1
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
2
|
Fan L, Liu J, Hu W, Chen Z, Lan J, Zhang T, Zhang Y, Wu X, Zhong Z, Zhang D, Zhang J, Qin R, Chen H, Zong Y, Zhang J, Chen B, Jiang J, Cheng J, Zhou J, Gao Z, Liu Z, Chai Y, Fan J, Wu P, Chen Y, Zhu Y, Wang K, Yuan Y, Huang P, Zhang Y, Feng H, Song K, Zeng X, Zhu W, Hu X, Yin W, Chen W, Wang J. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res 2024; 34:407-427. [PMID: 38491170 PMCID: PMC11143203 DOI: 10.1038/s41422-024-00945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/24/2024] [Indexed: 03/18/2024] Open
Abstract
Atherosclerosis (AS), a leading cause of cardio-cerebrovascular disease worldwide, is driven by the accumulation of lipid contents and chronic inflammation. Traditional strategies primarily focus on lipid reduction to control AS progression, leaving residual inflammatory risks for major adverse cardiovascular events (MACEs). While anti-inflammatory therapies targeting innate immunity have reduced MACEs, many patients continue to face significant risks. Another key component in AS progression is adaptive immunity, but its potential role in preventing AS remains unclear. To investigate this, we conducted a retrospective cohort study on tumor patients with AS plaques. We found that anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) significantly reduces AS plaque size. With multi-omics single-cell analyses, we comprehensively characterized AS plaque-specific PD-1+ T cells, which are activated and pro-inflammatory. We demonstrated that anti-PD-1 mAb, when captured by myeloid-expressed Fc gamma receptors (FcγRs), interacts with PD-1 expressed on T cells. This interaction turns the anti-PD-1 mAb into a substitute PD-1 ligand, suppressing T-cell functions in the PD-1 ligands-deficient context of AS plaques. Further, we conducted a prospective cohort study on tumor patients treated with anti-PD-1 mAb with or without Fc-binding capability. Our analysis shows that anti-PD-1 mAb with Fc-binding capability effectively reduces AS plaque size, while anti-PD-1 mAb without Fc-binding capability does not. Our work suggests that T cell-targeting immunotherapy can be an effective strategy to resolve AS in humans.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Junwei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Hu
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology and Biostatistics and Department of Scientific Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Lan
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China
| | - Tongtong Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianpeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiwei Zhong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danyang Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinlong Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Qin
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Zong
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bing Chen
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jifang Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiwei Gao
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junqiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinxuan Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuefeng Zhu
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Department of Respiratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiqin Feng
- Department of Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaichen Song
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Zeng
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Thomas R, Klaus T. The role of cAMP dependent gene transcription in lupus pathophysiology. Clin Immunol 2024; 262:110179. [PMID: 38460896 DOI: 10.1016/j.clim.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
T lymphocytes play a major role in the pathophysiology of systemic lupus erythematosus. T cellular dysregulation includes significant alterations in signal transduction, cytokine production and metabolic pathways. The cAMP dependent transcription factors like CREB and CREM exert pleiotropic functions as they are critically involved in epigenetic conformational changes and gene regulation of different key effector cytokines in CD4+ T cells including that of IL2, IL17 and IL21 genes. In the present review we review current knowledge on altered expression and function of these factors in T cells that promote autoimmunity in SLE patients.
Collapse
Affiliation(s)
- Rauen Thomas
- RWTH Aachen University, Dept. of Rheumatology, Germany
| | - Tenbrock Klaus
- RWTH Aachen University, Translational Pediatric Rheumatology and Immunology, Germany; Department of Paediatrics, Inselspital University of Bern, Pediatric Rheumatology, Switzerland.
| |
Collapse
|
4
|
Araki Y, Mimura T. Epigenetic Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:1019. [PMID: 38256093 PMCID: PMC10816225 DOI: 10.3390/ijms25021019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease in which immune disorders lead to autoreactive immune responses and cause inflammation and tissue damage. Genetic and environmental factors have been shown to trigger SLE. Recent evidence has also demonstrated that epigenetic factors contribute to the pathogenesis of SLE. Epigenetic mechanisms play an important role in modulating the chromatin structure and regulating gene transcription. Dysregulated epigenetic changes can alter gene expression and impair cellular functions in immune cells, resulting in autoreactive immune responses. Therefore, elucidating the dysregulated epigenetic mechanisms in the immune system is crucial for understanding the pathogenesis of SLE. In this paper, we review the important roles of epigenetic disorders in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yasuto Araki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan;
| | | |
Collapse
|
5
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
7
|
Carlsson E, Cowell-McGlory T, Hedrich CM. cAMP responsive element modulator α promotes effector T cells in systemic autoimmune diseases. Immunology 2023; 170:470-482. [PMID: 37435993 DOI: 10.1111/imm.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
T lymphocytes play a crucial role in adaptive immunity. Dysregulation of T cell-derived inflammatory cytokine expression and loss of self-tolerance promote inflammation and tissue damage in several autoimmune/inflammatory diseases, including systemic lupus erythematosus (SLE) and psoriasis. The transcription factor cAMP responsive element modulator α (CREMα) plays a key role in the regulation of T cell homeostasis. Increased expression of CREMα is a hallmark of the T cell-mediated inflammatory diseases SLE and psoriasis. Notably, CREMα regulates the expression of effector molecules through trans-regulation and/or the co-recruitment of epigenetic modifiers, including DNA methyltransferases (DNMT3a), histone-methyltransferases (G9a) and histone acetyltransferases (p300). Thus, CREMα may be used as a biomarker for disease activity and/or target for future targeted therapeutic interventions.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Taylor Cowell-McGlory
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
- Paediatric Excellence Initiative, NIHR Great Ormond Street Biomedical Research Centre, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
8
|
Xia L, Wu T, Chen L, Mei P, Liu L, Li R, Shu M, Huan Z, Wu C, Fang B. Silicon-Based Biomaterials Modulate the Adaptive Immune Response of T Lymphocytes to Promote Osteogenesis/Angiogenesis via Epigenetic Regulation. Adv Healthc Mater 2023; 12:e2302054. [PMID: 37842937 DOI: 10.1002/adhm.202302054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
9
|
Shao TY, Jiang TT, Stevens J, Russi AE, Troutman TD, Bernieh A, Pham G, Erickson JJ, Eshleman EM, Alenghat T, Jameson SC, Hogquist KA, Weaver CT, Haslam DB, Deshmukh H, Way SS. Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation. Cell Rep 2023; 42:113323. [PMID: 37889750 PMCID: PMC10822050 DOI: 10.1016/j.celrep.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Tony T Jiang
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Stevens
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Ty D Troutman
- Division of Allergy and Immunology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Anas Bernieh
- Division of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - John J Erickson
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Casey T Weaver
- Program in Immunology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Zeng H, Li D, Dong J, Zhou X, Ou M, Xue W, Zhang R, Zou Y, Tang D, Yin L, Dai Y. Qualitative Proteome-wide Lysine Crotonylation Profiling Reveals Protein Modification Alteration in the Leukocyte Extravasation Pathway in Systemic Lupus Erythematosus. ACS OMEGA 2023; 8:44905-44919. [PMID: 38046296 PMCID: PMC10688171 DOI: 10.1021/acsomega.3c06293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease with multiple manifestations. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification epigenetic pattern that may affect gene expression and is linked to diseases causally. METHODS We collected blood samples from 11 SLE individuals and 36 healthy subjects. Then, we used highly sensitive liquid chromatography-mass spectrometry technology to carry out proteomics and quantitative crotonylome analysis of SLE peripheral blood mononuclear cells in this investigation, which indicated the unique etiology of SLE. Finally, we verified the expression of critical protein in the leukocyte extravasation pathway by online database analysis and Western blot. RESULTS There were 618 differentially expressed proteins (DEPs), and 612 crotonylated lysine sites for 272 differentially modified proteins (DMPs) found. These DEPs and DMPs are primarily enriched in the leukocyte extravasation signaling pathway, such as MMP8, MMP9, and ITGAM. CONCLUSIONS This is the first study of crotonylated modification proteomics in SLE. The leukocyte extravasation signaling pathway had a considerable concentration of DEPs and DMPs, indicating that this pathway may be involved in the pathogenic development of SLE.
Collapse
Affiliation(s)
- Huiyi Zeng
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Dandan Li
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
- Experimental
Center, Shenzhen Pingle Orthopedic Hospital
(Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong 518118, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Jingjing Dong
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
| | - Xianqing Zhou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Minglin Ou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Wen Xue
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Ruohan Zhang
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Yaoshuang Zou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Donge Tang
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
| | - Lianghong Yin
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- Huangpu
Institute of Materials, Guangzhou, Guangdong 510663, China
| | - Yong Dai
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
11
|
Xu D, Chen Y, Gao X, Xie W, Wang Y, Shen J, Yang G, Xie B. The genetically predicted causal relationship of inflammatory bowel disease with bone mineral density and osteoporosis: evidence from two-sample Mendelian randomization. Front Immunol 2023; 14:1148107. [PMID: 37275908 PMCID: PMC10233018 DOI: 10.3389/fimmu.2023.1148107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background Many existing studies indicated that patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), tend to have the risk of low total body bone mineral density (BMD), and are more likely to have osteoporosis (OS). To determine the causal relationship between IBD and bone metabolic disorders, we herein performed a two-sample Mendelian randomization analysis (TSMR) using publicly available summary statistics. Methods Summary statistics of total body BMD, OS and IBD were downloaded from the Open Genome-Wide Association Study (GWAS), FinnGen consortium and International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). The European and East Asian populations have consisted in this Mendelian Randomization (MR) work. A range of quality control procedures were taken to select eligible instrument SNPs closely associated with total body BMD, OS and IBD. To make the conclusions more reliable, we applied five robust analytical methods, among which the inverse variance weighting (IVW) method acted as the major method. Besides, heterogeneity, pleiotropy and sensitivity were evaluated. Results In the European population, the genetic association of UC on total body BMD (OR=0.97, 95%CI=0.96,0.99, P<0.001) and overall IBD on total body BMD (OR=0.98, 95%CI=0.97,1.00, P=0.013) were significant, while the effect of CD on total body BMD was not significant enough (OR=0.99, 95%CI=0.98,1.00, P=0.085). All of UC, CD and overall IBD can be the genetic risk factor of having OS with pathological fracture (UC: OR=1.13, 95%CI=1.02,1.26, P=0.024, CD: OR=1.14, 95%CI=1.05,1.25, P=0.003, overall IBD: OR=1.13, 95%CI=1.02,1.24, P=0.015). In East Asian groups, only CD had a causal relationship with OS (OR=1.04, 95% CI=1.01,1.07, P=0.019). Conclusion Our study revealed genetically predicted associations between IBD on total body BMD and OS in European and East Asian populations. This work supplemented the results of previous retrospective studies and demonstrated the necessity of BMD monitoring in patients with IBD.
Collapse
Affiliation(s)
- Dengyong Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weidong Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Hospital Infection-Control, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Hospital Infection-Control, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guang Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Smith EMD, Lythgoe H, Hedrich CM. Current views on lupus in children. Curr Opin Rheumatol 2023; 35:68-81. [PMID: 36286724 DOI: 10.1097/bor.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This manuscript provides an update on clinical and pathophysiological features of juvenile-onset systemic lupus erythematosis (jSLE), challenges applying adult-derived classification criteria, and recent advances in treatment and care. RECENT FINDINGS Significant scientific advances have improved the understanding of genetic factors (both genetic causes and risk alleles) and associated phenotypic features. Panels of urine/blood biomarker candidates aid in diagnosing jSLE, monitoring disease activity and predicting treatment response. Available classification criteria have been extensively assessed, with differences in clinical and immunological phenotypes of patients across age groups and ethnicities affecting their performance in jSLE. Therapeutic options remain limited and are based on protocols for adult-onset SLE patients. International efforts to inform development of a treat-to-target (T2T) approach for jSLE have yielded cohort-level evidence that target attainment reduces the risk of severe flare and new damage, and treatment compliance. SUMMARY Recent studies have significantly improved our understanding of jSLE pathogenesis, highlighting important differences between jSLE and adult SLE, and providing the basis of biomarker development and target-directed individualized treatment and care. Future work focused on development of a T2T approach in jSLE is eagerly awaited.
Collapse
Affiliation(s)
- Eve M D Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool
| | - Hanna Lythgoe
- Department of Paediatric Rheumatology, Manchester Children's NHS Foundation Trust, Manchester, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool
| |
Collapse
|
13
|
Kawano M, Takagi R, Tokano M, Matsushita S. Adenosine induces IL-31 secretion by T-helper 2 cells: Implication for the effect of adenosine on atopic dermatitis and its therapeutic strategy. Biochem Biophys Res Commun 2023; 645:47-54. [PMID: 36680936 DOI: 10.1016/j.bbrc.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Interleukin (IL)-31 is a recently-identified cytokine with a well-defined role in the pathogenesis of pruritus. Previously, we reported that adenosine upregulates IL-17A secretion by T-helper (Th)17 cells; however, the effect of adenosine on T cell subsets other than Th17 remains unclear. In this report, we show that adenosine upregulated production of IL-31 by cluster of differentiation (CD)4+ T cells. IL-31 was also upregulated by administration of an adenosine A2a receptor (A2aR) agonist (PSB0777), and adenosine-mediated IL-31 production was inhibited by an A2aR antagonist (istradefylline). Production of Th2-related cytokines (IL-4, IL-10, and IL-13) by CD4+ T cells showed the same tendency. Immune subset analyses revealed that adenosine upregulated IL-31 secretion by CD4+ chemokine receptor 3high T cells, and that Th2 cells differentiated from naïve CD4+ T cells. Administration of istradefylline to mice with atopic dermatitis suppressed the symptoms, suggesting that A2aR antagonists are an effective treatment for inflammatory dermatitis. Taken together, the results indicate that adenosine upregulates secretion of Th2-related cytokines by effector T cells in the skin, thereby triggering atopic dermatitis and associated pruritus.
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan; Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan; Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan; Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan; Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan.
| |
Collapse
|
14
|
Luo S, Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Decreased SUV39H1 at the promoter region leads to increased CREMα and accelerates autoimmune response in CD4 + T cells from patients with systemic lupus erythematosus. Clin Epigenetics 2022; 14:181. [PMID: 36536372 PMCID: PMC9764740 DOI: 10.1186/s13148-022-01411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.
Collapse
Affiliation(s)
- Shuangyan Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Huilin Zhang
- grid.216417.70000 0001 0379 7164Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Yuming Xie
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Junke Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Danhong Luo
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, #49 Longkun South Rd, Haikou, 570206 Hainan People’s Republic of China
| | - Qing Zhang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
15
|
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor. Brain Behav Immun Health 2022; 26:100544. [PMID: 36467126 PMCID: PMC9712818 DOI: 10.1016/j.bbih.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Extracellular adenosine, produced from ATP secreted by neuronal or immune cells, may play a role in endogenous regulation of inflammatory responses. Studies show that adenosine induces hypersecretion of IL-17A by CD4+ T cells upon treatment with an A2aR agonist (PSB0777), and that adenosine-mediated IL-17A hypersecretion is suppressed by the A2aR antagonist (Istradefylline) in humans. However, it is unclear whether A2aR downstream signaling is involved in IL-17A hypersecretion. Here, we show that inhibitors of adenyl cyclase (AC), protein kinase A (PKA), and cAMP response element binding protein (CREB) (which are signaling molecules downstream of the Gs protein coupled to the A2aR), suppress IL-17A production, suggesting that activation of A2aR signaling induces IL-17A production by CD4+ T cells. Furthermore, immune subset studies revealed that adenosine induces hypersecretion of IL-17A by T-helper (Th)17 cells. These results indicate that adenosine is an endogenous modulator of neutrophilic inflammation. Administration of an A2aR antagonist to mice with experimental autoimmune encephalomyelitis led to marked amelioration of symptoms. Thus, inhibitors of the novel A2aR-AC-cAMP-PKA-CREB signaling pathway for IL-17A hypersecretion by TCR-activated Th17 cells suppresses adenosine-mediated IL-17A production, suggesting that it may be an effective treatment for Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
16
|
Luo S, Wu R, Li Q, Zhang G. Epigenetic Regulation of IFI44L Expression in Monocytes Affects the Functions of Monocyte-Derived Dendritic Cells in Systemic Lupus Erythematosus. J Immunol Res 2022; 2022:4053038. [PMID: 35592687 PMCID: PMC9113863 DOI: 10.1155/2022/4053038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Interferon-inducible 44 like (IFI44L) is a newly discovered interferon-induced gene and has been reported to overexpress in systemic lupus erythematosus (SLE). However, little is known about the mechanism and function of IFI44L overexpression in SLE. In this study, we aimed to investigate the epigenetic mechanism of IFI44L overexpression in SLE monocyte and its potential functions contributing to the pathogenesis of SLE. Methods We collected peripheral blood from 20 SLE patients and 20 healthy controls. Expression of IFI44L in monocytes and effects of different signal transducers and activators of transcription (STAT) pathway inhibitors on IFI44L expression were detected. Recruitment of ten-eleven translocation protein (TET) by STAT and methylation of IFI44L promoter were evaluated. Effects of IFI44L overexpression on the expression of surface markers on monocyte-derived dendritic cells (Mo-DCs) were analyzed. T cell differentiation mediated by Mo-DCs and related cytokines production were also analyzed. Results Expression level of IFI44L was significantly increased in SLE monocyte. IFI44L expression was decreased most significantly in STAT3 inhibitor compared with other inhibitors. STAT3 regulated IFI44L expression and interacted with TET2 which induced DNA demethylation of IFI44L promoter. Overexpression of IFI44L in monocyte enhanced the maturation and functions of Mo-DC by upregulating costimulatory receptors and inducing Th1/Th17-related cytokines when cocultured with naïve CD4+ T cells. Conclusion TET2 recruited by STAT3 induces DNA demethylation of IFI44L promoter which promotes IFI44L overexpression in monocyte contributing to the pathogenesis of SLE by enhancing the maturation and functions of Mo-DC. IFI44L is expected to become a new target for treatment of SLE.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianwen Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
T cell dysregulation in SLE. Clin Immunol 2022; 239:109031. [DOI: 10.1016/j.clim.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
|
18
|
Qi W, Zhang Y, Wang Y, Wang H, Fu R, Shao Z. Abnormal expression of histone acetylases in CD8+ T cells of patients with severe aplastic anemia. J Clin Lab Anal 2022; 36:e24339. [PMID: 35274786 PMCID: PMC8993608 DOI: 10.1002/jcla.24339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction We aimed to investigate the balance between the mRNA levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in CD8+ T cells of patients with severe aplastic anemia (SAA). Methods Twenty untreated SAA patients, 18 remission SAA patients (R‐SAA), and 22 normal controls were evaluated. The mRNA expression levels of HATs, HDACs, and IFNG in CD8+ T cells were measured by real‐time quantitative reverse transcription polymerase chain reaction. Results Histone acetylase EP300 and CREBBP mRNA levels were significantly elevated in CD8+ T cells of SAA patients compared with the normal controls (both p < 0.05). No significant differences were observed in HDAC1 and HDAC7 mRNA between SAA patients and the normal controls. There was an obvious positive correlation between IFNG and EP300 (r = 0.5126, p < 0.01), and CREBBP (r = 0.4663, p < 0.05), respectively, in SAA and R‐SAA patients. In addition, EP300 and CREBBP mRNA levels were clearly correlated with clinical parameters of peripheral blood and bone marrow in those patients. Conclusion Our findings suggest that EP300 and CREBBP are increased in CD8+ T cells of SAA patients and are correlated with disease severity. The imbalances in HATs and HDACs may play a role in activating CD8+ T cells to promote the immune pathogenesis of SAA.
Collapse
Affiliation(s)
- Weiwei Qi
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yachen Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Karpf L, Trichot C, Faucheux L, Legbre I, Grandclaudon M, Lahoute C, Mattoo H, Pasquier B, Soumelis V. A multivariate modeling framework to quantify immune checkpoint context-dependent stimulation on T cells. Cell Discov 2022; 8:1. [PMID: 34983927 PMCID: PMC8727669 DOI: 10.1038/s41421-021-00352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Cells receive, and adjust to, various stimuli, which function as part of complex microenvironments forming their "context". The possibility that a given context impacts the response to a given stimulus defines "context-dependency" and it explains large parts of the functional variability of physiopathological and pharmacological stimuli. Currently, there is no framework to analyze and quantify context-dependency over multiple contexts and cellular response outputs. We established an experimental system including a stimulus of interest, applied to an immune cell type in several contexts. We studied the function of OX40 ligand (OX40L) on T helper (Th) cell differentiation, in 4 molecular (Th0, Th1, Th2, and Th17) and 11 dendritic cell (DC) contexts (monocyte-derived DC and cDC2 conditions). We measured 17 Th output cytokines in 302 observations, and developed a statistical modeling strategy to quantify OX40L context-dependency. This revealed highly variable context-dependency, depending on the output cytokine and context type itself. Among molecular contexts, Th2 was the most influential on OX40L function. Among DC contexts, the DC type rather than the activating stimuli was dominant in controlling OX40L context-dependency. This work mathematically formalizes the complex determinants of OX40L functionality, and provides a unique framework to decipher and quantify the context-dependent variability of any biomolecule or drug function.
Collapse
Affiliation(s)
- Léa Karpf
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Coline Trichot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Lilith Faucheux
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM UMR-1153, ECSTRRA Team, Paris, France
| | - Iris Legbre
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | | | - Charlotte Lahoute
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Hamid Mattoo
- grid.417555.70000 0000 8814 392XImmunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA USA
| | - Benoit Pasquier
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Vassili Soumelis
- Institut Curie, PSL University, INSERM U932, Paris, France. .,Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France.
| |
Collapse
|
20
|
Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Reduced expression of hematopoietic progenitor kinase 1 in T follicular helper cells causes autoimmunity of systemic lupus erythematosus. Lupus 2021; 31:28-38. [PMID: 34968152 DOI: 10.1177/09612033211062524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUD T follicular helper (Tfh) cells have been discovered to be the main CD4+ T cells assisting B cells to produce antibody. They are over activated in patients with systemic lupus erythematosus (SLE) and consequently lead to excessive immunity. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates T cell-mediated immune responses and TCR signal. This study aimed to investigate the roles of HPK1 in SLE Tfh cells. METHODS HPK1 mRNA and protein levels in Tfh cells were measured by real-time quantitative PCR and western blot analysis, respectively. The production of IL-21, B cell-activating factor (BAFF), interferon γ (IFNγ), IL-17A, IgM, IgG1, IgG2, and IgG3 were analyzed using enzyme linked immunosorbent assay. Tfh cells proliferation was evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS HPK1 mRNA and protein levels were significantly reduced in SLE Tfh cells, and negatively correlated with SLE disease activity index (SLEDAI) and Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for SLE (SDI). Knocking down HPK1 with siRNA in normal Tfh cells greatly elevated Tfh cells proliferation and secretions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3. There were no marked alterations in IL-17A and IgM productions. The opposite effects were observed in SLE Tfh cells transfected with HPK1 overexpressing plasmid: Tfh cells proliferation and productions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3 were all alleviated. And there were no significant changes in IL-17A and IgM levels. CONCLUSION Our results suggest for the first time that inhibited expression of HPK1 in SLE Tfh cells leading to Tfh cells overactivation and B cells overstimulation, subsequently, the onset and progression of SLE.
Collapse
Affiliation(s)
- Huilin Zhang
- Clinical Nursing Teaching and Research Section, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuming Xie
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Junke Huang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Danhong Luo
- Department of Dermatology, Fifth People's Hospital of Hainan Province, Haikou, China
| | - Qing Zhang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Alexander T, Hedrich CM. Systemic lupus erythematosus - Are children miniature adults? Clin Immunol 2021; 234:108907. [PMID: 34890808 DOI: 10.1016/j.clim.2021.108907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune/inflammatory disease that can affect any organ system and cause significant damage and organ failure. Disease-onset during childhood (juvenile-onset SLE) is associated with less typical autoantibody patterns, diffuse organ involvement, more damage already at diagnoses, and a higher need of immunomodulating treatment, including corticosteroids, when compared to adult-onset SLE. Differences in the molecular pathophysiology within SLE, and over-representation of patients with "genetic SLE" contribute to differences in clinical presentation and treatment responses between children and adults. This manuscript summarizes currently available literature focusing on parallels and differences between clinical pictures, known pathomechanisms, and available treatment options in juvenile- versus adult-onset SLE.
Collapse
Affiliation(s)
- Tobias Alexander
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, 10117 Berlin, Germany; Deutsches Rheuma-Forschungszentrum (DRFZ Berlin), ein Leibniz Institute, 10117 Berlin, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Live Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
22
|
Subramanyam SH, Tenbrock K. The cAMP responsive element modulator (CREM) is a regulator of CD4 + T cell function. Biol Chem 2021; 402:1591-1596. [PMID: 34448385 DOI: 10.1515/hsz-2021-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
The cAMP responsive element modulator (CREM) is a transcriptional regulator of different effector cytokines in CD4+ T cells including IL-2, IL-17, IL-21 but also IL-4 and IL-13 and thus an important determinant of central T helper cell functions. Our review gives an overview over the regulation of CREM in T cells and the pleiotropic effects of CREM on CD4+ T cells in health and autoimmune diseases with a particular focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Klaus Tenbrock
- Department of Pediatrics, Pediatric Pneumology, Allergology and Immunology, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research IZKF, Aachen, Germany
- Interdisciplinary Center for Clinical Research IZKF, Münster, Germany
| |
Collapse
|
23
|
[Systemic lupus erythematosus-are children small adults?]. Z Rheumatol 2021; 81:28-35. [PMID: 34748078 DOI: 10.1007/s00393-021-01116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic inflammatory disease that can affect any organ of the human body and cause significant damage. As compared to patients with adult-onset SLE, children and young people (juvenile SLE) more frequently experience extensive diffuse organ involvement, more organ damage at diagnoses, and resistance to immunomodulatory treatment. This manuscript emphasizes parallels and differences between the clinical pictures, known pathomechanisms, and available treatment options of juvenile and adult-onset SLE.
Collapse
|
24
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
25
|
Carlsson E, Midgley A, Perkins S, Caamano-Gutierrez E, Gritzfeld JF, Beresford MW, Hedrich CM. Serum protein signatures differentiate paediatric autoimmune/inflammatory disorders. Clin Immunol 2021; 229:108790. [PMID: 34197952 DOI: 10.1016/j.clim.2021.108790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023]
Abstract
Because of their rarity, limited awareness among non-specialists, and significant overlaps in their clinical presentation, childhood autoimmune/inflammatory conditions represent a diagnostic and therapeutic challenge. Juvenile idiopathic arthritis (JIA), with its 7 sub-forms, is the most common paediatric "rheumatic" disease. Juvenile-onset systemic lupus erythematosus (jSLE) is a severe autoimmune/inflammatory disease that can affect any organ system and shares clinical features with JIA. To overcome issues around diagnostic approaches in the context of clinical overlap, we aimed at the definition of disease sub-form specific cytokine and chemokine profiles. Serum samples from patients with JIA (n = 77) and jSLE (n = 48), as well as healthy controls (n = 30), were collected. Samples were analysed using the Meso Scale Discovery (MSD) U-PLEX Biomarker Group 1 (hu) panel. Distinct serum protein signatures associate with JIA vs jSLE disease groups. Proteins with high discriminatory ability include IL-23, MIP-1β, MCP-1, M-CSF and MDC. Furthermore, serum IL-18, MIF, MIP-5 and YKL-40 discriminate between systemic JIA and other JIA subtypes. Thus, simultaneous quantification of serum proteins in a panel format may provide an avenue for the diagnosis and monitoring of childhood autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Angela Midgley
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Simon Perkins
- Computation Biology Facility, Technology Directorate, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Eva Caamano-Gutierrez
- Computation Biology Facility, Technology Directorate, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jenna F Gritzfeld
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, United Kingdom; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, United Kingdom; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom.
| |
Collapse
|
26
|
Hofmann SR, Carlsson E, Kapplusch F, Carvalho AL, Liloglou T, Schulze F, Abraham S, Northey S, Russ S, Surace AEA, Yoshida N, Tsokos GC, Hedrich CM. Cyclic AMP Response Element Modulator-α Suppresses PD-1 Expression and Promotes Effector CD4 + T Cells in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2021; 207:55-64. [PMID: 34135066 DOI: 10.4049/jimmunol.2100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Effector CD4+ T lymphocytes contribute to inflammation and tissue damage in psoriasis, but the underlying molecular mechanisms remain poorly understood. The transcription factor CREMα controls effector T cell function in people with systemic autoimmune diseases. The inhibitory surface coreceptor PD-1 plays a key role in the control of effector T cell function and its therapeutic inhibition in patients with cancer can cause psoriasis. In this study, we show that CD4+ T cells from patients with psoriasis and psoriatic arthritis exhibit increased production of IL-17 but decreased expression of IL-2 and PD-1. In genetically modified mice and Jurkat T cells CREMα expression was linked to low PD-1 levels. We demonstrate that CREMα is recruited to the proximal promoter of PDCD1 in which it trans-represses gene expression and corecruits DNMT3a-mediating DNA methylation. As keratinocytes limit inflammation by PD-1 ligand expression and, in this study, reported reduced expression of PD-1 on CD4+ T cells is linked to low IL-2 and high IL-17A production, our studies reveal a molecular pathway in T cells from people with psoriasis that can deserve clinical exploitation.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Franz Kapplusch
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ana L Carvalho
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Abraham
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna E A Surace
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nobuya Yoshida
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; .,Department of Rheumatology, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom; and.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
27
|
ADAM9 enhances Th17 cell differentiation and autoimmunity by activating TGF-β1. Proc Natl Acad Sci U S A 2021; 118:2023230118. [PMID: 33911034 DOI: 10.1073/pnas.2023230118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The a disintegrin and metalloproteinase (ADAM) family of proteinases alter the extracellular environment and are involved in the development of T cells and autoimmunity. The role of ADAM family members in Th17 cell differentiation is unknown. We identified ADAM9 to be specifically expressed and to promote Th17 differentiation. Mechanistically, we found that ADAM9 cleaved the latency-associated peptide to produce bioactive transforming growth factor β1, which promoted SMAD2/3 phosphorylation and activation. A transcription factor inducible cAMP early repressor was found to bind directly to the ADAM9 promoter and to promote its transcription. Adam9-deficient mice displayed mitigated experimental autoimmune encephalomyelitis, and transfer of Adam9-deficient myelin oligodendrocyte globulin-specific T cells into Rag1 -/- mice failed to induce disease. At the translational level, an increased abundance of ADAM9 levels was observed in CD4+ T cells from patients with systemic lupus erythematosus, and ADAM9 gene deletion in lupus primary CD4+ T cells clearly attenuated their ability to differentiate into Th17 cells. These findings revealed that ADAM9 as a proteinase provides Th17 cells with an ability to activate transforming growth factor β1 and accelerates its differentiation, resulting in aberrant autoimmunity.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Juvenile-onset systemic lupus erythematosus ((j)SLE) is an autoimmune/inflammatory disease that results in significant damage and disability. When compared to patients with disease onset in adulthood, jSLE patients exhibit increased disease activity, damage and require more aggressive treatments. This manuscript summarises age-specific pathogenic mechanisms and underscores the need for age group-specific research, classification and treatment. RECENT FINDINGS Genetic factors play a significant role in the pathophysiology of jSLE, as > 7% of patients develop disease as a result of single gene mutations. Remaining patients carry genetic variants that are necessary for disease development, but require additional factors. Increased 'genetic impact' likely contributes to earlier disease onset and more severe phenotypes. Epigenetic events have only recently started to be addressed in jSLE, and add to the list of pathogenic mechanisms that may serve as biomarkers and/or treatment targets. To allow meaningful and patient-oriented paediatric research, age-specific classification criteria and treatment targets require to be defined as currently available tools established for adult-onset SLE have limitations in the paediatric cohort. Significant progress has been made in understanding the pathophysiology of jSLE. Meaningful laboratory and clinical research can only be performed using age group-specific tools, classification criteria and treatment targets.
Collapse
Affiliation(s)
- A Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - E Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
- Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescot Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
29
|
Koga T, Ichinose K, Kawakami A, Tsokos GC. Current Insights and Future Prospects for Targeting IL-17 to Treat Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 11:624971. [PMID: 33597953 PMCID: PMC7882681 DOI: 10.3389/fimmu.2020.624971] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune cell abnormalities which lead to the production of autoantibodies and the deposition of immune complexes. Interleukin (IL)-17-producing cells play an important role in the pathogenesis of the disease, making them an attractive therapeutic target. Studies in lupus-prone mice and of ex vivo cells from patients with SLE humans have shown that IL-17 represents a promising therapeutic target. Here we review molecular mechanisms involved in IL-17 production and Th17 cell differentiation and function and an update on the role of IL-17 in autoimmune diseases and the expected usefulness for targeting IL-17 therapeutically.
Collapse
Affiliation(s)
- Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Liao J, Luo S, Yang M, Lu Q. Overexpression of CXCR5 in CD4+ T cells of SLE patients caused by excessive SETD3. Clin Immunol 2020; 214:108406. [DOI: 10.1016/j.clim.2020.108406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
|
31
|
Hurtado C, Acevedo Sáenz LY, Vásquez Trespalacios EM, Urrego R, Jenks S, Sanz I, Vásquez G. DNA methylation changes on immune cells in Systemic Lupus Erythematosus. Autoimmunity 2020; 53:114-121. [PMID: 32019373 DOI: 10.1080/08916934.2020.1722108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation as a process that regulates gene expression is crucial in immune cells biology. Global and gene specific methylation changes have been described in autoimmunity, especially in Systemic Lupus Erythematosus. These changes not only contribute to the understanding of the disease, but also some have been proposed as diagnostic or disease activity biomarkers. The present review compiles the most recent discoveries on this field on each type of immune cells, including specific changes in signalling pathways, genes of interest and its possible applications on diagnosis or treatment.
Collapse
Affiliation(s)
- Carolina Hurtado
- School of Graduate Studies and School of Medicine, CES University, Medellin, Colombia
| | | | | | - Rodrigo Urrego
- Group INCA-CES, School of Veterinary Medicine and Zootechnic, CES University, Medellin, Colombia
| | - Scott Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, University of Antioquia, Medellin, Colombia
| |
Collapse
|
32
|
Smith EMD, Lythgoe H, Midgley A, Beresford MW, Hedrich CM. Juvenile-onset systemic lupus erythematosus: Update on clinical presentation, pathophysiology and treatment options. Clin Immunol 2019; 209:108274. [PMID: 31678365 DOI: 10.1016/j.clim.2019.108274] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022]
Abstract
Juvenile-onset systemic lupus erythematosus (jSLE) accounts for up to 20% of all SLE patients. Key differences between juvenile- and adult-onset (aSLE) disease include higher disease activity, earlier development of damage, and increased use of immunosuppressive treatment in jSLE suggesting (at least partial) infectivity secondary to variable pathomechanisms. While the exact pathophysiology of jSLE remains unclear, genetic factors, immune complex deposition, complement activation, hormonal factors and immune cell dysregulation are involved to variable extents, promising future patient stratification based on immune phenotypes. Though less effective and potentially toxic, jSLE patients are treated based upon evidence from studies in aSLE cohorts. Here, age-specific clinical features of jSLE, underlying pathomechanisms, treatment options and disease outcomes will be addressed. Future directions to improve the care of jSLE patients, including implementation of the Single Hub and Access point for pediatric Rheumatology in Europe (SHARE) recommendations, biomarkers, treat to target and personalized medicine approaches are discussed.
Collapse
Affiliation(s)
- Eve Mary Dorothy Smith
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK.
| | - Hanna Lythgoe
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK
| | - Angela Midgley
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK
| | - Michael William Beresford
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK
| | - Christian Michael Hedrich
- Department of Women's & Children's Health, Institution of Translational Medicine, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Eaton Rd, Liverpool L12 2AP, UK.
| |
Collapse
|
33
|
Hofmann SR, Mäbert K, Kapplusch F, Russ S, Northey S, Beresford MW, Tsokos GC, Hedrich CM. cAMP Response Element Modulator α Induces Dual Specificity Protein Phosphatase 4 to Promote Effector T Cells in Juvenile-Onset Lupus. THE JOURNAL OF IMMUNOLOGY 2019; 203:2807-2816. [PMID: 31653682 DOI: 10.4049/jimmunol.1900760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Effector CD4+ T cells with increased IL-17A and reduced IL-2 production contribute to tissue inflammation and organ damage in systemic lupus erythematosus (SLE). Increased expression of the transcription factor cAMP response element modulator (CREM) α promotes altered cytokine expression in SLE. The aim of this study was to investigate CREMα-mediated events favoring effector CD4+ T cells in health and disease. Using CRISPR/Cas9 genome editing and lentiviral transduction, we generated CREMα-deficient and CREMα-overexpressing Jurkat T cells. Gene expression and regulatory events were assessed using luciferase reporter assays and chromatin immunoprecipitation. Interaction between CREMα and p300 was investigated using proximity ligation assays, coimmunoprecipitation, and knockdown of p300. Gene expression profiles of modified cells were compared with CD4+ T cells from patients with juvenile-onset SLE. We show that CREMα induces dual specificity protein phosphatase (DUSP) 4 in effector CD4+ T cells through corecruitment of p300. The transcriptional coactivator p300 mediates histone acetylation at DUSP4, prompting increased gene expression. Using DUSP4 transfection models and genetically modified CREM-deficient and CREMα-overexpressing T cells, we demonstrate the molecular underpinnings by which DUSP4 induces IL-17A while limiting IL-2 expression. We demonstrate that CD4+ T cells from patients with juvenile-onset SLE share phenotypical features with CREMα-overexpressing CD4+ T cells, including increased DUSP4 expression and imbalanced IL-17A and IL-2 production. Taken together, we describe CREMα-mediated mechanisms that involve the transcriptional upregulation of DUSP4, leading to imbalanced cytokine production by effector T cells. Our findings identify the CREMα/DUSP4 axis as a promising candidate in the search for biomarkers and therapeutic targets in SLE.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Katrin Mäbert
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Franz Kapplusch
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; and
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Christian M Hedrich
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany; .,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; and
| |
Collapse
|
34
|
Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Induces Interleukin-17 Production via Activation of the IRAK1-PI3K-p38MAPK-C/EBPβ/CREB Pathways. J Virol 2019; 93:JVI.01100-19. [PMID: 31413135 DOI: 10.1128/jvi.01100-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is widely prevalent in pigs, resulting in significant economic losses worldwide. A compelling impact of PRRSV infection is severe pneumonia. In the present study, we found that interleukin-17 (IL-17) was upregulated by PRRSV infection. Subsequently, we demonstrated that PI3K and p38MAPK signaling pathways were essential for PRRSV-induced IL-17 production as addition of phosphatidylinositol 3-kinase (PI3K) and p38MAPK inhibitors dramatically reduced IL-17 production. Furthermore, we show here that deleting the C/EBPβ and CREB binding motif in porcine IL-17 promoter abrogated its activation and that knockdown of C/EBPβ and CREB remarkably impaired PRRSV-induced IL-17 production, suggesting that IL-17 expression was dependent on C/EBPβ and CREB. More specifically, we demonstrate that PRRSV nonstructural protein 11 (nsp11) induced IL-17 production, which was also dependent on PI3K-p38MAPK-C/EBPβ/CREB pathways. We then show that Ser74 and Phe76 amino acids were essential for nsp11 to induce IL-17 production and viral rescue. In addition, IRAK1 was required for nsp11 to activate PI3K and enhance IL-17 expression by interacting with each other. Importantly, we demonstrate that PI3K inhibitor significantly suppressed IL-17 production and lung inflammation caused by HP-PRRSV in vivo, implicating that higher IL-17 level induced by HP-PRRSV might be associated with severe lung inflammation. These findings provide new insights onto the molecular mechanisms of the PRRSV-induced IL-17 production and help us further understand the pathogenesis of PRRSV infection.IMPORTANCE Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) associated with severe pneumonia has been one of the most important viral pathogens in pigs. IL-17 is a proinflammatory cytokine that might be associated with the strong inflammation caused by PRRSV. Therefore, we sought to determine whether PRRSV infection affects IL-17 expression, and if so, determine this might partially explain the underlying mechanisms for the strong inflammation in HP-PRRSV-infected pigs, especially in lungs. Here, we show that PRRSV significantly induced IL-17 expression, and we subsequently dissected the molecular mechanisms about how PRRSV regulated IL-17 production. Furthermore, we show that Ser74 and Phe76 in nsp11 were indispensable for IL-17 production and viral replication. Importantly, we demonstrated that PI3K inhibitor impaired IL-17 production and alleviated lung inflammation caused by HP-PRRSV infection. Our findings will help us for a better understanding of PRRSV pathogenesis.
Collapse
|
35
|
Karagianni P, Tzioufas AG. Epigenetic perspectives on systemic autoimmune disease. J Autoimmun 2019; 104:102315. [PMID: 31421964 DOI: 10.1016/j.jaut.2019.102315] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are characterized by increased reactivity of the immune system towards self-antigens, causing tissue damage. Although their etiology remains largely unknown, genetic, microbial, environmental and psychological factors are recognized as contributing elements. Epigenetic changes, including covalent modifications of the DNA and histones, are critical signaling mediators between the genome and the environment, and thus potent regulators of cellular functions. The most extensively studied epigenetic modifications are Cytosine DNA methylation and histone acetylation and methylation on various residues. These are thought to affect chromatin structure and binding of specific effectors that regulate transcription, replication, and other processes. Recent studies have uncovered significant epigenetic alterations in cells or tissues derived from autoimmune disease patients compared to samples from healthy individuals and have linked them with disease phenotypes. Epigenetic changes in specific genes correlate with upregulated or downregulated transcription. For instance, in many systems, reduced DNA methylation and increased histone acetylation of interferon-inducible genes correlate with their increased expression in autoimmune disease patients. Also, reduced DNA methylation of retroelements has been proposed as an activating mechanism and has been linked with increased immune reactivity, while epigenetic differences on the X chromosome could indicate incomplete dosage compensation and explain to some extent the increased susceptibility of females over males towards the development of most autoimmune diseases. Besides changes in epigenetic modifications, differences in the levels of many enzymes catalyzing the addition or removal of these marks as well as proteins that recognize them and function as effector molecules have also been detected in autoimmune patients. Although the existing knowledge cannot fully explain whether epigenetic alterations cause or follow the increased immune activation, their characterization is very useful for understanding the pathogenetic mechanisms and complements genetic and clinical studies. Furthermore, specific epigenetic marks have the potential to serve as biomarkers for disease status, prognosis, and response to treatment. Finally, epigenetic factors are currently being examined as candidate therapeutic targets.
Collapse
Affiliation(s)
- Panagiota Karagianni
- Department of Pathophysiology, School of Medicine, University of Athens, Mikras Asias Str 75, 115 27, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, Mikras Asias Str 75, 115 27, Athens, Greece.
| |
Collapse
|
36
|
Surace AEA, Hedrich CM. The Role of Epigenetics in Autoimmune/Inflammatory Disease. Front Immunol 2019; 10:1525. [PMID: 31333659 PMCID: PMC6620790 DOI: 10.3389/fimmu.2019.01525] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Historically, systemic self-inflammatory conditions were classified as either autoinflammatory and caused by the innate immune system or autoimmune and driven by adaptive immune responses. However, it became clear that reality is much more complex and that autoimmune/inflammatory conditions range along an “inflammatory spectrum” with primarily autoinflammatory vs. autoimmune conditions resembling extremes at either end. Epigenetic modifications influence gene expression and alter cellular functions without modifying the genomic sequence. Methylation of CpG DNA dinucleotides and/or their hydroxymethylation, post-translational modifications to amino termini of histone proteins, and non-coding RNA expression are main epigenetic events. The pathophysiology of autoimmune/inflammatory diseases has been closely linked with disease causing gene mutations (rare) or a combination of genetic susceptibility and epigenetic modifications arising from exposure to the environment (more common). Over recent years, progress has been made in understanding molecular mechanisms involved in systemic inflammation and the contribution of innate and adaptive immune responses. Epigenetic events have been identified as (i) central pathophysiological factors in addition to genetic disease predisposition and (ii) as co-factors determining clinical pictures and outcomes in individuals with monogenic disease. Thus, a complete understanding of epigenetic contributors to autoimmune/inflammatory disease will result in approaches to predict individual disease outcomes and the introduction of effective, target-directed, and tolerable therapies. Here, we summarize recent findings that signify the importance of epigenetic modifications in autoimmune/inflammatory disorders along the inflammatory spectrum choosing three examples: the autoinflammatory bone condition chronic nonbacterial osteomyelitis (CNO), the “mixed pattern” disorder psoriasis, and the autoimmune disease systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Anna Elisa Andrea Surace
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.,Pädiatrische Rheumatologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
37
|
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol 2019; 10:925. [PMID: 31244820 PMCID: PMC6562565 DOI: 10.3389/fimmu.2019.00925] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME. In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.
Collapse
Affiliation(s)
- Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Alatzoglou
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Mijnheer G, van Wijk F. T-Cell Compartmentalization and Functional Adaptation in Autoimmune Inflammation: Lessons From Pediatric Rheumatic Diseases. Front Immunol 2019; 10:940. [PMID: 31143175 PMCID: PMC6520654 DOI: 10.3389/fimmu.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammatory diseases are characterized by a disturbed immune balance leading to recurring episodes of inflammation in specific target tissues, such as the joints in juvenile idiopathic arthritis. The tissue becomes infiltrated by multiple types of immune cell, including high numbers of CD4 and CD8 T-cells, which are mostly effector memory cells. Locally, these T-cells display an environment-adapted phenotype, induced by inflammation- and tissue-specific instructions. Some of the infiltrated T-cells may become tissue resident and play a role in relapses of inflammation. Adaptation to the environment may lead to functional (re)programming of cells and altered cellular interactions and responses. For example, specifically at the site of inflammation both CD4 and CD8 T-cells can become resistant to regulatory T-cell-mediated regulation. In addition, CD8 and CD4 T-cells show a unique profile with pro- and anti-inflammatory features coexisting in the same compartment. Also regulatory T-cells are neither homogeneous nor static in nature and show features of functional differentiation, and plasticity in inflammatory environments. Here we will discuss the recent insights in T-cell functional specialization, regulation, and clonal expansion in local (tissue) inflammation.
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
39
|
Ju J, Xu J, Zhu Y, Fu X, Morel L, Xu Z. A Variant of the Histone-Binding Protein sNASP Contributes to Mouse Lupus. Front Immunol 2019; 10:637. [PMID: 31001259 PMCID: PMC6454087 DOI: 10.3389/fimmu.2019.00637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/08/2019] [Indexed: 01/18/2023] Open
Abstract
The Sle2c1rec1c (rec1c) sublocus is derived from the mouse lupus susceptibility 2 (Sle2) locus identified in the NZM2410 model. Our current study dissected the functional characters and the genetic basis of the rec1c locus relative to lupus when co-expressed with the Faslpr mutation, an established inducer of autoimmunity. The rec1c.lpr mice exhibited mild expansion of lymph nodes and had a normal T cell cellularity, but developed significantly kidney and lung inflammation, indicating that the rec1c amplifies lpr-induced autoimmune pathogenesis. A variant of somatic nuclear autoantigenic sperm protein (sNASP) was identified from the rec1c interval as a substitution of two consecutive amino acid residues in the histone-binding domain, resulting in an increased binding affinity to histone H4 and H3.1/H4 tetramer. To determine the role of the sNASP rec1c allele in mouse lupus, a novel strain was generated by introducing the rec1c mutations into the B6 genome. In this transgenic model, the sNASP allele synergized with the lpr mutation leading to moderate autoimmune phenotypes and aggravating inflammatory pathology alterations in kidney and lung that were similar to those observed in the rec1c.lpr mice. These results establish that the sNASP allele is a pathogenic genetic element in the rec1c sublocus, which not only promotes autoimmunity, but also exacerbates the inflammation reaction of end organs in mouse lupus pathogenesis. It also shows the complexity of the Sle2c locus, initially mapped as the major locus associated with B1a cell expansion. In addition to Cdkn2c, which regulates this expansion, we have now identified in the same locus a protective allele of Csf3r, a variant of Skint6 associated with T cell activation, and now a variant of sNASP that amplifies autoimmunity and tissue damage.
Collapse
Affiliation(s)
- Jiyu Ju
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Jia Xu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yaoqiang Zhu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Xiaoyan Fu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Laurence Morel
- Immunology and Laboratory Medicine, Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zhiwei Xu
- Department of Immunology, Weifang Medical University, Weifang, China.,Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-Associated Defects Promote Altered T Cell Function. Crit Rev Immunol 2019; 37:39-58. [PMID: 29431078 DOI: 10.1615/critrevimmunol.2018025213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.
Collapse
Affiliation(s)
- Jose C Crispin
- Departamento de Inmunologia y Reumatologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Abel Suárez-Fueyo
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - George C Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Koga T, Ichinose K, Kawakami A, Tsokos GC. The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev Clin Immunol 2019; 15:629-637. [PMID: 30874446 DOI: 10.1080/1744666x.2019.1593141] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies production and immune complex deposition with systemic clinical manifestations. Interleukin (IL)-17-producing cells play a crucial role in disease pathogenesis and represent an attractive therapeutic target. Areas covered: This review provides an update on the possibility of targeting IL-17 in SLE. The rational for this approach as well as currently available and future targets are discussed. Expert opinion: Although human expression studies and animal models indicate that IL-17 blocking may be a promising therapeutic strategy for SLE, direct evidence for IL-17 inhibition in SLE patients is unavailable. Biologic therapies and small-molecule drugs that target IL-17 production are required for the achievement of a favorable clinical effect in SLE patients.
Collapse
Affiliation(s)
- Tomohiro Koga
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,b Center for Bioinformatics and Molecular Medicine , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Kunihiro Ichinose
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Atsushi Kawakami
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - George C Tsokos
- c Division of Rheumatology and Clinical Immunology, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
42
|
Du P, Gao K, Cao Y, Yang S, Wang Y, Guo R, Zhao M, Jia S. RFX1 downregulation contributes to TLR4 overexpression in CD14 + monocytes via epigenetic mechanisms in coronary artery disease. Clin Epigenetics 2019; 11:44. [PMID: 30857550 PMCID: PMC6413463 DOI: 10.1186/s13148-019-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) expression is increased in activated monocytes, which play a critical role in the pathogenesis of coronary artery disease (CAD). However, the mechanism remains unclear. Regulatory factor X1 (RFX1) is a critical transcription factor regulating epigenetic modifications. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contributed to the overexpression of TLR4 in activated monocytes. Results Compared with those of the controls, the mRNA and protein expression of RFX1 were downregulated and the mRNA expression of TLR4 was upregulated in CD14+ monocytes obtained from CAD patients and CD14+ monocytes obtained from healthy controls treated with low-density lipoprotein (LDL). The mRNA expression of RFX1 was negatively correlated with the mRNA expression of TLR4 in CD14+ monocytes. RFX1 knockdown led to the overexpression of TLR4 and the activation of CD14+ monocytes. In contrast, the overexpression of RFX1 inhibited TLR4 expression and the activation of CD14+ monocytes stimulated with LDL. Moreover, TLR4 was identified as a target gene of RFX1. The results indicated that RFX1 downregulation contributed to the decreased DNA methylation and histone H3 lysine 9 trimethylation and the increased H3 and H4 acetylation in the TLR4 promoter via the lack of recruitments of DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone-lysine N-methyltransferase SUV39H1 (SUV39H1), which were observed in CD14+ monocytes of CAD patients. Conclusions Our results show that RFX1 expression deficiency leads to the overexpression of TLR4 and the activation of CD14+ monocytes in CAD patients by regulating DNA methylation and histone modifications, which highlights the vital role of RFX1 in the pathogenesis of CAD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Du
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Gao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China. .,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
43
|
TSOKOS GEORGEC, TSOKOS MARIAG. TARGETING TARGETED TREATMENT FOR IMMUNE AND NON-IMMUNE KIDNEY DISEASES. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2019; 130:88-99. [PMID: 31516171 PMCID: PMC6735968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have found that calcium calmodulin kinase IV is increased in T cells, podocytes, and mesangial cells from patients with systemic lupus erythematosus, as well as in lupus-prone mice, podocytes of patients with focal segmental glomerulosclerosis, and in mice injected with doxorubicin. We showed that this accounts for aberrant T cell function and glomerular damage. Using nanoparticles (nlg) loaded with a small drug inhibitor of calcium calmodulin kinase IV and tagged with antibodies directed to CD4 we have been able to show inhibition of autoimmunity and lupus nephritis. Also, using nlg tagged with antibodies to nephrin, we showed suppression of nephritis in lupus-prone mice and of glomerular damage in mice exposed to doxorubicin. We propose the development of approaches to deliver drugs to cells in a targeted and precise manner.
Collapse
Affiliation(s)
- GEORGE C. TSOKOS
- Correspondence and reprint requests: George C. Tsokos, MD, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School,
330 Brookline Ave., CLS 937, Boston, Massachusetts 02215617-735-4161
| | | |
Collapse
|
44
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
45
|
Ferretti AP, Bhargava R, Dahan S, Tsokos MG, Tsokos GC. Calcium/Calmodulin Kinase IV Controls the Function of Both T Cells and Kidney Resident Cells. Front Immunol 2018; 9:2113. [PMID: 30333818 PMCID: PMC6176098 DOI: 10.3389/fimmu.2018.02113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Calcium calmodulin kinase IV (CaMK4) regulates multiple processes that significantly contribute to the lupus-related pathology by controlling the production of IL-2 and IL-17 by T cells, the proliferation of mesangial cells, and the function and structure of podocytes. CaMK4 is also upregulated in podocytes from patients with focal segmental glomerulosclerosis (FSGS). In both immune and non-immune podocytopathies, CaMK4 disrupts the structure and function of podocytes. In lupus-prone mice, targeted delivery of a CaMK4 inhibitor to CD4+ T cells suppresses both autoimmunity and the development of nephritis. Targeted delivery though to podocytes averts the deposition of immune complexes without affecting autoimmunity in lupus-prone mice and averts pathology induced by adriamycin in normal mice. Therefore, targeted delivery of a CaMK4 inhibitor to podocytes holds high therapeutic promise for both immune (lupus nephritis) and non-immune (FSGS) podocytopathies.
Collapse
Affiliation(s)
- Andrew P Ferretti
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shani Dahan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Farivar S, Aghamaleki FS. Effects of Major Epigenetic Factors on Systemic Lupus Erythematosus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:294-302. [PMID: 29803202 PMCID: PMC6058186 DOI: 10.29252/ibj.22.5.294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors of gene regulation. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur in CD4+ T-cells. Moreover, histone acetylation and deacetylation inhibitors reverse the expression of multiple genes involved in SLE, indicating histone modification in SLE. Autoreactive T-cells and B-cells have been shown to alter the patterns of epigenetic changes in SLE patients. Understanding the molecular mechanisms involved in the pathogenesis of SLE is critical for the introduction of effective, target-directed and tolerated therapies. In this review, we summarize the recent findings that highlight the importance of epigenetic modifications and their mechanisms in SLE.
Collapse
Affiliation(s)
- Shirin Farivar
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Dept. of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C. Tehran, Iran
| |
Collapse
|
47
|
Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proc Natl Acad Sci U S A 2018; 115:9288-9293. [PMID: 30150402 DOI: 10.1073/pnas.1805717115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Th17 cells favor glycolytic metabolism, and pyruvate dehydrogenase (PDH) is the key bifurcation enzyme, which in its active dephosphorylated form advances the oxidative phosphorylation from glycolytic pathway. The transcriptional factor, inducible cAMP early repressor/cAMP response element modulator (ICER/CREM), has been shown to be induced in Th17 cells and to be overexpressed in CD4+ T cells from the patients with systemic lupus erythematosus (SLE). We found that glycolysis and lactate production in in vitro Th17-polarized T cells was reduced and that the expression of pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2), an enzyme that converts the inactive PDH to its active form, and PDH enzyme activity were increased in Th17 cells from ICER/CREM-deficient animals. ICER was found to bind to the Pdp2 promoter and suppress its expression. Furthermore, forced expression of PDP2 in CD4+ cells reduced the in vitro Th17 differentiation, whereas shRNA-based suppression of PDP2 expression increased in vitro Th17 differentiation and augmented experimental autoimmune encephalomyelitis. At the translational level, PDP2 expression was decreased in memory Th17 cells from patients with SLE and forced expression of PDP2 in CD4+ T cells from lupus-prone MRL/lpr mice and patients with SLE suppressed Th17 differentiation. These data demonstrate the direct control of energy production during Th17 differentiation in health and disease by the transcription factor ICER/CREM at the PDH metabolism bifurcation level.
Collapse
|
48
|
Hargarten JC, Williamson PR. Epigenetic Regulation of Autophagy: A Path to the Control of Autoimmunity. Front Immunol 2018; 9:1864. [PMID: 30154791 PMCID: PMC6102341 DOI: 10.3389/fimmu.2018.01864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are a significant cause of debilitation and mortality globally and are in need of cost-effective therapeutics. Autophagy is a cellular pathway that facilitates immune modulation involved in both pathogen control and autoimmunity. Regulation is multifactorial and includes a number of epigenetic pathways which can involve modification of DNA-binding histones to induce autophagy-related mRNA synthesis or microRNA and decapping-associated mRNA degradation which results in autophagy suppression. Appreciation of epigenetic-based pathways involved in autophagy and autoimmunity may facilitate application of a burgeoning group of epigenetic pharmaceuticals to these important diseases.
Collapse
Affiliation(s)
- Jessica C Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
49
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
50
|
Ohl K, Nickel H, Moncrieffe H, Klemm P, Scheufen A, Föll D, Wixler V, Schippers A, Wagner N, Wedderburn LR, Tenbrock K. The transcription factor CREM drives an inflammatory phenotype of T cells in oligoarticular juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2018; 16:39. [PMID: 29925386 PMCID: PMC6011589 DOI: 10.1186/s12969-018-0253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory effector T cells trigger inflammation despite increased numbers of Treg cells in the synovial joint of patients suffering from juvenile idiopathic arthritis (JIA). The cAMP response element (CREM)α is known to play a major role in regulation of T cells in SLE, colitis, and EAE. However, its role in regulation of effector T cells within the inflammatory joint is unknown. METHODS CREM expression was analyzed in synovial fluid cells from oligoarticular JIA patients by flow cytometry. Peripheral blood mononuclear cells were incubated with synovial fluid and analyzed in the presence and absence of CREM using siRNA experiments for T cell phenotypes. To validate the role of CREM in vivo, ovalbumin-induced T cell dependent arthritis experiments were performed. RESULTS CREM is highly expressed in synovial fluid T cells and its expression can be induced by treating healthy control PBMCs with synovial fluid. Specifically, CREM is more abundant in CD161+ subsets, than CD161- subsets, of T cells and contributes to cytokine expression by these cells. Finally, development of ovalbumin-induced experimental arthritis is ameliorated in mice with adoptively transferred CREM-/- T cells. CONCLUSION In conclusion, our study reveals that beyond its role in SLE T cells CREM also drives an inflammatory phenotype of T cells in JIA.
Collapse
Affiliation(s)
- Kim Ohl
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Helge Nickel
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Halima Moncrieffe
- 0000 0000 9025 8099grid.239573.9Center for Autoimmune Genomics & Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,0000 0001 2179 9593grid.24827.3bDepartment of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Patricia Klemm
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Anja Scheufen
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Dirk Föll
- 0000 0004 0551 4246grid.16149.3bDepartment of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Viktor Wixler
- 0000 0001 2172 9288grid.5949.1Institute of Virology, Westfaelische Wilhelms University, 48149 Muenster, Germany
| | - Angela Schippers
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Norbert Wagner
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lucy R. Wedderburn
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL UCLH and GOSH, London, UK ,0000000121901201grid.83440.3bUCL GOS Institute of Child Health, University College London, London, UK ,0000 0001 2116 3923grid.451056.3NIHR- Great Ormond Street Hospital Biomedical Research Centre (BRC), London, UK
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|