1
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
2
|
Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023; 28:molecules28083460. [PMID: 37110693 PMCID: PMC10146819 DOI: 10.3390/molecules28083460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Trigonelline is a bioactive pyridine alkaloid that occurs naturally in high concentrations in coffee (up to 7.2 g/kg) and coffee by-products (up to 62.6 g/kg) such as coffee leaves, flowers, cherry husks or pulp, parchment, silver skin, and spent grounds. In the past, coffee by-products were mostly considered waste and discarded. In recent years, however, the use of coffee by-products as food has attracted interest because of their economic and nutritional value and the environmental benefits of sustainable resource use. Their authorization as so-called novel foods in the European Union may lead to increased oral exposure of the general population to trigonelline. Therefore, the aim of this review was to assess the risk to human health of acute and chronic exposure to trigonelline from coffee and coffee by-products. An electronic literature search was performed. Current toxicological knowledge is limited, with few human data available and a lack of epidemiological and clinical studies. There was no evidence of adverse effects after acute exposure. No conclusion can be drawn on chronic exposure to isolated trigonelline due to the lack of data. However, trigonelline ingested as a component of coffee and coffee by-products appears to be safe for human health, based on the safe traditional use of these products.
Collapse
Affiliation(s)
- Nick Konstantinidis
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
3
|
Zeng Z, Li C, Liu Y, Chen H, Feng X. Delivery of Transcriptional Factors for Activating Antioxidant Defenses against Inflammatory Bowel Disease. ACS APPLIED BIO MATERIALS 2023; 6:1306-1312. [PMID: 36881502 DOI: 10.1021/acsabm.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Oxidative stress caused by the overproduction of reactive oxygen species (ROS) plays an important role in inflammatory bowel disease (IBD). It is well-known that the Nrf2-ARE (antioxidative response element) pathway is important in the regulation mechanism of antioxidant defense. Therefore, Nrf2 activation may be an effective therapeutic strategy for IBD. Here, we reported the development of a nucleus-targeted Nrf2 delivery nanoplatform, termed N/LC, that could accumulate in inflamed colonic epithelium, reduce inflammatory responses, and restore epithelium barriers in a murine model of acute colitis. N/LC nanocomposites could quickly escape from lysosomes, so Nrf2 largely accumulated in the nucleus of colonic cells, activated the Nrf2-ARE signaling pathway, further elevated the expression levels of downstream detoxification and antioxidant genes, and protected cells from oxidative damage. These results suggested that N/LC might be a potential nanoplatform for IBD therapy. The study provided the basis for the biomedical applications of Nrf2-based therapeutics in various diseases.
Collapse
Affiliation(s)
- Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Changying Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
5
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
6
|
Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biol Pharm Bull 2020; 43:1346-1355. [DOI: 10.1248/bpb.b20-00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Hye Soo Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Gyeong Yun Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
7
|
Zabihi M, Safaroghli-Azar A, Gharehbaghian A, Allahbakhshian Farsani M, Bashash D. CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:119-131. [PMID: 32802093 PMCID: PMC7393062 DOI: 10.22037/ijpr.2019.112560.13827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteins in natural defense against malignant transformation not only represents a heroic perspective for these proteins, but also provides a bright future for the application of small molecule inhibitors of CDKs in the novel cancer treatment strategies. The results of the present study revealed that the inhibition of CDKs using pan-CDK inhibitor AT7519, as revealed by the induction of G1 cell cycle arrest as well as the reduction of cyclins expression, resulted in decreased survival in acute myeloid leukemia (AML)-derived KG-1 cells, either in the context of single agent or in combination with arsenic trioxide (ATO). Apart from alterations in the expression of proliferation and apoptotic genes, the anti-survival property of AT7519 was coupled with the inhibition of autophagy-related genes. Notably, we found that the blockage of autophagy system in KG-1 cells resulted in a superior cytotoxic effect, introducing autophagy as a probable suppressor of cell death. As far as we are aware, to date, no study has reported the contributory mechanisms correlated with the less sensitivity of acute leukemia cells to AT7519 and our study suggested for the first time that the activation of both PI3K and c-Myc signaling pathways could overshadow, at least partly, the efficacy of this agent in KG-1 cells. Overall, due to the pharmacologic safety of AT7519, our study proposed this inhibitor as a promising agent for the treatment of AML either as a single agent or in a combined-modal strategy.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Hiramoto K, Oikawa H, Yamate Y, Sato EF. Tranexamic Acid Protects Ovary and Testis Functions and Ameliorates Osteoporosis in Mice. Pharmacology 2020; 105:652-661. [PMID: 32348988 DOI: 10.1159/000506233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In a rapidly aging society, the number of people suffering from osteoporosis keeps increasing. However, effective prevention strategies for osteoporosis are not yet currently available. OBJECTIVE In this study, we examined the ameliorative effects of tranexamic acid on osteoporosis in 24-month-old mice. METHODS During the study period, mice were orally administered tranexamic acid 3 times per week. RESULTS Bone mineral density, which is a parameter of osteoporosis, was improved following tranexamic acid administration. In addition, female mice evidenced a stronger phenotypic improvement than male mice. In female mice treated with tranexamic acid, ovary abnormalities were reduced. Furthermore, the levels of transforming growth factor-β, hyaluronic acid, CD44, reactive oxygen species, and apoptosis, as well as the number of infiltrated neutrophils and macrophages in the ovary were lower than those in the control or solvent-administered mice. In addition, 17β-estradiol levels in blood increased when compared with the control or solvent-treated mice. In addition, administration of tranexamic acid to 24-month-old male mice decreased the level of apoptosis in the testis. However, the levels of 17β-estradiol and testosterone in blood increased compared with the control or solvent-administered mice. CONCLUSIONS The use of tranexamic acid had an ameliorative effect on osteoporosis, possibly by protecting ovaries and testes.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan,
| | - Hirotaka Oikawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Eisuke F Sato
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
9
|
Lee YJ, Kim WI, Bae JH, Cho MK, Lee SH, Nam HS, Choi IH, Cho SW. Overexpression of Nrf2 promotes colon cancer progression via ERK and AKT signaling pathways. Ann Surg Treat Res 2020; 98:159-167. [PMID: 32274363 PMCID: PMC7118325 DOI: 10.4174/astr.2020.98.4.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE We investigated the expression of Nrf2 in colorectal cancer and its correlation with clinicopathological characteristics as well as mechanisms and roles of Nrf2 expression including cell signaling pathway, survival, proliferation, and migration. METHODS Nrf2 expression was measured in 12 and 30 different colorectal cancer (CRC) tissues by western blot (WB) and immunohistochemistry (IHC), respectively. SW480 cells were used for cell proliferation and cell migration tests. The correlation between the expression of Nrf2 and clinicopathologic parameters were evaluated using the chi-square or Fisher exact test. Data are expressed as the mean ± standard deviation for 3 independent experiments. P < 0.05 was considered statistically significant. RESULTS Analysis of WB demonstrated that Nrf2 proteins were increased in CRC tissues, and decreased in normal tissues. IHC staining showed that the Nrf2 expression was elevated in CRC tissues, compared to matched normal tissues. When SW480 cells were suppressed with small interfering RNA of Nrf2, cell viability was inhibited, and cell apoptosis was increased. These results were found along with suppression of the phosphorylated form of extracellular signal-regulated kinase 1/2 and AKT. CONCLUSION This study suggests that overexpression of Nrf2 may be related to carcinogenesis and progression of CRC.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Woo Il Kim
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jin Ho Bae
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Moon Kyun Cho
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hae Seon Nam
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - In Ho Choi
- Molecular Cancer Research, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sung Woo Cho
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
10
|
Kim H, Yin K, Falcon DM, Xue X. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol Appl Pharmacol 2019; 374:77-85. [PMID: 31054940 DOI: 10.1016/j.taap.2019.04.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023]
Abstract
Several large epidemiological and animal studies demonstrate a direct correlation between dietary heme iron intake and/or systemic iron levels and cancer risk in several cancers including colorectal cancer (CRC). However, the precise mechanisms for how heme iron contributes to CRC and how cancer cells respond to heme iron-induced stress are still unclear. Previously we have shown that one of the stress-inducible proteins, Sestrin2 (SESN2), is a novel tumor suppressor in colon by limiting endoplasmic reticulum stress and mammalian target of rapamycin complex 1 (mTORC1) signaling and tumor growth. But the relationship between heme iron and SESN2, especially in the context of colon carcinogenesis, was not investigated previously. Here, we found that hemin dose-dependently increased SESN2 expression in an oxidative stress and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2, NRF2)-dependent manner. Since SESN2 overexpression reduced hemin-induced oxidative stress, SESN2 could be an important target of NRF2 exerting antioxidant function. Indeed, expression of several oxidative stress responsive proteins such as NRF2 and its target genes was reduced by SESN2. Although we formerly reported that SESN2 expression was reduced after p53 mutation in colon tumors, mouse colon tumors, which have intact p53 and NRF2, induced SESN2 expression in response to iron stimulus. Although SESN2 overexpression decreased murine colon tumor cell growth both in vitro and in vivo, it rendered colon cancer cells more resistant to hemin-induced apoptosis and therefore promoted tumor growth during hemin treatment. Taken together, although SESN2 generally suppresses tumorigenesis, it can produce tumor-promoting role in iron-rich environment by suppressing oxidative stress-associated cancer cell death.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Kunlun Yin
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
11
|
Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 2019; 26:2300-2313. [PMID: 30778200 DOI: 10.1038/s41418-019-0303-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) is one of the master regulators that control hundreds of genes containing antioxidant response elements (AREs). The NRF2-ARE pathway plays a complex role in colorectal cancer (CRC). NRF2 activity is known to be regulated by KEAP1-CUL3 E3 ligase-mediated ubiquitination, indicating the importance of deubiquitination regulation. However, the deubiquitinase (DUB) of NRF2 remains unknown. Here, by screening a DUB library, we identified DUB3 as a DUB that remarkably stabilized NRF2. Further experiments demonstrated that DUB3 promoted NRF2 stability and transcriptional activity by decreasing the K48-linked ubiquitination of NRF2. Coimmunoprecipitation studies revealed interactions between NRF2 and DUB3, as well as between KEAP1 and DUB3, indicating that NRF2, DUB3, and KEAP1 formed a large functional complex. Importantly, ectopic expression of DUB3 caused NRF2-dependent chemotherapy resistance in colon cancer cell lines. Thus, to the best of our knowledge, our findings are the first to identify DUB3 as a NRF2 DUB and may provide a new strategy against chemotherapy resistance in CRC and other NRF2-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ze-Yan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Huan Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shang-Ze Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Rongfu Tu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Fan Jia
- Renmin Hospital of Wuhan University, Hubei General Hospital, Wuhan, 430072, P. R. China
| | - Zhe Zheng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xue-Min Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
12
|
Gupta K, Burns TC. Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications. Front Oncol 2018; 8:503. [PMID: 30467536 PMCID: PMC6236021 DOI: 10.3389/fonc.2018.00503] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a median survival of just over 1 year, despite best available treatment including radiotherapy (RT). Impacts of prior brain RT on recurrent tumors are poorly understood, though increasing evidence suggests RT-induced changes in the brain microenvironment contribute to recurrent GBM aggressiveness. The tumor microenvironment impacts malignant cells directly and indirectly through stromal cells that support tumor growth. Changes in extracellular matrix (ECM), abnormal vasculature, hypoxia, and inflammation have been reported to promote tumor aggressiveness that could be exacerbated by prior RT. Prior radiation may have long-term impacts on microglia and brain-infiltrating monocytes, leading to lasting alterations in cytokine signaling and ECM. Tumor-promoting CNS injury responses are recapitulated in the tumor microenvironment and augmented following prior radiation, impacting cell phenotype, proliferation, and infiltration in the CNS. Since RT is vital to GBM management, but substantially alters the tumor microenvironment, we here review challenges, knowledge gaps, and therapeutic opportunities relevant to targeting pro-tumorigenic features of the GBM microenvironment. We suggest that insights from RT-induced changes in the tumor microenvironment may provide opportunities to target mechanisms, such as cellular senescence, that may promote GBM aggressiveness amplified in previously radiated microenvironment.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Choo J, Heo G, Kim SJ, Lee Y, Ishigami A, Maruyama N, Chung HY, Im E. Senescence marker protein 30 protects intestinal epithelial cells against inflammation-induced cell death by enhancing Nrf2 activity. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3668-3678. [PMID: 30266650 DOI: 10.1016/j.bbadis.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Senescence marker protein 30 (SMP30) is a calcium-binding protein whose expression decreases during senescence. SMP30 deficiency increases susceptibility to cytokine-induced apoptosis in the liver and to radiation-induced apoptosis in the small intestine. Furthermore, colonic epithelial cell death is associated with the severity of colitis. Therefore, in the present study, we investigated the function of SMP30 during intestinal inflammation. In SMP30 deficient mice, colitis was significantly exacerbated as demonstrated by increased mortality (p = 0.001), body weight loss (p = 0.0105 at day 8), rectal bleeding (p = 0.0047 at day 8) and diarrhea (p = 0.0030 at day 8), histological scores (ulcers, p = 0.0002; edema, p = 0.0125; leukocyte infiltration, p = 0.0016) and productions of pro-inflammatory cytokines (IL-1α, p = 0.0452; IL-6, p = 0.0074; G-CSF, p = 0.0036). In addition, greater proportions of apoptotic cells and lower levels of anti-apoptotic marker proteins (total PARP-1 and Bcl-2) were observed in the inflamed intestines of SMP30 deficient mice than in wild type controls. In vitro experiments on colonic epithelial cells showed that stable SMP30 expression inhibited but that SMP30 siRNA expression increased TNF-α-induced apoptosis. SMP30 inhibition decreased Nrf2 mRNA expression levels (p < 0.0001), but SMP30 overexpression increased Nrf2 mRNA expression levels (p = 0.0495). The underlying mechanism by which SMP30 protected cells appeared to be by inhibiting Nrf2 ubiquitination and Keap1 expression, and thus enhancing Nrf2 activity. Moreover, SMP30 deficiency increased the incidence of colitis-associated colon cancer as determined by increased mortality (p = 0.0572) and average polyp number (p = 0.0277). Collectively, these findings suggest that SMP30 protects intestinal epithelial cells from apoptosis and this can contribute to amelioration of colitis and colitis-associated colon cancer.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yunna Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Naoki Maruyama
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
14
|
Sha Z, Schnell HM, Ruoff K, Goldberg A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J Cell Biol 2018. [PMID: 29535191 PMCID: PMC5940303 DOI: 10.1083/jcb.201708168] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells are thought to adapt to proteasome inhibition by using alternative pathways for degradation such as autophagy. Sha et al. now report that cells rapidly induce GABARAPL1 and p62 upon proteasome inhibition, but this promotes cell survival by sequestering ubiquitinated and sumoylated proteins long before the cells induce other Atg genes and activate autophagy. Proteasome inhibitors are used as research tools and to treat multiple myeloma, and proteasome activity is diminished in several neurodegenerative diseases. We therefore studied how cells compensate for proteasome inhibition. In 4 h, proteasome inhibitor treatment caused dramatic and selective induction of GABARAPL1 (but not other autophagy genes) and p62, which binds ubiquitinated proteins and GABARAPL1 on autophagosomes. Knockdown of p62 or GABARAPL1 reduced cell survival upon proteasome inhibition. p62 induction requires the transcription factor nuclear factor (erythroid-derived 2)-like 1 (Nrf1), which simultaneously induces proteasome genes. After 20-h exposure to proteasome inhibitors, cells activated autophagy and expression of most autophagy genes by an Nrf1-independent mechanism. Although p62 facilitates the association of ubiquitinated proteins with autophagosomes, its knockdown in neuroblastoma cells blocked the buildup of ubiquitin conjugates in perinuclear aggresomes and of sumoylated proteins in nuclear inclusions but did not reduce the degradation of ubiquitinated proteins. Thus, upon proteasome inhibition, cells rapidly induce p62 expression, which enhances survival primarily by sequestering ubiquitinated proteins in inclusions.
Collapse
Affiliation(s)
- Zhe Sha
- Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
15
|
Wong SSW, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, Latgé JP, Sahu A, Madan T, Aimanianda V. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J Biol Chem 2018; 293:4901-4912. [PMID: 29414772 DOI: 10.1074/jbc.m117.815852] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.
Collapse
Affiliation(s)
| | - Manjusha Rani
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Eswari Dodagatta-Marri
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | | | | | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.
| | | |
Collapse
|
16
|
Diehl K, Dinges LA, Helm O, Ammar N, Plundrich D, Arlt A, Röcken C, Sebens S, Schäfer H. Nuclear factor E2-related factor-2 has a differential impact on MCT1 and MCT4 lactate carrier expression in colonic epithelial cells: a condition favoring metabolic symbiosis between colorectal cancer and stromal cells. Oncogene 2017; 37:39-51. [DOI: 10.1038/onc.2017.299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/03/2017] [Accepted: 07/21/2017] [Indexed: 12/28/2022]
|
17
|
MiR-19b and miR-16 cooperatively signaling target the regulator ADRA1A in Hypertensive heart disease. Biomed Pharmacother 2017; 91:1178-1183. [DOI: 10.1016/j.biopha.2017.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
|
18
|
Liu Q, Hu S, He Y, Zhang J, Zeng X, Gong F, Liang L. The protective effects of Zhen-Wu-Tang against cisplatin-induced acute kidney injury in rats. PLoS One 2017; 12:e0179137. [PMID: 28586398 PMCID: PMC5460876 DOI: 10.1371/journal.pone.0179137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition that confers a risk of progression of chronic kidney disease and a high risk of death. The purpose of the current study is to investigate the anti-apoptotic and anti-fibrotic effects of Zhen-Wu-Tang (ZWT) on cisplatin (CIS)-induced renal injury and elucidate the involvement of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the PI3K/Akt signaling pathway, transforming growth factor (TGF)-β and the Wnt/β-catenin signaling pathway in the positive effects of Zhen-Wu-Tang on the kidneys. Wistar rats were randomly assigned into six groups of 6 rats each as follows: normal control 1; normal control 2; CIS 1 and CIS 2, which received single intraperitoneal injections of CIS (6 mg/kg); CIS+ZWT 4 and CIS+ZWT 10, which received ZWT (1 ml/100 g/day, ig) starting days after the CIS injection for 4 and 10 days, respectively. Hematoxylin-eosin (H&E) staining was performed to identify the amelioration of histopathological changes in the kidneys and apoptosis of the renal proximal tubular cells. Picrosirius red staining was used to evaluate renal fibrosis after ZWT treatment. The relationship between ZWT and the upregulation of Nrf2, phosphorylation of Akt, and the downregulation of TGF-β and WNT/β-catenin were determined by Western blotting. At the end of the experiment, serum was isolated from the orbital blood of rats, and blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. The results showed that ZWT restored the histological alterations, aberrant collagen deposition in the kidneys and the BUN and Cr levels that were increased by CIS. Treatment with ZWT reduced the expression levels of TGF-β and Wnt and increased the expression levels of Nrf2, PI3K and Akt in the CIS-exposed kidney tissues. Furthermore, ZWT downregulated apoptosis and fibrosis by modulating the expression levels of caspase-3, Bax and alpha-smooth muscle actin (α-SMA). In conclusion, this study provides evidence for the anti-fibrotic and anti-apoptotic roles of ZWT in CIS-induced experimental kidney injury.
Collapse
Affiliation(s)
- Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Shouyu Hu
- Department of Neurology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiashu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Zeng
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Fengtao Gong
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Li’na Liang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
19
|
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PLoS One 2017; 12:e0177549. [PMID: 28542357 PMCID: PMC5436741 DOI: 10.1371/journal.pone.0177549] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/28/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers worldwide, and is influenced by the interplay of various factors, including a very strong genetic component. For instance, incorrect mitochondrial biogenesis is correlated with increased risk of developing colorectal cancer. Thus, it is important to understand the consequences of changes in both the expression and the correct function of the transcription factors that regulate mitochondrial biogenesis, namely NRF2. OBJECTIVES The main objective of this paper is to characterise the relationship between NRF2 and colorectal cancer by compiling data from an exhaustive literature search. METHODS Information was obtained by defining specific search terms and searching in several databases. After a strict selection procedure, data were tabulated and the relationships between articles were assessed by measuring heterogeneity and by constructing conceptual maps. RESULTS AND DISCUSSION We found a general consensus in the literature that the presence of oxidizing agents as well as the inhibition of the NRF2 repressor Keap1 maintain NRF2 expression at basal levels. This predominantly exerts a cytoprotective effect on cells and decreases risk of colorectal cancer. However, if NRF2 is inhibited, protection against external agents disappears and risk of colorectal cancer increases. Interestingly, colorectal cancer risk is also increased when NRF2 becomes overexpressed. In this case, the increased risk arises from NRF2-induced inflammation and resistance to chemotherapy. CONCLUSION The proper basal function of NRF2 and Keap1 are essential for preventing oncogenic processes in the colon. Consequently, any disruption to the expression of these genes can promote the genesis and progression of colon cancer.
Collapse
Affiliation(s)
- C. Gonzalez-Donquiles
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - J. Alonso-Molero
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - T. Fernandez-Villa
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - L. Vilorio-Marqués
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - A. J. Molina
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| | - V. Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Gene-Environment and Health Research Group, University of Leon, León, Spain
| |
Collapse
|
20
|
Colonic Lamina Propria Inflammatory Cells from Patients with IBD Induce the Nuclear Factor-E2 Related Factor-2 Thereby Leading to Greater Proteasome Activity and Apoptosis Protection in Human Colonocytes. Inflamm Bowel Dis 2016; 22:2593-2606. [PMID: 27661668 DOI: 10.1097/mib.0000000000000925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The antioxidant transcription factor Nrf2 confers broad cytoprotection and has a dual role in tumorigenesis. Enhancing proteasome activity is one mechanism by which Nrf2 can promote cancer development, e.g., colorectal cancer. This study investigated whether this potential oncogenic effect of Nrf2 emerges already from the epithelial adaptation to persistent oxidative stress during inflammatory bowel disease (IBD). METHODS Reactive oxygen species (ROS)-producing inflammatory myeloid cells (IMCs) from colon tissue of patients with IBD were cocultured with human NCM460 colonocytes. ARE-luciferase-, c-H2DCF-DA-assays, Western blotting, and quantitative polymerase chain reaction were performed for assessing Nrf2-activity, intracellular ROS-level, and Nrf2-target gene expression. Proteasome activity was quantified by Suc-LLVY-amido-4-methylcumarin-assay, and apoptosis by caspase-3/-7 assay and PARP1-Western blots. Nrf2, proteasome proteins, and IMCs were analyzed in IBD-tissues by immunohistochemistry. RESULTS IMC-coculture caused a temporary increase of ROS in NCM460, followed by Nrf2 activation and elevated expression of ROS-protecting enzymes (NQO1, GCLC). This was accompanied by Nrf2-dependent expression of proteasome proteins (PSMD4, PSMA5) and an enhanced proteasome activity in IMC-cocultured NCM460. Nrf2-siRNA or the ROS-scavenger Tiron blocked these alterations. Depending on Nrf2-induced proteasome activity, IMC-cocultured NCM460 or Colo320 cancer cells were less sensitive to apoptosis (TRAIL-/etoposide induced). Immunostaining of IBD-tissues confirmed Nrf2 activation in the colonic epithelium within inflamed areas, along with greater proteasome protein expression. CONCLUSIONS IMC/NCM460-coculture experiments and immunohistochemistry of colonic tissues from patients with IBD reveal a Nrf2-dependent adaptation of colon epithelial cells to oxidative stress caused by inflammatory cells. This involves increased proteasome activity and apoptosis resistance that protect from tissue damage due to colitis on one hand, but on the other hand, may favor carcinogenesis.
Collapse
|
21
|
Mühlberg L, Kühnemuth B, Costello E, Shaw V, Sipos B, Huber M, Griesmann H, Krug S, Schober M, Gress TM, Michl P. miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer. Oncoimmunology 2016; 5:e1160181. [PMID: 27471627 DOI: 10.1080/2162402x.2016.1160181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Myeloid cells including tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) are known as important mediators of tumor progression in solid tumors such as pancreatic cancer. Infiltrating myeloid cells have been identified not only in invasive tumors, but also in early pre-invasive pancreatic intraepithelial precursor lesions (PanIN). The functional dynamics of myeloid cells during carcinogenesis is largely unknown. We aimed to systematically elucidate phenotypic and transcriptional changes in infiltrating myeloid cells during carcinogenesis and tumor progression in a genetic mouse model of pancreatic cancer. Using murine pancreatic myeloid cells isolated from the genetic mouse model at different time points during carcinogenesis, we examined both established markers of macrophage polarization using RT-PCR and FACS as well as transcriptional changes focusing on miRNA profiling. Myeloid cells isolated during carcinogenesis showed a simultaneous increase of established markers of M1 and M2 polarization during carcinogenesis, indicating that phenotypic changes of myeloid cells during carcinogenesis do not follow the established M1/M2 classification. MiRNA profiling revealed distinct regulations of several miRNAs already present in myeloid cells infiltrating pre-invasive PanIN lesions. Among them miRNA-21 was significantly increased in myeloid cells surrounding both PanIN lesions and invasive cancers. Functionally, miRNA-21-5p and -3p altered expression of the immune-modulating cytokines CXCL-10 and CCL-3 respectively. Our data indicate that miRNAs are dynamically regulated in infiltrating myeloid cells during carcinogenesis and mediate their functional phenotype by facilitating an immune-suppressive tumor-promoting micro-milieu.
Collapse
Affiliation(s)
- Leonie Mühlberg
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Benjamin Kühnemuth
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Eithne Costello
- Department of Surgery, University of Liverpool , Liverpool, UK
| | - Victoria Shaw
- Department of Surgery, University of Liverpool , Liverpool, UK
| | - Bence Sipos
- Institute of Pathology, University of Tuebingen , Tuebingen, Germany
| | - Magdalena Huber
- Institute of Microbiology, University Hospital, Philipps-University , Marburg, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Marvin Schober
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg , Halle, Germany
| | - Thomas M Gress
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University , Marburg, Germany
| | - Patrick Michl
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University, Marburg, Germany; Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
22
|
Genrich G, Kruppa M, Lenk L, Helm O, Broich A, Freitag-Wolf S, Röcken C, Sipos B, Schäfer H, Sebens S. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1. BMC Cancer 2016; 16:155. [PMID: 26915435 PMCID: PMC4766703 DOI: 10.1186/s12885-016-2191-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development. METHODS In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks. RESULTS Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced Nrf2-mediated cell survival was predominantly based on an enhanced proliferative activity. Accordingly, expression of p21 expression along with expression of phospho-p38 and phospho-Smad3 was diminished whereas Erk-phosphorylation was enhanced under these conditions. CONCLUSIONS Overall, our data demonstrate that Nrf2 being elevated in early precursor lesions counteracts the growth inhibiting function of TGF-β1 already in benign and premalignant pancreatic ductal epithelial cells. This could represent one fundamental mechanism underlying the functional switch of both- TGF-β1 and Nrf2 - which may manifest already in early stages of PDAC development.
Collapse
Affiliation(s)
- Geeske Genrich
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| | - Marcus Kruppa
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| | - Lennart Lenk
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| | - Ole Helm
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| | - Anna Broich
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, UKSH Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 14, 24105, Kiel, Germany.
| | - Bence Sipos
- Department of Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Germany.
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology & Hepatology, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 6, 24105, Kiel, Germany.
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, Arnold-Heller-Str. 3, Building 17, 24105, Kiel, Germany.
| |
Collapse
|
23
|
Liao JC, Lee KT, You BJ, Lee CL, Chang WT, Wu YC, Lee HZ. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr Res 2015; 59:29884. [PMID: 26699938 PMCID: PMC4689951 DOI: 10.3402/fnr.v59.29884] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 01/05/2023] Open
Abstract
Background Trigonelline occurs in many dietary food plants and has been found to have anti-carcinogenic activity. Trigonelline is also found in coffee which is one of the most widely consumed beverages. Many epidemiological studies have reported that coffee consumption has an inverse relationship with the risk of cirrhosis or hepatocellular carcinoma. It would be interesting to investigate whether trigonelline is an ideal chemoprevent agent to prevent cancer progression. Methods The protein expression was performed by western blotting. The trigonelline content in snow pea (Pisum sativum) was analyzed by high-performance liquid chromatography (HPLC). The migratory activity of human hepatocarcinoma cells (Hep3B) was assessed by using a wound migration assay. The percentage of each phase in the cell cycle was analyzed on a FACScan flow cytometer. Gene expression was detected by real-time reverse transcriptase-polymerase chain reaction techniques. Native gel analysis was performed to analyze the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase. Results According to the data of HPLC analysis, P. sativum, which is a popular vegetable, has relatively high content of trigonelline. Our findings suggest that trigonelline is an efficient compound for inhibiting Hep3B cell migration. Trigonelline inhibited the migration of hepatoma cells at concentrations of 75–100 µM without affecting proliferation. Raf/ERK/Nrf2 protein levels and further downstream antioxidative enzymes activity, such as SOD, catalase, and glutathione peroxidase, significantly decreased after treatment with 100 µM of trigonelline for 24 h. The migration inhibition of trigonelline is also related to its ability to regulate the matrix metalloproteinases 7 (MMP-7) gene expression. Conclusions In this study, protein kinase Cα (PKCα) and Raf/ERK/Nrf2 signaling pathway and MMP-7 gene expression were involved in the trigonelline-mediated migration inhibition of Hep3B cells. We also demonstrated that trigonelline inhibits Hep3B cell migration through downregulation of nuclear factor E2-related factor 2–dependent antioxidant enzymes activity. This study analyzed the trigonelline content in a popular vegetable, snow pea, as a representative proof to prove that trigonelline is often found in the daily intake of food. Our finding suggested that trigonelline should be a useful chemopreventive agent derived from the daily intake of food to prevent cancer progression.
Collapse
Affiliation(s)
- Jung Chun Liao
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kun Tsung Lee
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bang Jau You
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chia Lin Lee
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Wen Te Chang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yang Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hong-Zin Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Pharmacy Department, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan;
| |
Collapse
|
24
|
Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S, Schäfer H. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells. PLoS One 2015. [PMID: 26226105 PMCID: PMC4520686 DOI: 10.1371/journal.pone.0132978] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nrf2 and TGF-β1 both affect tumorigenesis in a dual fashion, either by preventing carcinogen induced carcinogenesis and suppressing tumor growth, respectively, or by conferring cytoprotection and invasiveness to tumor cells during malignant transformation. Given the involvement of Nrf2 and TGF-β1 in the adaptation of epithelial cells to persistent inflammatory stress, e.g. of the pancreatic duct epithelium during chronic pancreatitis, a crosstalk between Nrf2 and TGF-β1 can be envisaged. By using premalignant human pancreatic duct cells (HPDE) and the pancreatic ductal adenocarcinoma cell line Colo357, we could show that Nrf2 and TGF-β1 independently but additively conferred an invasive phenotype to HPDE cells, whereas acting synergistically in Colo357 cells. This was accompanied by differential regulation of EMT markers like vimentin, Slug, L1CAM and E-cadherin. Nrf2 activation suppressed E-cadherin expression through an as yet unidentified ARE related site in the E-cadherin promoter, attenuated TGF-β1 induced Smad2/3-activity and enhanced JNK-signaling. In Colo357 cells, TGF-β1 itself was capable of inducing Nrf2 whereas in HPDE cells TGF-β1 per-se did not affect Nrf2 activity, but enhanced Nrf2 induction by tBHQ. In Colo357, but not in HPDE cells, the effects of TGF-β1 on invasion were sensitive to Nrf2 knock-down. In both cell lines, E-cadherin re-expression inhibited the proinvasive effect of Nrf2. Thus, the increased invasion of both cell lines relates to the Nrf2-dependent downregulation of E-cadherin expression. In line, immunohistochemistry analysis of human pancreatic intraepithelial neoplasias in pancreatic tissues from chronic pancreatitis patients revealed strong Nrf2 activity already in premalignant epithelial duct cells, accompanied by partial loss of E-cadherin expression. Our findings indicate that Nrf2 and TGF-β1 both contribute to malignant transformation through distinct EMT related mechanisms accounting for an invasive phenotype. Provided a crosstalk between both pathways, Nrf2 and TGF-β1 mutually promote their tumorigenic potential, a condition manifesting already at an early stage during inflammation induced carcinogenesis of the pancreas.
Collapse
Affiliation(s)
- Sarah Arfmann-Knübel
- Laboratory of Molecular Gastroenterology, Dept. of Internal Medicine I, UKSH Campus Kiel, Arnold-Heller-Str. 3, Bldg. 6, 24105, Kiel, Germany
| | - Birte Struck
- Laboratory of Molecular Gastroenterology, Dept. of Internal Medicine I, UKSH Campus Kiel, Arnold-Heller-Str. 3, Bldg. 6, 24105, Kiel, Germany
| | - Geeske Genrich
- Group Inflammatory Carcinogenesis, Institute of Experimental Medicine, CAU Kiel, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Ole Helm
- Group Inflammatory Carcinogenesis, Institute of Experimental Medicine, CAU Kiel, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Bence Sipos
- Department of Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute of Experimental Medicine, CAU Kiel, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Dept. of Internal Medicine I, UKSH Campus Kiel, Arnold-Heller-Str. 3, Bldg. 6, 24105, Kiel, Germany
- * E-mail:
| |
Collapse
|
25
|
Sebens S, Schäfer H. How two sites of inflammation promote carcinogenesis: The role of macrophages in inflammation associated carcinogenesis. Oncoimmunology 2014; 1:951-953. [PMID: 23162768 PMCID: PMC3489756 DOI: 10.4161/onci.19949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We recently reported that anti-inflammatory macrophages contribute to the initiation of colorectal carcinogenesis in IBD patients by inducing epithelial-mesenchymal-transition associated alterations in colonic epithelial cells. In this process, TGFβ1 dependent upregulation of the adhesion molecule L1CAM is one key event, paving the way to colitis associated tumorigenesis and metastatic spread.
Collapse
Affiliation(s)
- Susanne Sebens
- Department of Inflammatory Carcinogenesis; Institute for Experimental Medicine; Kiel, Germany
| | | |
Collapse
|
26
|
Ellina MI, Bouris P, Kletsas D, Aletras A, Karamanos N. Epidermal growth factor/epidermal growth factor receptor signaling axis is a significant regulator of the proteasome expression and activity in colon cancer cells. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.aac0e6.v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Colon cancer is the third most common type of cancer worldwide. Epidermal growth factor receptor (EGFR) plays a crucial role in the (patho)physiology of the disease. EGFR controls vital cellular processes, while this action is associated with poor prognosis. In addition, K-Ras mutations are associated with the promotion of the disease and the anti-EGFR resistance. The ubiquitin-proteasome system plays also a very important role in cancer, modulating cell cycle and other cellular processes such as the growth and the survival of cancer cells. Proteasome inhibition affects, in several cases, the action and the protein levels of EGFR. Nevertheless, little is known whether the reversed option is possible. In this study, we, therefore, investigated the impact of epidermal growth factor (EGF)/EGFR signaling axis on gene expression and the proteolytic activity of the proteasome subunits, as well as whether Nrf2, an activator of proteasome expression, plays a role in this process. Moreover, we evaluated whether EGF regulates the expression of its own receptor and the proliferation rate of DLD-1 (K-Ras mutated) colon cancer cells. The obtained data showed that, although EGF has no significant effect on the proliferation of DLD-1 colon cancer cells, it significantly upregulates the expression of EGFR as well as the expression and the activity of the proteasome, suggesting that the EGF-mediated proteasome activation could possibly lead to enhanced EGFR degradation leading to autoregulation of EGF–EGFR pathway. Nrf2 activation did not induce proteasome gene expression in DLD-1 colon cancer cells.
Collapse
|
27
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
28
|
EGF/EGFR signaling axis is a significant regulator of the proteasome expression and activity in colon cancer cells. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/a2199-1006.01.sor-life.ac0e6.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Colon cancer is the third most common type of cancer worldwide. Epidermal growth factor receptor (EGFR) plays a crucial role in the (patho)physiology of the disease. EGFR controls vital cellular processes, while this action is associated with poor prognosis. In addition, K-Ras mutations are associated with the promotion of the disease and the anti-EGFR resistance. The ubiquitin-proteasome system plays also a very important role in cancer, modulating cell cycle and other cellular processes such as the growth and the survival of cancer cells. Proteasome inhibition affects, in several cases, the action and the protein levels of EGFR. Nevertheless, little is known whether the reversed option is possible. In this study, we, therefore, investigated the impact of epidermal growth factor (EGF)/EGFR signaling axis on gene expression and the proteolytic activity of the proteasome subunits, as well as whether Nrf2, an activator of proteasome expression, plays a role in this process. Moreover, we evaluated whether EGF regulates the expression of its own receptor and the proliferation rate of DLD-1 (K-Ras mutated) colon cancer cells. The obtained data showed that, although EGF has no significant effect on the proliferation of DLD-1 colon cancer cells, it significantly upregulates the expression of EGFR as well as the expression and the activity of the proteasome, suggesting that the EGF-mediated proteasome activation could possibly lead to enhanced EGFR degradation leading to autoregulation of EGF–EGFR pathway. Nrf2 activation did not induce proteasome gene expression in DLD-1 colon cancer cells.
Collapse
|
29
|
Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 2014; 11:1856-68. [PMID: 24824514 DOI: 10.1021/mp400732p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca , Salamanca, Spain
| | | | | |
Collapse
|
30
|
Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol 2014; 2:832-46. [PMID: 25009785 PMCID: PMC4085347 DOI: 10.1016/j.redox.2014.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. Exposure to low linear energy transfer (LET) ionizing radiation (IR) causes intracellular oxidative stress and activate the Nrf2-ARE antioxidant pathway. Irradiation also causes inflammation and DNA damage which affect other pathways related to MRN complex and HMGB1 proteins. The antioxidant Keap1-Nrf2-ARE pathway most importantly regulates intracellular oxidative stress. The interaction of Keap1-Nrf2-ARE pathway with HMGB1 regulated inflammation; MRN complex regulated DNA repair is reviewed.
Collapse
Key Words
- .OH, hydroxyl radical
- AP1, activator protein-1
- ARE, antioxidant response element
- ATM, ataxia telangiectasia mutagenesis
- Bcl-2, B cell lymphoma-2 protein
- CBP, CREB-binding protein
- Chk-2, checkpoint kinase-2 protein
- DAMP, death associated molecular pattern
- DDR, DNA damage response
- DGR, double glycine repeats
- DSB, double strands break
- FGF, fibroblast growth factor
- FGF2, fibroblast growth factor-2
- GM-CSF, granulocytes macrophages colony stimulating factor
- GPx, glutathione peroxidase
- GSH, glutathione (reduced)
- GSK-3ß, glycogen synthase kinase 3 beta
- HMGB1
- HMGB1, high mobility group Box 1
- HR, homologous recombination
- IR, ionizing radiation
- Keap1, Kelch like ECH associated protein 1
- LET, linear energy transfer
- MDA, malondialdehyde
- MIP, macrophages inflammatory proteins
- MRN complex
- MRN, Mre11, Rad50 and Nbs1 subunits
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NES, nuclear export sequence
- NHEJ, non-homologous end joining
- NLS, nuclear localization sequence
- Nrf2-ARE pathway
- PKC, protein kinase C
- RAGE, receptor for advance glycation end products
- RIF, radiation induced foci
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Radio-modification
- SOD, superoxide dismutase
- SSBs, single strand DNA breaks
- TRAIL, TNF related apoptosis inducing ligand
- TWEAK
- TWEAK, tumour necrosis factor weak inducer of apoptosis
- VEGF, vascular endothelial growth factor
- VSMC, vascular smooth muscle cells
- bFGF, basal fibroblast growth factor
- t-BHQ, tert butyl hydroquinone
Collapse
Affiliation(s)
- Anuranjani
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| | - Madhu Bala
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| |
Collapse
|
31
|
Stachel I, Geismann C, Aden K, Deisinger F, Rosenstiel P, Schreiber S, Sebens S, Arlt A, Schäfer H. Modulation of nuclear factor E2-related factor-2 (Nrf2) activation by the stress response gene immediate early response-3 (IER3) in colonic epithelial cells: a novel mechanism of cellular adaption to inflammatory stress. J Biol Chem 2013; 289:1917-29. [PMID: 24311782 DOI: 10.1074/jbc.m113.490920] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although nuclear factor E2-related factor-2 (Nrf2) protects from carcinogen-induced tumorigenesis, underlying the rationale for using Nrf2 inducers in chemoprevention, this antioxidative transcription factor may also act as a proto-oncogene. Thus, an enhanced Nrf2 activity promotes formation and chemoresistance of colon cancer. One mechanism causing persistent Nrf2 activation is the adaptation of epithelial cells to oxidative stress during chronic inflammation, e.g. colonocytes in inflammatory bowel diseases, and the multifunctional stress response gene immediate early response-3 (IER3) has a crucial role under these conditions. We now demonstrate that colonic tissue from Ier3(-/-) mice subject of dextran sodium sulfate colitis exhibit greater Nrf2 activity than Ier3(+/+) mice, manifesting as increased nuclear Nrf2 protein level and Nrf2 target gene expression. Likewise, human NCM460 colonocytes subjected to shRNA-mediated IER3 knockdown exhibit greater Nrf2 activity compared with control cells, whereas IER3 overexpression attenuated Nrf2 activation. IER3-deficient NCM460 cells exhibited reduced reactive oxygen species levels, indicating increased antioxidative protection, as well as lower sensitivity to TRAIL or anticancer drug-induced apoptosis and greater clonogenicity. Knockdown of Nrf2 expression reversed these IER3-dependent effects. Further, the enhancing effect of IER3 deficiency on Nrf2 activity relates to the control of the inhibitory tyrosine kinase Fyn by the PI3K/Akt pathway. Thus, the PI3K inhibitor LY294002 or knockdown of Akt or Fyn expression abrogated the impact of IER3 deficiency on Nrf2 activity. In conclusion, the interference of IER3 with the PI3K/Akt-Fyn pathway represents a novel mechanism of Nrf2 regulation that may get lost in tumors and by which IER3 exerts its stress-adaptive and tumor-suppressive activity.
Collapse
Affiliation(s)
- Imke Stachel
- From the Department of Internal Medicine 1, Laboratory of Molecular Gastroenterology and Hepatology, UKSH-Campus Kiel
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The proteasome is a sophisticated, 2.5-MDa, multisubunit complex that contains a catalytic core particle (CP) and two terminal regulatory particles (RPs); the RPs associate with the termini of the central CP at opposite orientations. The CP consists of four axially stacked heptameric rings (two outer α-rings and two inner β-rings), which are made up of seven structurally related, but not identical, α and β subunits. The CP contains catalytic threonine residues (in β1, β2, and β5 with caspase-like, trypsin-like, and chymotrypsin-like activities, respectively) on the surface of the chamber formed by two abutting β-rings. The RP recognizes polyubiquitylated substrate proteins and unfolds and translocates these proteins to the interior of the CP for degradation. The RP comprises 19 different subunits, which are thought to form two subcomplexes called the lid and the base. One longstanding question is how the complex structure of the proteasome is organized with high fidelity. Recently, we proposed a novel assembly mechanism that is assisted by multiple proteasome-dedicated chaperones. In addition, we discovered two immuno-type proteasomes, the immunoproteasome and the thymoproteasome, whose catalytic subunits are replaced by homologous counterparts. These two isoforms perform specialized functions that help discriminate self from non-self in cell-mediated immunity (i.e., they function as enzymes that process intracellular antigens for cytotoxic T lymphocyte responses and thymic positive selection). Moreover, emerging evidence suggests that the proteasome is crucially involved in the pathophysiology of various intractable diseases that are increasing in today's aging society.
Collapse
|
33
|
Zenkov NK, Menshchikova EB, Tkachev VO. Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. BIOCHEMISTRY (MOSCOW) 2013; 78:19-36. [DOI: 10.1134/s0006297913010033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Arlt A, Schäfer H, Kalthoff H. The 'N-factors' in pancreatic cancer: functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis 2012; 1:e35. [PMID: 23552468 PMCID: PMC3511680 DOI: 10.1038/oncsis.2012.35] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies, with an overall life expectancy of 6 months. Despite considerable advances in the understanding of the molecular mechanisms involved in the carcinogenesis of PDAC, the outcome of the disease was not significantly improved over the last 20 years. Although some achievements in molecular-targeted therapies have been made (that is, targeting the epidermal growth factor receptor by erlotinib), which already entered clinical settings, and despite the promising outcome of the FOLFIRINOX trial, there is an urgent need for improvement of the chemotherapy in this disease. A plethora of molecular alterations are thought to be responsible for the profound chemoresistance, including mutations in oncogenes and tumor suppressors. Besides these classical hallmarks of cancer, the constitutive or inducible activity of transcription factor pathways are characteristic changes in PDAC. Recently, three transcription factors-nuclear factor-κB (NF-κB), nuclear factor of activated T cells (NFAT) and nuclear factor-E2-related factor-2 (Nrf2)-have been shown to be crucial for tumor development and chemoresistance in pancreatic cancer. These transcription factors are key regulators of a variety of genes involved in nearly all aspects of tumorigenesis and resistance against chemotherapeutics and death receptor ligands. Furthermore, the pathways of NF-κB, NFAT and Nrf2 are functional, interacting on several regulatory steps, and, especially, natural compounds such as curcumin interfere with more than one pathway. Thus, targeting these pathways by established inhibitors or new drugs might have great potential to improve the outcome of PDAC patients, most likely in combination with established anticancer drugs. In this article, we summarize recent progress in the characterization of these transcription-factor pathways and their role in PDAC and therapy resistance. We also discuss future concepts for the treatment of PDAC relying on these pathways.
Collapse
Affiliation(s)
- A Arlt
- Laboratory of Molecular Gastroenterology and Hepatology, Department of Internal Medicine I, Kiel, Germany
| | - H Schäfer
- Laboratory of Molecular Gastroenterology and Hepatology, Department of Internal Medicine I, Kiel, Germany
| | - H Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, Comprehensive Cancer Center North, Kiel, Germany
| |
Collapse
|
35
|
Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2012; 32:4825-35. [PMID: 23108405 DOI: 10.1038/onc.2012.493] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 08/30/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and α5/psma5) and reduced proteasome activity in all cell lines tested. These blocking effects were absent after treatment with Nrf2 siRNA, a condition in which proteasomal gene expression and proteasome activity were already decreased, whereas siRNA against the related transcription factor Nrf1 did not affect proteasome activity and the inhibitory effect of trig. Depending on both Nrf2 and proteasomal gene expression, the sensitivity of all cell lines to anticancer drugs and TRAIL-induced apoptosis was enhanced by trig. Moreover, greater antitumor responses toward anticancer drug treatment were observed in tumor-bearing mice when receiving trig. In conclusion, representing an efficient Nrf2 inhibitor capable of blocking Nrf2-dependent proteasome activity and thereby apoptosis protection in pancreatic cancer cells, trig might be beneficial in improving anticancer therapy.
Collapse
|
36
|
Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52:2013-37. [PMID: 22391222 DOI: 10.1016/j.freeradbiomed.2012.02.035] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The role of inflammation in carcinogenesis has been extensively investigated and well documented. Many biochemical processes that are altered during chronic inflammation have been implicated in tumorigenesis. These include shifting cellular redox balance toward oxidative stress; induction of genomic instability; increased DNA damage; stimulation of cell proliferation, metastasis, and angiogenesis; deregulation of cellular epigenetic control of gene expression; and inappropriate epithelial-to-mesenchymal transition. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide, and matricellular proteins are closely involved in premalignant and malignant conversion of cells in a background of chronic inflammation. Inappropriate transcription of genes encoding inflammatory mediators, survival factors, and angiogenic and metastatic proteins is the key molecular event in linking inflammation and cancer. Aberrant cell signaling pathways comprising various kinases and their downstream transcription factors have been identified as the major contributors in abnormal gene expression associated with inflammation-driven carcinogenesis. The posttranscriptional regulation of gene expression by microRNAs also provides the molecular basis for linking inflammation to cancer. This review highlights the multifaceted role of inflammation in carcinogenesis in the context of altered cellular redox signaling.
Collapse
|
37
|
TGF-β1-dependent L1CAM expression has an essential role in macrophage-induced apoptosis resistance and cell migration of human intestinal epithelial cells. Oncogene 2012; 32:180-9. [DOI: 10.1038/onc.2012.44] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Xu H, Fu J, Ha SW, Ju D, Zheng J, Li L, Xie Y. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:818-25. [PMID: 22285817 DOI: 10.1016/j.bbamcr.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/04/2023]
Abstract
Protein degradation by the proteasome plays an important role in all major cellular pathways. Aberrant proteasome activity is associated with numerous human diseases including cancer and neurological disorders, but the underlying mechanism is virtually unclear. At least part of the reason for this is due to lack of understanding of the regulation of human proteasome genes. In this study, we found that a large set of human proteasome genes carry the CCAAT box in their promoters. We further demonstrated that the basal expression of these CCAAT box-containing proteasome genes is regulated by the transcription factor NF-Y. Knockdown of NF-YA, an essential subunit of NF-Y, reduced proteasome gene expression and compromised the cellular proteasome activity. In addition, we showed that knockdown of NF-YA sensitized breast cancer cells to the proteasome inhibitor MG132. This study unveils a new role for NF-Y in the regulation of human proteasome genes and suggests that NF-Y may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Haiming Xu
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|