1
|
Dong X, Yu X, Lu M, Xu Y, Zhou L, Peng T. Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis. Cell Death Discov 2024; 10:456. [PMID: 39472556 PMCID: PMC11522290 DOI: 10.1038/s41420-024-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Naturally occurring isothiocyanates (ITCs) found in cruciferous vegetables, such as benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and sulforaphane (SFN), have attracted significant research interest for their promising anti-cancer activity in vitro and in vivo. While the induction of apoptosis is recognized to play a key role in the anti-cancer effects of ITCs, the specific protein targets and associated upstream events underlying ITC-induced apoptosis remain unknown. In this study, we present a set of chemical probes that are derived from BITC, PEITC, and SFN and equipped with bioorthogonal alkynyl handles to systematically profile the target proteins of ITCs in live cancer cells. Using a competition-based quantitative chemical proteomics approach, we identify a range of candidate target proteins of ITCs enriched in biological processes such as apoptosis. We show that BID, an apoptosis regulator of the Bcl-2 family, is covalently modified by ITCs on its N-terminal cysteines. Functional characterization demonstrates that covalent binding to N-terminal cysteines of BID by PEITC results in conformational changes of the protein and disruption of the self-inhibitory interaction between N- and C-terminal regions of BID, thus unleashing the highly active C-terminal segment to exert downstream pro-apoptotic effects. Consistently, PEITC promotes the cleavage and mitochondrial translocation of BID, leading to a strong induction of apoptosis. We further show that mutation of N-terminal cysteines impairs the N- and C-terminal interaction of BID, relieving the self-inhibition and enhancing its apoptotic activity. Overall, our chemical proteomics profiling and functional studies not only reveal BID as the principal target of PEITC in mediating upstream events for the induction of apoptosis, but also uncover a novel molecular mechanism involving N-terminal cysteines within the first helix of BID in regulating its pro-apoptotic potential.
Collapse
Affiliation(s)
- Xiaoshu Dong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xinqian Yu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liyan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
3
|
Yamada Y, Noguchi T, Suzuki M, Yamada M, Hirata Y, Matsuzawa A. Reactive sulfur species disaggregate the SQSTM1/p62-based aggresome-like induced structures via the HSP70 induction and prevent parthanatos. J Biol Chem 2023; 299:104710. [PMID: 37060999 DOI: 10.1016/j.jbc.2023.104710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Reactive sulfur species (RSS) have emerged as key regulators of protein quality control. However, the mechanisms by which RSS contribute to cellular processes are not fully understood. In this study, we identified a novel function of RSS in preventing parthanatos, a non-apoptotic form of cell death that is induced by poly (ADP-ribose) polymerase-1 (PARP-1) and mediated by the aggresome-like induced structures (ALIS) composed of SQSTM1/p62. We found that sodium tetrasulfide (Na2S4), a donor of RSS, strongly suppressed oxidative stress-dependent ALIS formation and subsequent parthanatos. On the other hand, the inhibitors of the RSS-producing enzymes, such as 3-mercaptopyruvate sulfurtransferase (3-MST) and cystathionine γ-lyase (CSE), clearly enhanced ALIS formation and parthanatos. Interestingly, we found that Na2S4 activated heat shock factor 1 (HSF1) by promoting its dissociation from heat shock protein 90 (HSP90), leading to accelerated transcription of HSP70. Considering that the genetic deletion of HSP70 allowed the enhanced ALIS formation, these findings suggest that RSS prevent parthanatos by specifically suppressing ALIS formation through induction of HSP70. Taken together, our results demonstrate a novel mechanism by which RSS prevent cell death, as well as a novel physiological role of RSS in contributing to protein quality control through HSP70 induction, which may lead to better understanding of the bioactivity of RSS.
Collapse
Affiliation(s)
- Yutaro Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan.
| |
Collapse
|
4
|
Matsuo K, Abiko Y, Yamano S, Matsusue K, Kumagai Y. Activation of HSP90/HSF1 Signaling as an Adaptive Response to an Electrophilic Metabolite of Morphine. Biol Pharm Bull 2023; 46:334-337. [PMID: 36724961 DOI: 10.1248/bpb.b22-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols, resulting in toxicity in vitro and in vivo. We have previously identified a variety of redox signaling pathways that are activated during electrophilic stress. However, the role of MO in such activation remains unknown. In this study, we examined whether MO could activate heat shock protein (HSP) 90/heat shock factor (HSF) 1 signaling in HepG2 cells. MO exposure caused S-modification of HSP90 (determined using biotin-PEAC5-maleimide labeling) and nuclear translocation of transcription factor HSF1, thereby up-regulating its downstream genes encoding B-cell lymphoma 2-associated anthanogene 3 and heat shock 70 kDa protein 1. However, dihydromorphinone, a non-electrophilic metabolite of morphine, had little effect on HSF1 activation or upregulation of these genes, suggesting that covalent modification plays a role in this process and that the HSP90/HSF1 pathway is a redox-signaled adaptive response to morphine metabolism.
Collapse
Affiliation(s)
- Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University
| | - Yumi Abiko
- Faculty of Medicine, University of Tsukuba.,Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | |
Collapse
|
5
|
Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F, Prins GS. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells. Chem Biol Drug Des 2021; 97:1059-1078. [PMID: 33470049 PMCID: PMC8168342 DOI: 10.1111/cbdd.13826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Sustained androgen receptor (AR) signaling and apoptosis evasion are among the main hurdles of castration-resistant prostate cancer (CRPC) treatment. We designed and synthesized isothiocyanate (ITC)-containing hybrid AR antagonist (ITC-ARi) and rationally combined ITC-ARi with GSH synthesis inhibitor buthionine sulfoximine (BSO) to efficiently downregulate AR/AR splice variant and induce ferroptosis in CRPC cells. The representative ITC-ARi 13 is an AR ligand that contains an N-acetyl cysteine-masked ITC moiety and gradually releases parental unconjugated ITC 12b in aqueous solution. The in vitro anti-PCa activities of 13, such as growth inhibition and AR downregulation, are significantly enhanced when combined with BSO. The drug combination caused notable lipid peroxidation and the cell viability was effectively rescued by iron chelator, antioxidants or the inhibitor of heme oxygenase-1, supporting the induction of ferroptosis. 13 and BSO cooperatively downregulate AR and induce ferroptosis likely through increasing the accessibility of 13/12b to cellular targets, escalating free intracellular ferrous iron and attenuating GSH-centered cellular defense and adaptation. Further studies on the combination of ITC-ARi and GSH synthesis inhibitor could result in a new modality against CRPC.
Collapse
Affiliation(s)
- Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kathleen Sorensen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Zhu D, Li S, Chen C, Wang S, Zhu J, Kong L, Luo J. Tubocapsenolide A targets C-terminal cysteine residues of HSP90 to exert the anti-tumor effect. Pharmacol Res 2021; 166:105523. [PMID: 33667688 DOI: 10.1016/j.phrs.2021.105523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 01/29/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone protein that has been shown to regulate cancer progression. As a result, HSP90 has emerged as an attractive target for cancer therapy. Tubocapsenolide A (TA) is an anti-tumor component isolated from Tubocapsicum anomalum. Although the anti-tumor activity of TA was considered to be related to HSP90, the binding site and deep anti-tumor mechanisms still need to be elucidated. In this study, we found that TA is a covalent inhibitor of HSP90, which inhibits HSP90 ATPase activity without blocking ATP binding. Further studies indicated that TA targets the C-terminal Cys521 site, which led to HSP90 partial oligomerization and hindered its anti-aggregation and refolding activity. The damage of the chaperone activity disrupted the interaction between HSP90 and its cochaperone CDC37 as well as its client proteins, thereby inducing cell cycle arrest and apoptosis. Moreover, TA was found to have therapeutic effects on the xenograft tumor model by inducing the degradation of HSP90 client proteins. Together, our results identified HSP90 as the direct target of TA for mediating the anti-tumor activity. TA could serve as a lead compound for developing novel HSP90 C-terminal covalent inhibitors with binding site different from the ATP-binding domain.
Collapse
Affiliation(s)
- Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Sibei Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jiangmin Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
7
|
Nowicki D, Krause K, Szamborska P, Żukowska A, Cech GM, Szalewska-Pałasz A. Induction of the Stringent Response Underlies the Antimicrobial Action of Aliphatic Isothiocyanates. Front Microbiol 2021; 11:591802. [PMID: 33584562 PMCID: PMC7874123 DOI: 10.3389/fmicb.2020.591802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Bacterial resistance to known antibiotics comprises a serious threat to public health. Propagation of multidrug-resistant pathogenic strains is a reason for undertaking a search for new therapeutic strategies, based on newly developed chemical compounds and the agents present in nature. Moreover, antibiotic treatment of infections caused by enterotoxin toxin-bearing strain—enterohemorrhagic Escherichia coli (EHEC) is considered hazardous and controversial due to the possibility of induction of bacteriophage-encoded toxin production by the antibiotic-mediated stress. The important source of potentially beneficial compounds are secondary plant metabolites, isothiocyanates (ITC), and phytoncides from the Brassicaceae family. We reported previously that sulforaphane and phenethyl isothiocyanate, already known for their chemopreventive and anticancer features, exhibit significant antibacterial effects against various pathogenic bacteria. The mechanism of their action is based on the induction of the stringent response and accumulation of its alarmones, the guanosine penta- and tetraphosphate. In this process, the amino acid starvation path is employed via the RelA protein, however, the precise mechanism of amino acid limitation in the presence of ITCs is yet unknown. In this work, we asked whether ITCs could act synergistically with each other to increase the antibacterial effect. A set of aliphatic ITCs, such as iberin, iberverin, alyssin, erucin, sulforaphen, erysolin, and cheirolin was tested in combination with sulforaphane against E. coli. Our experiments show that all tested ITCs exhibit strong antimicrobial effect individually, and this effect involves the stringent response caused by induction of the amino acid starvation. Interestingly, excess of specific amino acids reversed the antimicrobial effects of ITCs, where the common amino acid for all tested compounds was glycine. The synergistic action observed for iberin, iberverin, and alyssin also led to accumulation of (p)ppGpp, and the minimal inhibitory concentration necessary for the antibacterial effect was four- to eightfold lower than for individual ITCs. Moreover, the unique mode of ITC action is responsible for inhibition of prophage induction and toxin production, in addition to growth inhibition of EHEC strains. Thus, the antimicrobial effect of plant secondary metabolites by the stringent response induction could be employed in potential therapeutic strategies.
Collapse
Affiliation(s)
- Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Patrycja Szamborska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Adrianna Żukowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz M Cech
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
8
|
Tocmo R, Veenstra J, Huang Y, Johnson JJ. Covalent Modification of Proteins by Plant-Derived Natural Products: Proteomic Approaches and Biological Impacts. Proteomics 2021; 21:e1900386. [PMID: 32949481 PMCID: PMC8494383 DOI: 10.1002/pmic.201900386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Indexed: 01/01/2023]
Abstract
Plant-derived natural products (NPs) with electrophilic functional groups engage various subsets of the proteome via covalent modification of nucleophilic cysteine residues. This electrophile-nucleophile interaction can change protein conformation, alter protein function, and modulate their biological action. The biological significance of these covalent protein modifications in health and disease is increasingly recognized. One way to understand covalent NP-protein interactions is to utilize traditional proteomics and modern mass spectrometry (MS)-based proteomic strategies. These strategies have proven effective in uncovering specific NP protein targets and are critical first steps that allow for a much deeper understanding of the ability of NPs to modulate cellular processes. Here, plant-derived NPs that covalently modify proteins are reviewed, the biological significance of these covalent modifications, and the different proteomic strategies that have been employed to study these NP-protein interactions.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| | - Jacob Veenstra
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| | - Yunying Huang
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Harbour Road, Guangzhou, Guangdong 510700, P.R. China
| | - Jeremy James Johnson
- Department of Pharmacy Practice, University of Illinois-Chicago, 833 South Wood Street, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, Sánchez-Margalet V. Leptin and Nutrition in Gestational Diabetes. Nutrients 2020; 12:E1970. [PMID: 32630697 PMCID: PMC7400219 DOI: 10.3390/nu12071970] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Leptin is highly expressed in the placenta, mainly by trophoblastic cells, where it has an important autocrine trophic effect. Moreover, increased leptin levels are found in the most frequent pathology of pregnancy: gestational diabetes, where leptin may mediate the increased size of the placenta and the fetus, which becomes macrosomic. In fact, leptin mediates the increased protein synthesis, as observed in trophoblasts from gestational diabetic subjects. In addition, leptin seems to facilitate nutrients transport to the fetus in gestational diabetes by increasing the expression of the glycerol transporter aquaporin-9. The high plasma leptin levels found in gestational diabetes may be potentiated by leptin resistance at a central level, and obesity-associated inflammation plays a role in this leptin resistance. Therefore, the importance of anti-inflammatory nutrients to modify the pathology of pregnancy is clear. In fact, nutritional intervention is the first-line approach for the treatment of gestational diabetes mellitus. However, more nutritional intervention studies with nutraceuticals, such as polyphenols or polyunsaturated fatty acids, or nutritional supplementation with micronutrients or probiotics in pregnant women, are needed in order to achieve a high level of evidence. In this context, the Mediterranean diet has been recently found to reduce the risk of gestational diabetes in a multicenter randomized trial. This review will focus on the impact of maternal obesity on placental inflammation and nutrients transport, considering the mechanisms by which leptin may influence maternal and fetal health in this setting, as well as its role in pregnancy pathologies.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.G.); (J.L.D.)
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.G.); (J.L.D.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immnology, School of Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain;
| |
Collapse
|
10
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
11
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
12
|
Ferber E, Gerhards J, Sauer M, Krischke M, Dittrich MT, Müller T, Berger S, Fekete A, Mueller MJ. Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb. FRONTIERS IN PLANT SCIENCE 2020; 11:887. [PMID: 32676087 PMCID: PMC7333730 DOI: 10.3389/fpls.2020.00887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 05/17/2023]
Abstract
In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.
Collapse
Affiliation(s)
- Elena Ferber
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Julian Gerhards
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Miriam Sauer
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Marcus T. Dittrich
- Department of Boinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Clinical Biochemistry, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Boinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Martin J. Mueller,
| |
Collapse
|
13
|
Pocasap P, Weerapreeyakul N, Thumanu K. Alyssin and Iberin in Cruciferous Vegetables Exert Anticancer Activity in HepG2 by Increasing Intracellular Reactive Oxygen Species and Tubulin Depolymerization. Biomol Ther (Seoul) 2019; 27:540-552. [PMID: 31405267 PMCID: PMC6824623 DOI: 10.4062/biomolther.2019.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-à-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner (20–80 μM). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and G2/M phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.
Collapse
Affiliation(s)
- Piman Pocasap
- Research and Development in Pharmaceuticals Program, Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Human High Performance and Health Promotion Research Institute (HHP&HP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
14
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
15
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
16
|
Alsaab HO, Sau S, Alzhrani RM, Cheriyan VT, Polin LA, Vaishampayan U, Rishi AK, Iyer AK. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 2018; 183:280-294. [PMID: 30179778 PMCID: PMC6414719 DOI: 10.1016/j.biomaterials.2018.08.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the significant clinical burden in renal cell carcinoma (RCC). The development of drug resistance is attributed to many factors, including impairment of apoptosis, elevation of carbonic anhydrase IX (CA IX, a marker of tumor hypoxia), and infiltration of tumorigenic immune cells. To alleviate the drug resistance, we have used Sorafenib (Sor) in combination with tumor hypoxia directed nanoparticle (NP) loaded with a new class of apoptosis inducer, CFM 4.16 (C4.16), namely CA IX-C4.16. The NP is designed to selectively deliver the payload to the hypoxic tumor (core), provoke superior cell death in parental (WT) and Everolimus-resistant (Evr-res) RCC and selectively downmodulate tumorigenic M2-macrophage. Copper-free 'click' chemistry was utilized for conjugating SMA-TPGS with Acetazolamide (ATZ, a CA IX-specific targeting ligand). The NP was further tagged with a clinically approved NIR dye (S0456) for evaluating hypoxic tumor core penetration and organ distribution. Imaging of tumor spheroid treated with NIR dye-labeled CA IX-SMA-TPGS revealed remarkable tumor core penetration that was modulated by CA IX-mediated targeting in hypoxic-A498 RCC cells. The significant cell killing effect with synergistic combination index (CI) of CA IX-C4.16 and Sor treatment suggests efficient reversal of Evr-resistance in A498 cells. The CA IX directed nanoplatform in combination with Sor has shown multiple benefits in overcoming drug resistance through (i) inhibition of p-AKT, (ii) upregulation of tumoricidal M1 macrophages resulting in induction of caspase 3/7 mediated apoptosis of Evr-res A498 cells in macrophage-RCC co-culturing condition, (iii) significant in vitro and in vivo Evr-res A498 tumor growth inhibition as compared to individual therapy, and (iv) untraceable liver and kidney toxicity in mice. Near-infrared (NIR) imaging of CA IX-SMA-TPGS-S0456 in Evr-res A498 RCC model exhibited significant accumulation of CA IX-oligomer in tumor core with >3-fold higher tumor uptake as compared to control. In conclusion, this proof-of-concept study demonstrates versatile tumor hypoxia directed nanoplatform that can work in synergy with existing drugs for reversing drug-resistance in RCC accompanied with re-education of tumor-associated macrophages, that could be applied universally for several hypoxic tumors.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Rami M Alzhrani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | | | - Lisa A Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Ulka Vaishampayan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
17
|
Yagi M, Nakatsuji Y, Maeda A, Ota H, Kamikubo R, Miyoshi N, Nakamura Y, Akagawa M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One 2018; 13:e0206748. [PMID: 30383868 PMCID: PMC6211728 DOI: 10.1371/journal.pone.0206748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity, a principal risk factor for the development of diabetes mellitus, heart disease, and hypertension, is a growing and serious health problem all over the world. Leptin is a weight-reducing hormone produced by adipose tissue, which decreases food intake via hypothalamic leptin receptors (Ob-Rb) and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates leptin signaling by dephosphorylating JAK2, and the increased activity of PTP1B is implicated in the pathogenesis of obesity. Hence, inhibition of PTP1B may help prevent and reduce obesity. In this study, we revealed that phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate in certain cruciferous vegetables, potently inhibits recombinant PTP1B by binding to the reactive cysteinyl thiol. Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. PEITC treatment also induced nuclear accumulation of phosphorylated STAT3, resulting in enhanced anorexigenic POMC expression and suppressed orexigenic NPY/AGRP expression. We demonstrated that oral administration of PEITC to mice significantly reduces food intake, and stimulates hypothalamic leptin signaling. Our results suggest that PEITC might help prevent and improve obesity.
Collapse
Affiliation(s)
- Miho Yagi
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yukiko Nakatsuji
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ayumi Maeda
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Ota
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ryosuke Kamikubo
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- * E-mail:
| |
Collapse
|
18
|
Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Biochem J 2018; 475:2559-2576. [DOI: 10.1042/bcj20180230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Hsp90 is an ATP-dependent molecular chaperone that assists folding and conformational maturation/maintenance of many proteins. It is a potential cancer drug target because it chaperones oncoproteins. A prokaryotic homolog of Hsp90 (HtpG) is essential for thermo-tolerance in some bacteria and virulence of zoonotic pathogens. To identify a new class of small molecules which target prokaryotic and eukaryotic Hsp90s, we studied the effects of a naturally occurring cyclic sesquiterpene, zerumbone, which inhibits proliferation of a wide variety of tumor cells, on the activity of Hsp90. Zerumbone enhanced the ATPase activity of cyanobacterial Hsp90 (Hsp90SE), yeast Hsp90, and human Hsp90α. It also enhanced the catalytic efficiency of Hsp90SE by greatly increasing kcat. Mass analysis showed that zerumbone binds to cysteine side chains of Hsp90SE covalently. Mutational studies identified 3 cysteine residues (one per each domain of Hsp90SE) that are involved in the enhancement, suggesting the presence of allosteric sites in the middle and C-terminal domains of Hsp90SE. Treatment of cyanobacterial cells with zerumbone caused them to become very temperature-sensitive, a phenotype reminiscent of cyanobacterial Hsp90 mutants, and also decreased the cellular level of linker polypeptides that are clients for Hsp90SE. Zerumbone showed cellular toxicity on cancer-derived mammalian cells by inducing apoptosis. In addition, zerumbone inhibited the binding of Hsp90/Cdc37 to client kinases. Altogether, we conclude that modification of cysteine residues of Hsp90 by zerumbone enhances its ATPase activity and inhibits physiological Hsp90 function. The activation of Hsp90 may provide new strategies to inhibit its chaperone function in cells.
Collapse
|
19
|
Psurski M, Janczewski Ł, Świtalska M, Gajda A, Goszczyński TM, Ciekot J, Winiarski Ł, Oleksyszyn J, Wietrzyk J, Gajda T. Phosphorus-containing isothiocyanate-derived mercapturic acids as a useful alternative for parental isothiocyanates in experimental oncology. Bioorg Med Chem Lett 2018; 28:2611-2615. [DOI: 10.1016/j.bmcl.2018.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
|
20
|
Goutzourelas N, Orfanou M, Charizanis I, Leon G, Spandidos DA, Kouretas D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp Ther Med 2018; 16:635-642. [PMID: 30116319 PMCID: PMC6090313 DOI: 10.3892/etm.2018.6204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
This study examined the effects of redox status markers on metabolic syndrome (MetS) and obesity before and after dietary intervention and exercise for weight loss. A total of 103 adults suffering from MetS and obesity participated in this study and followed a personalized diet plan for 6 months. Body weight, body fat (BF) percentage (BF%), respiratory quotient (RQ) and the redox status markers, reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARB), were measured twice in each individual, before and after intervention. Dietary intervention resulted in weight loss, a reduction in BF% and a decrease in RQ. The GSH levels were significantly decreased following intervention, while the levels of TBARS and CARB were not affected. Based on the initial GSH levels, the patients were divided into 2 groups as follows: The high GSH group (GSH, >3.5 µmol/g Hb) and the low GSH group (GSH <3.5 µmol/g Hb). Greater weight and BF loss were observed in patients with high GSH levels. It was observed that patients with MetS and obesity with high GSH values responded better to the dietary therapy, exhibiting more significant changes in weight and BF%. This finding underscores the importance of identifying redox status markers, particularly GSH, in obese patients with MetS. Knowing the levels of GSH may aid in developing a better design of an individualized dietary plan for individuals who wish to lose weight.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece.,Eatwalk IKE, 15124 Athens, Greece
| | | | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, 71409 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
21
|
Yamada-Kato T, Okunishi I, Fukamatsu Y, Tsuboi H, Yoshida Y. Stimulatory Effects of 6-Methylsulfinylhexyl Isothiocyanate on Cultured Human Follicle Dermal Papilla Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Isao Okunishi
- Research & Development Division, Kinjirushi Co., Ltd
| | | | | | | |
Collapse
|
22
|
Nakamura T, Abe-Kanoh N, Nakamura Y. Physiological relevance of covalent protein modification by dietary isothiocyanates. J Clin Biochem Nutr 2017; 62:11-19. [PMID: 29371751 PMCID: PMC5773839 DOI: 10.3164/jcbn.17-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
Isothiocyanates (ITCs), naturally occurring in abundance in cruciferous vegetables, are the most well-studied organosulfur compounds having an electrophilic reactivity. ITCs have been accepted as major ingredients of these vegetables that afford their health promoting potentials. ITCs are able to modulate protein functions related to drug-metabolizing enzymes, transporters, kinases and phosphatases, etc. One of the most important questions about the molecular basis for the health promoting effects of ITCs is how they modulate cellular target proteins. Although the molecular targets of ITCs remains to be validated, dietary modulation of the target proteins via covalent modification by ITCs should be one of the promising strategies for the protection of cells against oxidative and inflammatory damage. This review discusses the plausible target proteins of dietary ITCs with an emphasis on possible involvement of protein modification in their health promoting effects. The fundamental knowledge of ITCs is also included with consideration of the chemistry, intracellular behavior, and metabolism.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Department of Food Science, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Takamiya R, Uchida K, Shibata T, Maeno T, Kato M, Yamaguchi Y, Ariki S, Hasegawa Y, Saito A, Miwa S, Takahashi H, Akaike T, Kuroki Y, Takahashi M. Disruption of the structural and functional features of surfactant protein A by acrolein in cigarette smoke. Sci Rep 2017; 7:8304. [PMID: 28814727 PMCID: PMC5559459 DOI: 10.1038/s41598-017-08588-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
The extent to which defective innate immune responses contribute to chronic obstructive pulmonary disease (COPD) is not fully understood. Pulmonary surfactant protein A (SP-A) plays an important role in regulating innate immunity in the lungs. In this study, we hypothesised that cigarette smoke (CS) and its component acrolein might influence pulmonary innate immunity by affecting the function of SP-A. Indeed, acrolein-modified SP-A was detected in the lungs of mice exposed to CS for 1 week. To further confirm this finding, recombinant human SP-A (hSP-A) was incubated with CS extract (CSE) or acrolein and then analysed by western blotting and nanoscale liquid chromatography-matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. These analyses revealed that CSE and acrolein induced hSP-A oligomerisation and that acrolein induced the modification of six residues in hSP-A: His39, His116, Cys155, Lys180, Lys221, and Cys224. These modifications had significant effects on the innate immune functions of hSP-A. CSE- or acrolein-induced modification of hSP-A significantly decreased hSP-A's ability to inhibit bacterial growth and to enhance macrophage phagocytosis. These findings suggest that CS-induced structural and functional defects in SP-A contribute to the dysfunctional innate immune responses observed in the lung during cigarette smoking.
Collapse
Affiliation(s)
- Rina Takamiya
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan.
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Toshitaka Maeno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masaki Kato
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Atsushi Saito
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshio Kuroki
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, 060-8556, Japan
| |
Collapse
|
24
|
Shinkai Y, Masuda A, Akiyama M, Xian M, Kumagai Y. Cadmium-Mediated Activation of the HSP90/HSF1 Pathway Regulated by Reactive Persulfides/Polysulfides. Toxicol Sci 2017; 156:412-421. [PMID: 28115653 PMCID: PMC5412070 DOI: 10.1093/toxsci/kfw268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cadmium is an environmental electrophile that modifies reactive thiols in proteins, indicating that this heavy metal may modulate redox-signal transduction pathways. The current consensus is that reactive persulfides and polysulfides produced by cystathionine γ-lyase (CSE) and cystathionine β-synthase are highly nucleophilic and thus cadmium may be captured by these reactive sulfur species. It has previously been found that electrophile-mediated covalent modifications of the heat shock protein (HSP) are involved in the activation of heat shock factor 1 (HSF1) pathway. The effects of cadmium on the activation of HSP/HSF1 pathway were investigated in this study. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of HSP90 and HSF1 activation, thereby up-regulating the downstream protein HSP70. The siRNA-mediated knockdown of HSF1 enhanced the cytotoxicity induced by cadmium, suggesting that the HSP90/HSF1 pathway contributes to protection against cadmium toxicity. The knockdown of CSE and/or cystathionine β-synthase decreased the levels of reactive sulfur species in the cells and increased the degree of HSP70 induction and cytotoxicity caused by exposure to cadmium. Overexpression of CSE diminished cadmium-mediated up-regulation of HSP70 and cytotoxicity. These results suggest that cadmium activates HSF1 by modifying HSP90 and that reactive sulfur species regulate the redox signal transduction pathway presumably via capture of cadmium, resulting in protection against cadmium toxicity under toxic conditions.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Masuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
25
|
Abiko Y, Sha L, Shinkai Y, Unoki T, Luong NC, Tsuchiya Y, Watanabe Y, Hirose R, Akaike T, Kumagai Y. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides. Free Radic Biol Med 2017; 104:118-128. [PMID: 28049024 DOI: 10.1016/j.freeradbiomed.2016.12.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/08/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Liang Sha
- Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukihiro Tsuchiya
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Yasuo Watanabe
- Laboratory of Pharmacology, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Reiko Hirose
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Leading Graduate School Doctoral Program, Ph.D. Program in Human Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
26
|
Yamada-Kato T, Okunishi I, Fukamatsu Y, Yoshida Y. Inhibitory Effects of 6-Methylsulfinylhexyl Isothiocyanate on Superoxide Anion Generation from Differentiated HL-60 Human Promyelocytic Leukemia Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Isao Okunishi
- Research & Development Division, Kinjirushi Co., Ltd
| | | | | |
Collapse
|
27
|
Miyoshi N. Chemical alterations and regulations of biomolecules in lifestyle-related diseases. Biosci Biotechnol Biochem 2016; 80:1046-53. [PMID: 26856708 DOI: 10.1080/09168451.2016.1141037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We know experientially that not only nutrient factors but also non-nutritive functional food factors are playing important roles in maintenance of homeostasis, health promotion, and disease prevention. Although some of these effective behaviors are supported by accumulating scientific evidences, it is in general difficult to determine properly in human. Therefore, the discovering of novel biomarker and developments of the analytical method are one of the prudent strategies to understand disease etiology and evaluate efficacies of functional food factors via monitoring the pathophysiological alteration in live body, tissue, and cells. This review describes recent our findings on (1) formation mechanism, bioactivities, quantitative determination of cholesterol ozonolysis product, secosterol as possible biomarker for lifestyle-related disease, and (2) chemical biology approach for the investigating molecular mechanisms of most promising cancer chemopreventive food factors, isothiocyanate-inducing bioactivities.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- a Laboratory of Biochemistry, Graduate School of Integrated Pharmaceutical and Nutritional Sciences , Graduate Program in Food and Nutritional Sciences, University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
28
|
Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:407580. [PMID: 26583056 PMCID: PMC4637098 DOI: 10.1155/2015/407580] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.
Collapse
|
29
|
Glutathionyl systems and metabolic dysfunction in obesity. Nutr Rev 2015; 73:858-68. [DOI: 10.1093/nutrit/nuv042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/18/2015] [Indexed: 12/18/2022] Open
|
30
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
31
|
Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation. Br J Cancer 2013; 110:71-82. [PMID: 24322890 PMCID: PMC3887302 DOI: 10.1038/bjc.2013.710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022] Open
Abstract
Background: Heat shock protein 90 (HSP90) has a key role in the maintenance of the cellular proteostasis. However, HSP90 is also involved in stabilisation of oncogenic client proteins and facilitates oncogene addiction and cancer cell survival. The development of HSP90 inhibitors for cancer treatment is an area of growing interest as such agents can affect multiple pathways that are linked to all hallmarks of cancer. This study aimed to test the hypothesis that targeting cysteine residues of HSP90 will lead to degradation of client proteins and inhibition of cancer cell proliferation. Methods: Combining chemical synthesis, biological evaluation, and structure–activity relationship analysis, we identified a new class of HSP90 inhibitors. Click chemistry and protease-mass spectrometry established the sites of modification of the chaperone. Results: The mildly electrophilic sulphoxythiocarbamate alkyne (STCA) selectively targets cysteine residues of HSP90, forming stable thiocarbamate adducts. Without interfering with the ATP-binding ability of the chaperone, STCA destabilises the client proteins RAF1, HER2, CDK1, CHK1, and mutant p53, and decreases proliferation of breast cancer cells. Addition of a phenyl or a tert-butyl group in tandem with the benzyl substituent at nitrogen increased the potency. A new compound, S-4, was identified as the most robust HSP90 inhibitor within a series of 19 derivatives. Conclusion: By virtue of their cysteine reactivity, sulphoxythiocarbamates target HSP90, causing destabilisation of its client oncoproteins and inhibiting cell proliferation.
Collapse
|
32
|
Spencer MK, Radzinski NP, Tripathi S, Chowdhury S, Herrin RP, Chandran NN, Daniel AK, West JD. Pronounced toxicity differences between homobifunctional protein cross-linkers and analogous monofunctional electrophiles. Chem Res Toxicol 2013; 26:1720-9. [PMID: 24138115 DOI: 10.1021/tx400290j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifunctional electrophiles have been used in various chemopreventive, chemotherapeutic, and bioconjugate applications. Many of their effects in biological systems are traceable to their reactive properties, whereby they can modify nucleophilic sites in DNA, proteins, and other cellular molecules. Previously, we found that two different bifunctional electrophiles--diethyl acetylenedicarboxylate and divinyl sulfone--exhibited a strong enhancement of toxicity when compared with analogous monofunctional electrophiles in both human colorectal carcinoma cells and baker's yeast. Here, we have compared the toxicities for a broader panel of homobifunctional electrophiles bearing diverse electrophilic centers (e.g., isothiocyanate, isocyanate, epoxide, nitrogen mustard, and aldehyde groups) to their monofunctional analogues. Each bifunctional electrophile showed at least a 3-fold enhancement of toxicity over its monofunctional counterpart, although in most cases, the differences were even more pronounced. To explain their enhanced toxicity, we tested the ability of each bifunctional electrophile to cross-link recombinant yeast thioredoxin 2 (Trx2), a known intracellular target of electrophiles. The bifunctional electrophiles were capable of cross-linking Trx2 to itself in vitro and to other proteins in cells exposed to toxic concentrations. Moreover, most cross-linkers were preferentially reactive with thiols in these experiments. Collectively, our results indicate that thiol-reactive protein cross-linkers in general are much more potent cytotoxins than analogous monofunctional electrophiles, irrespective of the electrophilic group studied.
Collapse
Affiliation(s)
- Matthew K Spencer
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster , Wooster, Ohio 44691, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dufour V, Stahl M, Rosenfeld E, Stintzi A, Baysse C. Insights into the mode of action of benzyl isothiocyanate on Campylobacter jejuni. Appl Environ Microbiol 2013; 79:6958-68. [PMID: 24014524 PMCID: PMC3811535 DOI: 10.1128/aem.01967-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death.
Collapse
Affiliation(s)
- Virginie Dufour
- EA1254 Microbiologie et Risques Infectieux, University of Rennes 1, Rennes, France
| | - Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Christine Baysse
- EA1254 Microbiologie et Risques Infectieux, University of Rennes 1, Rennes, France
| |
Collapse
|
34
|
Murakami A. Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr 2013; 52:215-27. [PMID: 23704811 PMCID: PMC3652296 DOI: 10.3164/jcbn.12-126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022] Open
Abstract
There is compelling evidence showing that dietary phytochemicals have exhibited pronounced bioactivities in a number of experimental models. In addition, a variety of epidemiological surveys have demonstrated that frequent ingestion of vegetables and fruits, which contain abundant phytochemicals, lowers the risk of onset of some diseases. However, the action mechanisms by which dietary phytochemicals show bioactivity remain to be fully elucidated and a fundamental question is why this class of chemicals has great potential for regulating health. Meanwhile, maintenance and repair of biological proteins by molecular chaperones, such as heat shock proteins, and clearance of abnormal proteins by the ubiquitin-proteasome system and autophagy play central roles in health, some disease prevention, and longevity. Interestingly, several recent studies have revealed that phytochemicals, including curcumin (yellow pigment in turmeric), resveratrol (phytoalexin in grapes), quercetin (general flavonol in onions and others), and isothiocyanates (preferentially present in cruciferous vegetables, such as broccoli and cabbage), are remarkable regulators of protein quality control systems, suggesting that their physiological and biological functions are exerted, at least in part, through activation of such unique mechanisms. This review article highlights recent findings regarding the effects of representative phytochemicals on protein quality control systems and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
35
|
Non-specific protein modifications by a phytochemical induce heat shock response for self-defense. PLoS One 2013; 8:e58641. [PMID: 23536805 PMCID: PMC3594166 DOI: 10.1371/journal.pone.0058641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 01/02/2023] Open
Abstract
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.
Collapse
|
36
|
Dinkova-Kostova AT. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. SCIENTIFICA 2012; 2012:606104. [PMID: 24278719 PMCID: PMC3820647 DOI: 10.6064/2012/606104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 05/28/2023]
Abstract
The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Ohnishi K, Nakahata E, Irie K, Murakami A. Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy. Biochem Biophys Res Commun 2012; 430:616-22. [PMID: 23219816 DOI: 10.1016/j.bbrc.2012.11.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Zerumbone, a sesquiterpene present in Zingiber zerumbet Smith, has been implicated as a promising chemopreventive agent. Interestingly, a number of studies have revealed that its potent bioactivities are dependent on the electrophilic moiety of its α,β-unsaturated carbonyl group, while our recent findings showed its chemical potential for binding to cellular proteins through a Michael reaction. In the present study, modifications of proteins by zerumbone led to their insolubilization in vitro. In living cell models, zerumbone induced ubiquitination and aggregation of cellular proteins, which demonstrated its substantial proteo-toxicity. On the other hand, it was also revealed that zerumbone possesses potential for activating intracellular proteolysis mechanisms of the ubiquitin-proteasome system and autophagy. Furthermore, it up-regulated expressions of pro-autophagic genes including p62, which is known as a cargo receptor of aggrephagy, the selective autophagic process for protein aggregates. Pretreatment of Hepa1c1c7 cells with zerumbone conferred a phenotype resistant to cytotoxicity and protein modifications by 4-hydroxy-2-nonenal, an endogenous lipid peroxidation product, in a p62-dependent manner. Together, these results suggest that protein modifications by zerumbone cause mild proteo-stress, thereby activating intracellular proteolysis machineries to maintain protein homeostasis. We consider these effects on proteolysis mechanisms to be hormesis, which provides beneficial functions through mild biological stresses.
Collapse
Affiliation(s)
- Kohta Ohnishi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
38
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
39
|
Miyoshi N, Yonemochi T, Tomono S, Fukutomi R, Nakamura Y, Ohshima H. Development and application of a method for identification of isothiocyanate-targeted molecules in colon cancer cells. Anal Biochem 2012; 429:124-31. [PMID: 22835833 DOI: 10.1016/j.ab.2012.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
In this study, we have developed a novel method to identify isothiocyanate (ITC)-targeted molecules using two well-studied ITCs: benzyl ITC (BITC) and phenethyl ITC (PEITC). The principle of this method is based on identifying a pattern of differences between BITC and PEITC given that they show similar chemical and biological behaviors. For method validation, dithiothreitol-reduced bovine insulin as a model molecule was incubated with either BITC or PEITC, and digested peptides were analyzed by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and liquid chromatography quadrupole TOF-MS (LC-Q-TOF-MS). Three peptides-NYCN, FVNQHLCGSHLVE, and ALYLVCGE-were identified as being adducted with BITC or PEITC on their cysteine residues. Each set of peptides adducted with either BITC or PEITC showed retention times (RT(BITC)<RT(PEITC)) by reverse-phase column chromatography with a difference of molecular mass (Δ14.01565). On the basis of these findings, computational mathematical schemes were constructed to extract sets of MS ions satisfying the above criteria. Application of the developed method to an extract of ITC-treated human colon cancer HCT116 cells, thiocarbamoylation of cysteine residues of glutathione, and the N-terminal proline residues of PMFIVNTNVPR from macrophage migration inhibitory factor were successfully identified as one of the intracellular targets of ITCs. Moreover, the method also detected the thiocarbamoylated conjugates of ITCs with intracellular free cysteines and lysines.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, and Global Center of Excellence Program, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Quesada-Soriano I, Primavera A, Casas-Solvas JM, Téllez-Sanz R, Barón C, Vargas-Berenguel A, Lo Bello M, García-Fuentes L. Identifying and characterizing binding sites on the irreversible inhibition of human glutathione S-transferase P1-1 by S-thiocarbamoylation. Chembiochem 2012; 13:1594-604. [PMID: 22740430 DOI: 10.1002/cbic.201200210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 11/07/2022]
Abstract
Human glutathione S-transferase P1-1 (hGST P1-1) is involved in cell detoxification processes through the conjugation of its natural substrate, reduced glutathione (GSH), with xenobiotics. GSTs are known to be overexpressed in tumors, and naturally occurring isothiocyanates, such as benzyl isothiocyanate (BITC), are effective cancer chemopreventive compounds. To identify and characterize the potential inhibitory mechanisms of GST P1-1 induced by isothiocyanate conjugates, we studied the binding of GST P1-1 and some cysteine mutants to the BITC-SG conjugate as well as to the synthetic S-(N-benzylcarbamoylmethyl)glutathione conjugate (BC-SG). We report here the inactivation of GST P1-1 through the covalent modification of two Cys47 residues per dimer and one Cys101. The evidence has been compiled by isothermal titration calorimetry (ITC) and electrospray ionization mass spectrometry (ESI-MS). ITC experiments suggest that the BITC-SG conjugate generates adducts with Cys47 and Cys101 at physiological temperatures through a corresponding kinetic process, in which the BITC moiety is covalently bound to these enzyme cysteines through an S-thiocarbamoylation reaction. ESI-MS analysis of the BITC-SG incubated enzymes indicates that although the Cys47 in each subunit is covalently attached to the BITC ligand moiety, only one of the Cys101 residues in the dimer is so attached. A plausible mechanism is given for the emergence of inactivation through the kinetic processes with both cysteines. Likewise, our molecular docking simulations suggest that steric hindrance is the reason why only one Cys101 per dimer is covalently modified by BITC-SG. No covalent inactivation of GST P1-1 with the BC-SG inhibitor has been observed. The affinities and inhibitory potencies for both conjugates are high and very similar, but slightly lower for BC-SG. Thus, we conclude that the presence of the sulfur atom from the isothiocyanate moiety in BITC-SG is crucial for its irreversible inhibition of GST P1-1.
Collapse
|