085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In arterial myocytes, the canonical function of voltage-gated CaV1.2 and KV2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, KV2.1 also plays a sex-specific role by promoting the clustering and activity of CaV1.2 channels. However, the impact of KV2.1 protein organization on CaV1.2 function remains poorly understood. We discovered that KV2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of KV2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the KV2.1 clustering site (KV2.1S590A) eliminated KV2.1 macro-clustering and sex-specific differences in CaV1.2 cluster size and activity. We propose that the degree of KV2.1 clustering tunes CaV1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
Affiliation(s)
| | | | | | | | - Paula Rhana
- Departments of Physiology & Membrane Biology
| | - Zhihui Fong
- Departments of Physiology & Membrane Biology
| | - Daisuke Sato
- Pharmacology, School of Medicine, University of California, Davis
| | | | | | | | | |
Collapse
|
8
|
Matsumoto C, O'Dwyer SC, Manning D, Hernandez-Hernandez G, Rhana P, Fong Z, Sato D, Clancy CE, Vierra NC, Trimmer JS, Santana LF. The formation of K V 2.1 macro-clusters is required for sex-specific differences in L-type Ca V 1.2 clustering and function in arterial myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546725. [PMID: 37425816 PMCID: PMC10327069 DOI: 10.1101/2023.06.27.546725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In arterial myocytes, the canonical function of voltage-gated Ca V 1.2 and K V 2.1 channels is to induce myocyte contraction and relaxation through their responses to membrane depolarization, respectively. Paradoxically, K V 2.1 also plays a sex-specific role by promoting the clustering and activity of Ca V 1.2 channels. However, the impact of K V 2.1 protein organization on Ca V 1.2 function remains poorly understood. We discovered that K V 2.1 forms micro-clusters, which can transform into large macro-clusters when a critical clustering site (S590) in the channel is phosphorylated in arterial myocytes. Notably, female myocytes exhibit greater phosphorylation of S590, and macro-cluster formation compared to males. Contrary to current models, the activity of K V 2.1 channels seems unrelated to density or macro-clustering in arterial myocytes. Disrupting the K V 2.1 clustering site (K V 2.1 S590A ) eliminated K V 2.1 macro-clustering and sex-specific differences in Ca V 1.2 cluster size and activity. We propose that the degree of K V 2.1 clustering tunes Ca V 1.2 channel function in a sex-specific manner in arterial myocytes.
Collapse
|
9
|
Tiwari MN, Hall BE, Terse A, Amin N, Chung MK, Kulkarni AB. ACTIVATION OF CYCLIN-DEPENDENT KINASE 5 BROADENS ACTION POTENTIALS IN HUMAN SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543017. [PMID: 37398398 PMCID: PMC10312556 DOI: 10.1101/2023.05.31.543017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological conditions. Tissue or nerve injuries induce comprehensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation-dependent manner under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons are not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential and reduced the rheobase currents as compared to the uninfected neurons. CDK5 activation evidently changed the shape of the action potential (AP) by increasing AP rise time, AP fall time, and AP half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in uninfected hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any further significant changes in addition to the aforementioned changes of the membrane properties and AP parameters in the p35-overexpressing group. We conclude that CDK5 activation through the overexpression of p35 in dissociated hDRG neurons broadens AP in hDRG neurons and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under pathological conditions, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Bradford E. Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| |
Collapse
|
10
|
Tiwari MN, Hall BE, Ton AT, Ghetti R, Terse A, Amin N, Chung MK, Kulkarni AB. Activation of cyclin-dependent kinase 5 broadens action potentials in human sensory neurons. Mol Pain 2023; 19:17448069231218353. [PMID: 37982142 PMCID: PMC10687939 DOI: 10.1177/17448069231218353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | | - Re Ghetti
- AnaBios, San Diego, CA, United States
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Nguyen H, Zhu W, Baltan S. Casein Kinase 2 Signaling in White Matter Stroke. Front Mol Biosci 2022; 9:908521. [PMID: 35911974 PMCID: PMC9325966 DOI: 10.3389/fmolb.2022.908521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
The growth of the aging population, together with improved stroke care, has resulted in an increase in stroke survivors and a rise in recurrent events. Axonal injury and white matter (WM) dysfunction are responsible for much of the disability observed after stroke. The mechanisms of WM injury are distinct compared to gray matter and change with age. Therefore, an ideal stroke therapeutic must restore neuronal and axonal function when applied before or after a stroke, and it must also protect across age groups. Casein kinase 2 (CK2), is expressed in the brain, including WM, and is regulated during the development and numerous disease conditions such as cancer and ischemia. CK2 activation in WM mediates ischemic injury by activating the Cdk5 and AKT/GSK3β signaling pathways. Consequently, CK2 inhibition using the small molecule inhibitor CX-4945 (Silmitasertib) correlates with preservation of oligodendrocytes, conservation of axon structure, and axonal mitochondria, leading to improved functional recovery. Remarkably, CK2 inhibition promotes WM function when applied after ischemic injury by specifically regulating the AKT/GSK3β pathways. The blockade of the active conformation of AKT confers post-ischemic protection to young and old WM by preserving mitochondria, implying AKT as a common therapeutic target across age groups. Using a NanoString nCounter miRNA expression profiling, comparative analyses of ischemic WM with or without CX-4945 treatment reveal that miRNAs are expressed at high levels in WM after ischemia, and CX-4945 differentially regulates some of these miRNAs. Therefore, we propose that miRNA regulation may be one of the protective actions of CX-4945 against WM ischemic injury. Silmitasertib is FDA approved and currently in use for cancer and Covid patients; therefore, it is plausible to repurpose CK2 inhibitors for stroke patients.
Collapse
Affiliation(s)
| | | | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
12
|
Marquis MJ, Sack JT. Mechanism of use-dependent Kv2 channel inhibition by RY785. J Gen Physiol 2022; 154:e202112981. [PMID: 35435946 PMCID: PMC9195051 DOI: 10.1085/jgp.202112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the mechanism by which ion channel modulators act is critical for interpretation of their physiological effects and can provide insight into mechanisms of ion channel gating. The small molecule RY785 is a potent and selective inhibitor of Kv2 voltage-gated K+ channels that has a use-dependent onset of inhibition. Here, we investigate the mechanism of RY785 inhibition of rat Kv2.1 (Kcnb1) channels heterologously expressed in CHO-K1 cells. We find that 1 µM RY785 block eliminates Kv2.1 current at all physiologically relevant voltages, inhibiting ≥98% of the Kv2.1 conductance. Both onset of and recovery from RY785 inhibition require voltage sensor activation. Intracellular tetraethylammonium, a classic open-channel blocker, competes with RY785 inhibition. However, channel opening itself does not appear to alter RY785 access. Gating current measurements reveal that RY785 inhibits a component of voltage sensor activation and accelerates voltage sensor deactivation. We propose that voltage sensor activation opens a path into the central cavity of Kv2.1 where RY785 binds and promotes voltage sensor deactivation, trapping itself inside. This gated-access mechanism in conjunction with slow kinetics of unblock supports simple interpretation of RY785 effects: channel activation is required for block by RY785 to equilibrate, after which trapped RY785 will simply decrease the Kv2 conductance density.
Collapse
Affiliation(s)
- Matthew James Marquis
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Jon T. Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
13
|
Dickson EJ. Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159107. [PMID: 34995791 PMCID: PMC9662651 DOI: 10.1016/j.bbalip.2021.159107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Phosphoinositides are a family of signaling lipids that play a profound role in regulating protein function at the membrane-cytosol interface of all cellular membranes. Underscoring their importance, mutations or alterations in phosphoinositide metabolizing enzymes lead to host of developmental, neurodegenerative, and metabolic disorders that are devastating for human health. In addition to lipid enzymes, phosphoinositide metabolism is regulated and controlled at membrane contact sites (MCS). Regions of close opposition typically between the ER and other cellular membranes, MCS are non-vesicular lipid transport portals that engage in extensive communication to influence organelle homeostasis. This review focuses on lipid transport, specifically phosphoinositide lipid transport and metabolism at MCS.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
14
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
15
|
Inhibition of Cdk5 in PV Neurons Reactivates Experience-Dependent Plasticity in Adult Visual Cortex. Int J Mol Sci 2021; 23:ijms23010186. [PMID: 35008611 PMCID: PMC8745415 DOI: 10.3390/ijms23010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been shown to play a critical role in brain development, learning, memory and neural processing in general. Cdk5 is widely distributed in many neuron types in the central nervous system, while its cell-specific role is largely unknown. Our previous study showed that Cdk5 inhibition restored ocular dominance (OD) plasticity in adulthood. In this study, we specifically knocked down Cdk5 in different types of neurons in the visual cortex and examined OD plasticity by optical imaging of intrinsic signals. Downregulation of Cdk5 in parvalbumin-expressing (PV) inhibitory neurons, but not other neurons, reactivated adult mouse visual cortical plasticity. Cdk5 knockdown in PV neurons reduced the evoked firing rate, which was accompanied by an increment in the threshold current for the generation of a single action potential (AP) and hyperpolarization of the resting membrane potential. Moreover, chemogenetic activation of PV neurons in the visual cortex can attenuate the restoration of OD plasticity by Cdk5 inhibition. Taken together, our results suggest that Cdk5 in PV interneurons may play a role in modulating the excitation and inhibition balance to control the plasticity of the visual cortex.
Collapse
|
16
|
Manglani K, Dey CS. CDK5 inhibition improves glucose uptake in insulin-resistant neuronal cells via ERK1/2 pathway. Cell Biol Int 2021; 46:488-497. [PMID: 34865281 DOI: 10.1002/cbin.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023]
Abstract
Role of CDK5 and its inhibition in various neuronal processes and functions are well established. However, role of CDK5 and its inhibition in neuronal insulin-signaling and-resistance is not yet explored. In the present study, we investigated the effect of CDK5 inhibition in neuronal insulin signaling, specifically insulin-stimulated glucose uptake. CDK5 expression in neuro-2a cells was increased under insulin-resistant state, developed by chronic treatment of insulin, confirming the crucial role of CDK5 in insulin resistance in neuronal cells. However, whether increased expression of CDK5 in hyperinsulinemia-mediated insulin-resistant conditions is a cause or a consequence, is still an unanswered question. We showed that CDK5 inhibition did not affect basal insulin signaling; however, insulin-stimulated glucose uptake enhanced in insulin-resistant cells. Moreover, CDK5 inhibition could improve glucose uptake, the ultimate outcome of insulin signaling, in insulin-resistant neuro-2a cells. We first time showed that CDK5 inhibition by roscovitine could ameliorate insulin resistance and increase glucose uptake in neuronal cells via ERK1/2 pathway. Our study provides intriguing insights about the effect of CDK5 inhibition on neuronal insulin resistance and opens up a new paradigm to develop new therapeutic strategies for neuronal insulin resistance and associated pathophysiological conditions.
Collapse
Affiliation(s)
- Kapil Manglani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Chinmoy S Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
17
|
Thapa P, Stewart R, Sepela RJ, Vivas O, Parajuli LK, Lillya M, Fletcher-Taylor S, Cohen BE, Zito K, Sack JT. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. J Gen Physiol 2021; 153:212666. [PMID: 34581724 PMCID: PMC8480965 DOI: 10.1085/jgp.202012858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane–endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Robert Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Mark Lillya
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Sebastian Fletcher-Taylor
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
18
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
19
|
Li Z, Dong W, Zhang X, Lu JM, Mei YA, Hu C. Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity. Neurosci Bull 2021; 38:135-148. [PMID: 34542799 PMCID: PMC8821747 DOI: 10.1007/s12264-021-00773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023] Open
Abstract
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenhao Dong
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyuan Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun-Mei Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan-Ai Mei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Changlong Hu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
20
|
Fernandez C, Burgos A, Morales D, Rosales-Rojas R, Canelo J, Vergara-Jaque A, Vieira GV, da Silva RAA, Sales KU, Conboy MJ, Bae EJ, Park KS, Torres VA, Garrido M, Cerda O, Conboy IM, Cáceres M. TMPRSS11a is a novel age-altered, tissue specific regulator of migration and wound healing. FASEB J 2021; 35:e21597. [PMID: 33908663 DOI: 10.1096/fj.202002253rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin β1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.
Collapse
Affiliation(s)
- Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andres Burgos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Rosales-Rojas
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Javiera Canelo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Gabriel Viliod Vieira
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Katiuchia Uzzun Sales
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Eun Ji Bae
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Kang-Sik Park
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
21
|
Dallas ML, Al-Owais MM, Hettiarachchi NT, Vandiver MS, Jarosz-Griffiths HH, Scragg JL, Boyle JP, Steele D, Peers C. Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1. Sci Rep 2021; 11:8194. [PMID: 33854181 PMCID: PMC8046973 DOI: 10.1038/s41598-021-87646-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| | - Moza M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Scott Vandiver
- Department of Neuroscience, John's Hopkins University School of Medicine, Baltimore, USA
| | | | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - John P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
22
|
Song MY, Hwang JY, Bae EJ, Kim S, Kang HM, Kim YJ, Park C, Park KS. Tyrosine Phosphorylation of the K v2.1 Channel Contributes to Injury in Brain Ischemia. Int J Mol Sci 2020; 21:ijms21249538. [PMID: 33333928 PMCID: PMC7765428 DOI: 10.3390/ijms21249538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
In brain ischemia, oxidative stress induces neuronal apoptosis, which is mediated by increased activity of the voltage-gated K+ channel Kv2.1 and results in an efflux of intracellular K+. The molecular mechanisms underlying the regulation of Kv2.1 and its activity during brain ischemia are not yet fully understood. Here this study provides evidence that oxidant-induced apoptosis resulting from brain ischemia promotes rapid tyrosine phosphorylation of Kv2.1. When the tyrosine phosphorylation sites Y124, Y686, and Y810 on the Kv2.1 channel are mutated to non-phosphorylatable residues, PARP-1 cleavage levels decrease, indicating suppression of neuronal cell death. The tyrosine residue Y810 on Kv2.1 was a major phosphorylation site. In fact, cells mutated Y810 were more viable in our study than were wild-type cells, suggesting an important role for this site during ischemic neuronal injury. In an animal model, tyrosine phosphorylation of Kv2.1 increased after ischemic brain injury, with an observable sustained increase for at least 2 h after reperfusion. These results demonstrate that tyrosine phosphorylation of the Kv2.1 channel in the brain may play a critical role in regulating neuronal ischemia and is therefore a potential therapeutic target in patients with brain ischemia.
Collapse
Affiliation(s)
- Min-Young Song
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Ji Yeon Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Eun Ji Bae
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Saesbyeol Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Hye-Min Kang
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Chan Park
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Kang-Sik Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0292; Fax: +82-2-964-2195
| |
Collapse
|
23
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
24
|
Cdk5-Dependent Phosphorylation of Ca V3.2 T-Type Channels: Possible Role in Nerve Ligation-Induced Neuropathic Allodynia and the Compound Action Potential in Primary Afferent C Fibers. J Neurosci 2019; 40:283-296. [PMID: 31744861 DOI: 10.1523/jneurosci.0181-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.
Collapse
|
25
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
26
|
Chernov AV, Remacle AG, Hullugundi SK, Cieplak P, Angert M, Dolkas J, Shubayev VI, Strongin AY. Amino acid sequence conservation of the algesic fragment of myelin basic protein is required for its interaction with CDK5 and function in pain. FEBS J 2018; 285:3485-3502. [PMID: 30079618 DOI: 10.1111/febs.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Neurotrauma frequently results in neuropathic pain. Our earlier studies revealed that peripheral neurotrauma-induced fragmentation of the myelin basic protein (MBP), a major component of the myelin sheath formed by Schwann cells, initiates a pain response from light touch stimuli (mechanical allodynia) in rodents. Here, we identified the cyclin-dependent kinase 5 (CDK5), as an intracellular interactor of MBP in Schwann cells. The algesic peptide fragment of MBP directly associated with CDK5. When complexed with its p25 coactivator, CDK5 phosphorylated the conserved MBP sequence. The expressed MBP fragment colocalized with CDK5 in Schwann cell protrusions. Roscovitine, an ATP-competitive CDK5 inhibitor, disrupted localization of the expressed MBP peptide. Mutations in the evolutionary conserved MBP algesic sequence resulted in the interference with intracellular trafficking of the MBP fragment and kinase activity of CDK5 and diminished pain-like behavior in rodents. Our findings show that MBP fragment amino acid sequence conservation determines its interactions, trafficking, and pronociceptive activity. Because CDK5 activity controls both neurogenesis and nociception, the algesic MBP fragment may be involved in the regulation of the CDK5 functionality in pain signaling and postinjury neurogenesis in vertebrates. DATABASE The novel RNA-seq datasets were deposited in the GEO database under the accession number GSE107020.
Collapse
Affiliation(s)
- Andrei V Chernov
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Albert G Remacle
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
28
|
Identification of VAPA and VAPB as Kv2 Channel-Interacting Proteins Defining Endoplasmic Reticulum-Plasma Membrane Junctions in Mammalian Brain Neurons. J Neurosci 2018; 38:7562-7584. [PMID: 30012696 DOI: 10.1523/jneurosci.0893-18.2018] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
Membrane contacts between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are ubiquitous in eukaryotic cells and are platforms for lipid and calcium signaling and homeostasis. Recent studies have revealed proteins crucial to the formation and function of ER-PM junctions in non-neuronal cells, but little is known of the ER-PM junctions prominent in aspiny regions of mammalian brain neurons. The Kv2.1 voltage-gated potassium channel is abundantly clustered at ER-PM junctions in brain neurons and is the first PM protein that functions to organize ER-PM junctions. However, the molecular mechanism whereby Kv2.1 localizes to and remodels these junctions is unknown. We used affinity immunopurification and mass spectrometry-based proteomics on brain samples from male and female WT and Kv2.1 KO mice and identified the resident ER vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as prominent Kv2.1-associated proteins. Coexpression with Kv2.1 or its paralog Kv2.2 was sufficient to recruit VAPs to ER-PM junctions. Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. The association of VAPA with Kv2.1 relies on a "two phenylalanines in an acidic tract" (FFAT) binding domain on VAPA and a noncanonical phosphorylation-dependent FFAT motif comprising the Kv2-specific clustering or PRC motif. These results suggest that Kv2.1 localizes to and organizes neuronal ER-PM junctions through an interaction with VAPs.SIGNIFICANCE STATEMENT Our study identified the endoplasmic reticulum (ER) proteins vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as proteins copurifying with the plasma membrane (PM) Kv2.1 ion channel. We found that expression of Kv2.1 recruits VAPs to ER-PM junctions, specialized membrane contact sites crucial to distinct aspects of cell function. We found endogenous VAPs at Kv2.1-mediated ER-PM junctions in brain neurons and other mammalian cells and that knocking out VAPA expression disrupts Kv2.1 clustering. We identified domains of VAPs and Kv2.1 necessary and sufficient for their association at ER-PM junctions. Our study suggests that Kv2.1 expression in the PM can affect ER-PM junctions via its phosphorylation-dependent association to ER-localized VAPA and VAPB.
Collapse
|
29
|
Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB. Proc Natl Acad Sci U S A 2018; 115:E7331-E7340. [PMID: 29941597 DOI: 10.1073/pnas.1805757115] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.
Collapse
|
30
|
Bastian C, Quinn J, Tripathi A, Aquila D, McCray A, Dutta R, Baltan S, Brunet S. CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiol Dis 2018; 126:47-61. [PMID: 29944965 DOI: 10.1016/j.nbd.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - John Quinn
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ajai Tripathi
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Danielle Aquila
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Andrew McCray
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ranjan Dutta
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Selva Baltan
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Sylvain Brunet
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
31
|
Two Distinct Secretory Pathways for Differential Kv2.1 Localization in Neurons. J Neurosci 2018; 38:4261-4263. [PMID: 29720558 DOI: 10.1523/jneurosci.0236-18.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
|
32
|
Heteromeric K V2/K V8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors. J Neurosci 2018; 38:3414-3427. [PMID: 29483285 DOI: 10.1523/jneurosci.2440-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/18/2018] [Accepted: 02/11/2018] [Indexed: 01/17/2023] Open
Abstract
Silent voltage-gated potassium channel subunits (KVS) interact selectively with members of the KV2 channel family to modify their functional properties. The localization and functional roles of these silent subunits remain poorly understood. Mutations in the KVS subunit, KV8.2 (KCNV2), lead to severe visual impairment in humans, but the basis of these deficits remains unclear. Here, we examined the localization, native interactions, and functional properties of KV8.2-containing channels in mouse, macaque, and human photoreceptors of either sex. In human retina, KV8.2 colocalized with KV2.1 and KV2.2 in cone inner segments and with KV2.1 in rod inner segments. KV2.1 and KV2.2 could be coimmunoprecipitated with KV8.2 in retinal lysates indicating that these subunits likely interact directly. Retinal KV2.1 was less phosphorylated than cortical KV2.1, a difference expected to alter the biophysical properties of these channels. Using voltage-clamp recordings and pharmacology, we provide functional evidence for Kv2-containing channels in primate rods and cones. We propose that the presence of KV8.2, and low levels of KV2.1 phosphorylation shift the activation range of KV2 channels to align with the operating range of rod and cone photoreceptors. Our data indicate a role for KV2/KV8.2 channels in human photoreceptor function and suggest that the visual deficits in patients with KCNV2 mutations arise from inadequate resting activation of KV channels in rod and cone inner segments.SIGNIFICANCE STATEMENT Mutations in a voltage-gated potassium channel subunit, KV8.2, underlie a blinding inherited photoreceptor dystrophy, indicating an important role for these channels in human vision. Here, we have defined the localization and subunit interactions of KV8.2 channels in primate photoreceptors. We show that the KV8.2 subunit interacts with different Kv2 channels in rods and cones, giving rise to potassium currents with distinct functional properties. Our results provide a molecular basis for retinal dysfunction in patients with mutations in the KCNV2 gene encoding KV8.2.
Collapse
|
33
|
Riquelme D, Silva I, Philp AM, Huidobro-Toro JP, Cerda O, Trimmer JS, Leiva-Salcedo E. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3. Front Cell Neurosci 2018; 12:12. [PMID: 29440991 PMCID: PMC5797675 DOI: 10.3389/fncel.2018.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.
Collapse
Affiliation(s)
- Denise Riquelme
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ian Silva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ashleigh M Philp
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Juan P Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, United States.,Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis CA, United States
| | - Elias Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, Santiago, Chile
| |
Collapse
|
34
|
Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE. Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction. Diabetes 2017; 66:1890-1900. [PMID: 28607108 PMCID: PMC5482075 DOI: 10.2337/db16-1170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
Insulin exocytosis is regulated by ion channels that control excitability and Ca2+ influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K+ (Kv) channel Kv2.1 (KCNB1) facilitates depolarization-induced exocytosis in INS 832/13 cells and β-cells from human donors with and without type 2 diabetes (T2D). We find that Kv2.1, but not Kv2.2 (KCNB2), forms clusters of 6-12 tetrameric channels at the plasma membrane and facilitates insulin exocytosis. Knockdown of Kv2.1 expression reduces secretory granule targeting to the plasma membrane. Expression of the full-length channel (Kv2.1-wild-type) supports the glucose-dependent recruitment of secretory granules. However, a truncated channel (Kv2.1-ΔC318) that retains electrical function and syntaxin 1A binding, but lacks the ability to form clusters, does not enhance granule recruitment or exocytosis. Expression of KCNB1 appears reduced in T2D islets, and further knockdown of KCNB1 does not inhibit Kv current in T2D β-cells. Upregulation of Kv2.1-wild-type, but not Kv2.1-ΔC318, rescues the exocytotic phenotype in T2D β-cells and increases insulin secretion from T2D islets. Thus, the ability of Kv2.1 to directly facilitate insulin exocytosis depends on channel clustering. Loss of this structural role for the channel might contribute to impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Githaka
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mette Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ. The anticonvulsant retigabine suppresses neuronal K V2-mediated currents. Sci Rep 2016; 6:35080. [PMID: 27734968 PMCID: PMC5062084 DOI: 10.1038/srep35080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently also gained attention due to its neuroprotective properties. In the present study, we found that the auxiliary KCNE2 subunit reduced the KV7.2-KV7.3 retigabine sensitivity approximately 5-fold. In addition, using both mammalian expression systems and cultured hippocampal neurons we determined that low μM retigabine concentrations had ‘off-target’ effects on KV2.1 channels which have recently been implicated in apoptosis. Clinical retigabine concentrations (0.3–3 μM) inhibited KV2.1 channel function upon prolonged exposure. The suppression of the KV2.1 conductance was only partially reversible. Our results identified KV2.1 as a new molecular target for retigabine, thus giving a potential explanation for retigabine’s neuroprotective properties.
Collapse
Affiliation(s)
- Jeroen I Stas
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium.,Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Camilla S Jensen
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicole Schmitt
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
36
|
Distinct Cell- and Layer-Specific Expression Patterns and Independent Regulation of Kv2 Channel Subtypes in Cortical Pyramidal Neurons. J Neurosci 2016; 35:14922-42. [PMID: 26538660 DOI: 10.1523/jneurosci.1897-15.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The Kv2 family of voltage-gated potassium channel α subunits, comprising Kv2.1 and Kv2.2, mediate the bulk of the neuronal delayed rectifier K(+) current in many mammalian central neurons. Kv2.1 exhibits robust expression across many neuron types and is unique in its conditional role in modulating intrinsic excitability through changes in its phosphorylation state, which affect Kv2.1 expression, localization, and function. Much less is known of the highly related Kv2.2 subunit, especially in forebrain neurons. Here, through combined use of cortical layer markers and transgenic mouse lines, we show that Kv2.1 and Kv2.2 are localized to functionally distinct cortical cell types. Kv2.1 expression is consistently high throughout all cortical layers, especially in layer (L) 5b pyramidal neurons, whereas Kv2.2 expression is primarily limited to neurons in L2 and L5a. In addition, L4 of primary somatosensory cortex is strikingly devoid of Kv2.2 immunolabeling. The restricted pattern of Kv2.2 expression persists in Kv2.1-KO mice, suggesting distinct cell- and layer-specific functions for these two highly related Kv2 subunits. Analyses of endogenous Kv2.2 in cortical neurons in situ and recombinant Kv2.2 expressed in heterologous cells reveal that Kv2.2 is largely refractory to stimuli that trigger robust, phosphorylation-dependent changes in Kv2.1 clustering and function. Immunocytochemistry and voltage-clamp recordings from outside-out macropatches reveal distinct cellular expression patterns for Kv2.1 and Kv2.2 in intratelencephalic and pyramidal tract neurons of L5, indicating circuit-specific requirements for these Kv2 paralogs. Together, these results support distinct roles for these two Kv2 channel family members in mammalian cortex. SIGNIFICANCE STATEMENT Neurons within the neocortex are arranged in a laminar architecture and contribute to the input, processing, and/or output of sensory and motor signals in a cell- and layer-specific manner. Neurons of different cortical layers express diverse populations of ion channels and possess distinct intrinsic membrane properties. Here, we show that the Kv2 family members Kv2.1 and Kv2.2 are expressed in distinct cortical layers and pyramidal cell types associated with specific corticostriatal pathways. We find that Kv2.1 and Kv2.2 exhibit distinct responses to acute phosphorylation-dependent regulation in brain neurons in situ and in heterologous cells in vitro. These results identify a molecular mechanism that contributes to heterogeneity in cortical neuron ion channel function and regulation.
Collapse
|
37
|
Evans MD, Dumitrescu AS, Kruijssen DLH, Taylor SE, Grubb MS. Rapid Modulation of Axon Initial Segment Length Influences Repetitive Spike Firing. Cell Rep 2015; 13:1233-1245. [PMID: 26526995 PMCID: PMC4646840 DOI: 10.1016/j.celrep.2015.09.066] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022] Open
Abstract
Neurons implement a variety of plasticity mechanisms to alter their function over timescales ranging from seconds to days. One powerful means of controlling excitability is to directly modulate the site of spike initiation, the axon initial segment (AIS). However, all plastic structural AIS changes reported thus far have been slow, involving days of neuronal activity perturbation. Here, we show that AIS plasticity can be induced much more rapidly. Just 3 hr of elevated activity significantly shortened the AIS of dentate granule cells in a calcineurin-dependent manner. The functional effects of rapid AIS shortening were offset by dephosphorylation of voltage-gated sodium channels, another calcineurin-dependent mechanism. However, pharmacological separation of these phenomena revealed a significant relationship between AIS length and repetitive firing. The AIS can therefore undergo a rapid form of structural change over timescales that enable interactions with other forms of activity-dependent plasticity in the dynamic control of neuronal excitability. Structural plasticity at the axon initial segment can occur within hours Ankyrin-G and sodium channel distributions shorten after 3 hr of elevated activity Rapid plasticity depends on calcineurin signaling opposed by CDK5 All else being equal, AIS shortening correlates with lowered neuronal excitability
Collapse
Affiliation(s)
- Mark D Evans
- MRC Centre for Developmental Neurobiology, King's College London, 4(th) Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Adna S Dumitrescu
- MRC Centre for Developmental Neurobiology, King's College London, 4(th) Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Dennis L H Kruijssen
- MRC Centre for Developmental Neurobiology, King's College London, 4(th) Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Samuel E Taylor
- MRC Centre for Developmental Neurobiology, King's College London, 4(th) Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Matthew S Grubb
- MRC Centre for Developmental Neurobiology, King's College London, 4(th) Floor, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
38
|
Cobb MM, Austin DC, Sack JT, Trimmer JS. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells. J Biol Chem 2015; 290:29189-201. [PMID: 26442584 DOI: 10.1074/jbc.m115.690198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.
Collapse
Affiliation(s)
- Melanie M Cobb
- From the Departments of Neurobiology, Physiology, and Behavior
| | | | - Jon T Sack
- Physiology and Membrane Biology, and Anesthesiology and Pain Medicine, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- From the Departments of Neurobiology, Physiology, and Behavior, Physiology and Membrane Biology, and
| |
Collapse
|
39
|
Lu H, Liu B, Zhang FJ, Zhang J, Dong R, Chen L, Qu DM, Lu Y, Yu BW. The E3 ligase APC/C-Cdh1 regulates MEF2A-dependent transcription by targeting SUMO-specific protease 2 for ubiquitination and degradation. Cell Cycle 2015; 13:3892-902. [PMID: 25483061 DOI: 10.4161/15384101.2014.973302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activity-dependent stimuli induced a calcineurin-mediated dephosphorylation of the transcriptional factor MEF2A at serine408 and promoted a switch from SUMOylation to acetylation at lysine403 which led to MEF2A transcriptional activation. We previously identified SENP2 is the de-SUMOylation enzyme for MEF2A and promotes MEF2A-dependent transcription. We report here a requirement for APC(Cdh1)-SENP2-MEF2A axis in the regulation of MEF2A transcriptional activation. APC(Cdh1) interacts with and targets SENP2 for ubiquitination and destruction in the cytoplasm by recognizing a conserved canonical D-box motif in SENP2. Moreover, Cdh1 regulates the transcriptional activity of MEF2A in a SENP2 dependent manner. Activity-dependent stimuli prevented APC(Cdh1)-induced SENP2 ubiquitination, promoted SENP2 nuclear accumulations, and caused MEF2A de-SUMOylation and MEF2A acetylation, leading to MEF2A transcriptional activation. Thus, our findings defined a post-transcriptional mechanism underlying activity-dependent stimuli-induced MEF2A transcriptional activation.
Collapse
Affiliation(s)
- Han Lu
- a Department of Anesthesiology ; Ruijin Hospital ; Shanghai Jiao-Tong University School of Medicine (SJTU-SM) ; Shanghai , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun 2015; 6:7660. [PMID: 26179626 PMCID: PMC4518290 DOI: 10.1038/ncomms8660] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is implicated in processing sensory-discriminative and affective pain. Nonetheless, the underlying mechanisms are poorly understood. Here we demonstrate a role for excitatory neurons in the prelimbic cortex (PL), a sub-region of mPFC, in the regulation of pain sensation and anxiety-like behaviours. Using a chronic inflammatory pain model, we show that lesion of the PL contralateral but not ipsilateral to the inflamed paw attenuates hyperalgesia and anxiety-like behaviours in rats. Optogenetic activation of contralateral PL excitatory neurons exerts analgesic and anxiolytic effects in mice subjected to chronic pain, whereas inhibition is anxiogenic in naive mice. The intrinsic excitability of contralateral PL excitatory neurons is decreased in chronic pain rats; knocking down cyclin-dependent kinase 5 reverses this deactivation and alleviates behavioural impairments. Together, our findings provide novel insights into the role of PL excitatory neurons in the regulation of sensory and affective pain. The medial prefrontal cortex (mPFC) is implicated in pain regulation, yet the underlying mechanisms are poorly understood. Here the authors establish a critical role for mPFC in regulating pain sensation and pain-related anxiety, mediated by activation of the cyclin-dependent kinase 5 signalling pathway.
Collapse
|
41
|
Cáceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva-Salcedo E, Varela D, Rivas J, Silva I, Morales D, Campusano C, Almarza O, Simon F, Toledo H, Park KS, Trimmer JS, Cerda O. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 2015; 10:e0130540. [PMID: 26110647 PMCID: PMC4482413 DOI: 10.1371/journal.pone.0130540] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.
Collapse
Affiliation(s)
- Mónica Cáceres
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Liliana Ortiz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tatiana Recabarren
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Anibal Romero
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Elías Leiva-Salcedo
- Section on Cellular Signaling, Program in Developmental Biology, National Institute of Child Health and Human Development (NICHD), National Institute of Health, Bethesda, Maryland, United States of America
| | - Diego Varela
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Rivas
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camilo Campusano
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Almarza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Hector Toledo
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Kang-Sik Park
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Siddoway B, Hou H, Yang J, Sun L, Yang H, Wang GY, Xia H. Potassium channel Kv2.1 is regulated through protein phosphatase-1 in response to increases in synaptic activity. Neurosci Lett 2014; 583:142-7. [PMID: 25220706 DOI: 10.1016/j.neulet.2014.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
The functional stability of neurons in the face of large variations in both activity and efficacy of synaptic connections suggests that neurons possess intrinsic negative feedback mechanisms to balance and tune excitability. While NMDA receptors have been established to play an important role in glutamate receptor-dependent plasticity through protein dephosphorylation, the effects of synaptic activation on intrinsic excitability are less well characterized. We show that increases in synaptic activity result in dephosphorylation of the potassium channel subunit Kv2.1. This dephosphorylation is induced through NMDA receptors and is executed through protein phosphatase-1 (PP1), an enzyme previously established to play a key role in regulating ligand gated ion channels in synaptic plasticity. Dephosphorylation of Kv2.1 by PP1 in response to synaptic activity results in substantial shifts in the inactivation curve of IK, resulting in a reduction in intrinsic excitability, facilitating negative feedback to neuronal excitability.
Collapse
Affiliation(s)
- Benjamin Siddoway
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States.
| | - Hailong Hou
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Jinnan Yang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Lu Sun
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Hongtian Yang
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Guo-yong Wang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Houhui Xia
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
43
|
Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol 2014; 522:3555-74. [PMID: 24962901 DOI: 10.1002/cne.23641] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/08/2022]
Abstract
The Kv2.1 voltage-gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity-dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+ -release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy-immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR-mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+ /calcineurin-dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell- and circuit-specific mechanism for coupling intracellular Ca2+ release to phosphorylation-dependent regulation of Kv2.1 to dynamically impact intrinsic excitability.
Collapse
Affiliation(s)
- Danielle Mandikian
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, 95616
| | | | | | | | | | | | | |
Collapse
|
44
|
Sesti F, Wu X, Liu S. Oxidation of KCNB1 K(+) channels in central nervous system and beyond. World J Biol Chem 2014; 5:85-92. [PMID: 24921000 PMCID: PMC4050120 DOI: 10.4331/wjbc.v5.i2.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/26/2014] [Accepted: 03/03/2014] [Indexed: 02/05/2023] Open
Abstract
KCNB1, a voltage-gated potassium (K(+)) channel that conducts a major delayed rectifier current in the brain, pancreas and cardiovascular system is a key player in apoptotic programs associated with oxidative stress. As a result, this protein represents a bona fide drug target for limiting the toxic effects of oxygen radicals. Until recently the consensus view was that reactive oxygen species trigger a pro-apoptotic surge in KCNB1 current via phosphorylation and SNARE-dependent incorporation of KCNB1 channels into the plasma membrane. However, new evidence shows that KCNB1 can be modified by oxidants and that oxidized KCNB1 channels can directly activate pro-apoptotic signaling pathways. Hence, a more articulated picture of the pro-apoptotic role of KCNB1 is emerging in which the protein induces cell's death through distinct molecular mechanisms and activation of multiple pathways. In this review article we discuss the diverse functional, toxic and protective roles that KCNB1 channels play in the major organs where they are expressed.
Collapse
|
45
|
Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 2014; 34:4991-5002. [PMID: 24695716 DOI: 10.1523/jneurosci.1925-13.2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.
Collapse
|
46
|
Abstract
Kv2.1 is a major delayed rectifying K(+) channel normally localized to highly phosphorylated somatodendritic clusters in neurons. Excitatory stimuli induce calcineurin-dependent dephosphorylation and dispersal of Kv2.1 clusters, with a concomitant hyperpolarizing shift in the channel's activation kinetics. We showed previously that sublethal ischemia, which renders neurons transiently resistant to excitotoxic cell death, can also induce Zn(2+)-dependent changes in Kv2.1 localization and activation kinetics, suggesting that activity-dependent modifications of Kv2.1 may contribute to cellular adaptive responses to injury. Recently, cyclin-dependent kinase 5 (Cdk5) was shown to phosphorylate Kv2.1, with pharmacological Cdk5 inhibition being sufficient to decluster channels. In another study, cyclin E1 was found to restrict neuronal Cdk5 kinase activity. We show here that cyclin E1 regulates Kv2.1 cellular localization via inhibition of Cdk5 activity. Expression of cyclin E1 in human embryonic kidney cells prevents Cdk5-mediated phosphorylation of Kv2.1, and cyclin E1 overexpression in rat cortical neurons triggers dispersal of Kv2.1 channel clusters. Sublethal ischemia in neurons induces calcineurin-dependent upregulation of cyclin E1 protein expression and cyclin E1-dependent Kv2.1 channel declustering. Importantly, overexpression of cyclin E1 in neurons is sufficient to reduce excitotoxic cell death. These results support a novel role for neuronal cyclin E1 in regulating the phosphorylation status and localization of Kv2.1 channels, a likely component of signaling cascades leading to ischemic preconditioning.
Collapse
|
47
|
Speca DJ, Ogata G, Mandikian D, Bishop HI, Wiler SW, Eum K, Wenzel HJ, Doisy ET, Matt L, Campi KL, Golub MS, Nerbonne JM, Hell JW, Trainor BC, Sack JT, Schwartzkroin PA, Trimmer JS. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. GENES BRAIN AND BEHAVIOR 2014; 13:394-408. [PMID: 24494598 DOI: 10.1111/gbb.12120] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/28/2013] [Accepted: 01/31/2014] [Indexed: 12/29/2022]
Abstract
The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1(-/-) ) mice lacking this channel. Kv2.1(-/-) mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1(-/-) mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1(-/-) mice appear unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1(-/-) animals. Field recordings from hippocampal slices of Kv2.1(-/-) mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1(-/-) mice, long-term potentiation at the Schaffer collateral - CA1 synapse is decreased. Kv2.1(-/-) mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1(-/-) mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1(-/-) mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function.
Collapse
Affiliation(s)
- D J Speca
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu DH, Huang X, Guo X, Meng XM, Wu YS, Lu HL, Zhang CM, Kim YC, Xu WX. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction. PLoS One 2014; 9:e86109. [PMID: 24516526 PMCID: PMC3916336 DOI: 10.1371/journal.pone.0086109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.
Collapse
Affiliation(s)
- Dong-Hai Liu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Huang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Guo
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang-Min Meng
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Song Wu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Li Lu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chun-Mei Zhang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Young-chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Wen-Xie Xu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Romer SH, Dominguez KM, Gelpi MW, Deardorff AS, Tracy RC, Fyffe REW. Redistribution of Kv2.1 ion channels on spinal motoneurons following peripheral nerve injury. Brain Res 2013; 1547:1-15. [PMID: 24355600 DOI: 10.1016/j.brainres.2013.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Pathophysiological responses to peripheral nerve injury include alterations in the activity, intrinsic membrane properties and excitability of spinal neurons. The intrinsic excitability of α-motoneurons is controlled in part by the expression, regulation, and distribution of membrane-bound ion channels. Ion channels, such as Kv2.1 and SK, which underlie delayed rectifier potassium currents and afterhyperpolarization respectively, are localized in high-density clusters at specific postsynaptic sites (Deardorff et al., 2013; Muennich and Fyffe, 2004). Previous work has indicated that Kv2.1 channel clustering and kinetics are regulated by a variety of stimuli including ischemia, hypoxia, neuromodulator action and increased activity. Regulation occurs via channel dephosphorylation leading to both declustering and alterations in channel kinetics, thus normalizing activity (Misonou et al., 2004; Misonou et al., 2005; Misonou et al., 2008; Mohapatra et al., 2009; Park et al., 2006). Here we demonstrate using immunohistochemistry that peripheral nerve injury is also sufficient to alter the surface distribution of Kv2.1 channels on motoneurons. The dynamic changes in channel localization include a rapid progressive decline in cluster size, beginning immediately after axotomy, and reaching maximum within one week. With reinnervation, the organization and size of Kv2.1 clusters do not fully recover. However, in the absence of reinnervation Kv2.1 cluster sizes fully recover. Moreover, unilateral peripheral nerve injury evokes parallel, but smaller effects bilaterally. These results suggest that homeostatic regulation of motoneuron Kv2.1 membrane distribution after axon injury is largely independent of axon reinnervation.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Kathleen M Dominguez
- Department of Surgery Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Marc W Gelpi
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Robert C Tracy
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
50
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|