1
|
Del Rosso JQ, Kircik L. The cutaneous effects of androgens and androgen-mediated sebum production and their pathophysiologic and therapeutic importance in acne vulgaris. J DERMATOL TREAT 2024; 35:2298878. [PMID: 38192024 DOI: 10.1080/09546634.2023.2298878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Background: The recognition of an association between the development of acne vulgaris (AV) and pubertal hormonal changes during adolescence dates back almost 100 years. Since these formative observations, a significant role of circulating hormones in the pathophysiology of AV and other cutaneous disorders has been established.Aims: This review article aims to provide an overview of clinical and preclinical evidence supporting the influences of androgens on the skin and their therapeutic importance in AV pathophysiology.Results: The cutaneous effects of hormones are attributable, to a large extent, to the influence of steroid hormones, particularly androgens, on sebocyte development and sebum production in both sexes. Androgen-mediated excess sebum production is implicated as a necessary early step in AV pathophysiology and is therefore considered an important therapeutic target in AV treatment. Although the local production and/or activity of androgens within the skin is believed to be important in AV pathophysiology, it has received limited therapeutic attention.Conclusions: We have summarized the current evidence in support of the therapeutic benefits of targeted hormonal treatment to decrease androgen-stimulated sebum production for the effective and safe treatment of AV in both male and female patients.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University, School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
2
|
Robeva R, Andonova S, Todorov T, Feyzullova A, Elenkova A, Kirilov G, Savov A, Zacharieva S, Todorova A. CYP21A2 Intron 2 Genetic Variants Might Be Associated with the Clinical Characteristics of Women with PCOS. Biomedicines 2024; 12:1528. [PMID: 39062101 PMCID: PMC11274513 DOI: 10.3390/biomedicines12071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
AIMS Pathogenic variants in the CYP21A2 gene are related to the classic and non-classic forms of congenital adrenal hyperplasia (CAH). However, the role of CAH carrier status in the clinical presentation of polycystic ovarian syndrome (PCOS) is still unclear. Moreover, the possible associations of different CYP21A2 gene polymorphisms with metabolic and reproductive abnormalities in PCOS have not been investigated. Therefore, the present study aims to examine the prevalence of the most common CYP21A2 pathogenic variant IVS2-13A/C>G (c.293-13A/C>G) in Eastern European women with PCOS and to evaluate the associations between common intron 2 genetic polymorphisms and the clinical symptoms of the patients. METHODS Sixty consecutively recruited women with PCOS were genotyped for the CYP21A2 intron 2 IVS2-13A/C>G genetic variant. Additionally, CYP21A2 intron 2 polymorphic variants rs6453 (c.293-44G>T), rs6451 (c.293-67C>A/G), rs369651496 (c.293-104del), and rs6474 (c.308G>A/p.R103L) were tested and described. The clinical and hormonal characteristics were compared in women with PCOS and with polymorphic and wild-type genotypes. RESULTS The heterozygous CYP21A2 pathogenic variant IVS2-13A/C>G was found in one of the investigated PCOS patients (1.67%) with a non-hyperandrogenic type of PCOS. The presence of the rs6453 (c.293-44G>T) T-allele was associated with increased levels of DHEAS (15.18 vs. 9.14 µmol/L, p = 0.003) compared to the wild-type genotype in the investigated group. The rs6451 (c.293-67C>A/G) minor alleles were associated with an earlier age of menarche in the patients (12.0 vs. 13.0 years, p = 0.007). The polymorphic rs369651496 minor 6G allele was related to a better lipid profile in the women with PCOS, while the rs6474 variant modulated the blood pressure of the patients. CONCLUSIONS The presence of CYP21A2 genetic minor alleles of rs6467 (IVS2-13A/C, c.293-13A/C), rs6453 (c.293-44G>T), rs6451 (c.293-67C>A/G), rs369651496 (c.293-104del), and rs6474 (c.308G>A/p.R103L) might modulate the adrenal androgens, age of menarche, and metabolic features in women with PCOS. Further studies on 21-hydroxylase genetic variants (pathogenic and polymorphisms) in different ethnic groups might help reveal the influence of adrenal steroidogenesis on PCOS development, clinical manifestations, and lifelong cardiovascular risks.
Collapse
Affiliation(s)
- Ralitsa Robeva
- Department of Endocrinology, Medical Faculty, Medical University-Sofia, USHATE “Acad. Iv. Penchev”, 1000 Sofia, Bulgaria (A.E.)
| | - Silvia Andonova
- National Genetic Laboratory, Medical Faculty, Medical University-Sofia, University Hospital of Obstetrics and Gynecology “Maichin Dom”, 1000 Sofia, Bulgaria; (S.A.)
- Genetic Medico-Diagnostic Laboratory “Genica”, 1000 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory “Genica”, 1000 Sofia, Bulgaria
| | - Aylin Feyzullova
- Department of Endocrinology, Medical Faculty, Medical University-Sofia, USHATE “Acad. Iv. Penchev”, 1000 Sofia, Bulgaria (A.E.)
| | - Atanaska Elenkova
- Department of Endocrinology, Medical Faculty, Medical University-Sofia, USHATE “Acad. Iv. Penchev”, 1000 Sofia, Bulgaria (A.E.)
| | - Georgi Kirilov
- Department of Endocrinology, Medical Faculty, Medical University-Sofia, USHATE “Acad. Iv. Penchev”, 1000 Sofia, Bulgaria (A.E.)
| | - Alexey Savov
- National Genetic Laboratory, Medical Faculty, Medical University-Sofia, University Hospital of Obstetrics and Gynecology “Maichin Dom”, 1000 Sofia, Bulgaria; (S.A.)
| | - Sabina Zacharieva
- Department of Endocrinology, Medical Faculty, Medical University-Sofia, USHATE “Acad. Iv. Penchev”, 1000 Sofia, Bulgaria (A.E.)
| | - Albena Todorova
- Genetic Medico-Diagnostic Laboratory “Genica”, 1000 Sofia, Bulgaria
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Carranza J, Yamada K, Sakae Y, Noh J, Choi MH, Tanaka M. Genetic Disruption of cyp21a2 Leads to Systemic Glucocorticoid Deficiency and Tissues Hyperplasia in the Teleost Fish Medaka ( Oryzias latipes). Zoolog Sci 2024; 41:263-274. [PMID: 38809865 DOI: 10.2108/zs230107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 05/31/2024]
Abstract
cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.
Collapse
Affiliation(s)
- José Carranza
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuki Yamada
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuta Sakae
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Jongsung Noh
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Minoru Tanaka
- Laboratory of Reproductive Biology, Graduate School of Science, Nagoya University, Nagoya, Japan,
| |
Collapse
|
4
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
5
|
Petrunak EM, Bart AG, Peng HM, Auchus RJ, Scott EE. Human cytochrome P450 17A1 structures with metabolites of prostate cancer drug abiraterone reveal substrate-binding plasticity and a second binding site. J Biol Chem 2023; 299:102999. [PMID: 36773804 PMCID: PMC10023946 DOI: 10.1016/j.jbc.2023.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Abiraterone acetate is a first-line therapy for castration-resistant prostate cancer. This prodrug is deacetylated in vivo to abiraterone, which is a potent and specific inhibitor of cytochrome P450 17A1 (CYP17A1). CYP17A1 performs two sequential steps that are required for the biosynthesis of androgens that drive prostate cancer proliferation, analogous to estrogens in breast cancer. Abiraterone can be further metabolized in vivo on the steroid A ring to multiple metabolites that also inhibit CYP17A1. Despite its design as an active-site-directed substrate analog, abiraterone and its metabolites demonstrate mixed competitive/noncompetitive inhibition. To understand their binding, we solved the X-ray structures of CYP17A1 with three primary abiraterone metabolites. Despite different conformations of the steroid A ring and substituents, all three bound in the CYP17A1 active site with the steroid core packed against the I helix and the A ring C3 keto or hydroxyl oxygen forming a hydrogen bond with N202 similar to abiraterone itself. The structure of CYP17A1 with 3-keto, 5α-abiraterone was solved to 2.0 Å, the highest resolution to date for a CYP17A1 complex. This structure had additional electron density near the F/G loop, which is likely a second molecule of the inhibitor and which may explain the noncompetitive inhibition. Mutation of the adjacent Asn52 to Tyr positions its side chain in this space, maintains enzyme activity, and prevents binding of the peripheral ligand. Collectively, our findings provide further insight into abiraterone metabolite binding and CYP17A1 function.
Collapse
Affiliation(s)
- Elyse M Petrunak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Aaron G Bart
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hwei-Ming Peng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Wan Z, Wang W, Zheng S, Han R, Xie X, Zhao Y, Wang W, Sun S, Ye L. Nonclassic Adrenal Hyperplasia (NCAH) due to 21-hydroxylase deficiency: A cohort of 78 patients. J Steroid Biochem Mol Biol 2023; 225:106192. [PMID: 36167262 DOI: 10.1016/j.jsbmb.2022.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
Diagnosis of nonclassic adrenal hyperplasia (NCAH) due to 21-hydroxylase deficiency (21-OHD) may be challenging due to its occult manifestations. To characterize clinical and molecular features of NCAH patients due to 21-hydroxylase deficiency, we retrospectively included 78 NCAH patients. Their phenotype and genotype were presented and compared. The transcription activities of novel CYP21A2 promoter variants were investigated using a dual-reporter luciferase assay system. This cohort included 53 females (68 %) and 25 males (32 %). The median of onset age was 13 years old (female: 13 range from 7 to 38; male: 11 range from 6 to 71). Menstrual cycle disorder was the most common complaint in females (62 %, n = 33) and for males, it was adrenal incidentalomas (52 %, n = 13). A total of 17 (22 %) patients complained of infertility. The most frequently variant was p.Ile173Asn (20 %, n = 31). Importantly, five variants in the promoter region including - 103/- 126 and - 196/- 296 were found in 21 (27 %) patients. Patients with promoter variants showed older onset age and less impaired hormone levels of 17-hydroxyprogesterone, ACTH, progesterone, and androstenedione. Compared with the wild-type promoter, the basic transcription activity of - 103/- 126 and - 196/- 296 promoter variants were reduced by 57% and 25%, respectively. Therefore, females with menstrual cycle disorders or infertility and males with adrenal incidentaloma should be considered of NCAH due to 21-OHD. When genotyping patients with NCAH, the promoter region of the CYP21A2 gene should be also investigated.
Collapse
Affiliation(s)
- Zhihan Wan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wencui Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sichang Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Xie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyue Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Atypical kinetics of cytochrome P450 enzymes in pharmacology and toxicology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:131-176. [PMID: 35953154 DOI: 10.1016/bs.apha.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atypical kinetics are observed in metabolic reactions catalyzed by cytochrome P450 enzymes (P450). Yet, this phenomenon is regarded as experimental artifacts in some instances despite increasing evidence challenging the assumptions of typical Michaelis-Menten kinetics. As P450 play a major role in the metabolism of a wide range of substrates including drugs and endogenous compounds, it becomes critical to consider the impact of atypical kinetics on the accuracy of estimated kinetic and inhibitory parameters which could affect extrapolation of pharmacological and toxicological implications. The first half of this book chapter will focus on atypical non-Michaelis-Menten kinetics (e.g. substrate inhibition, biphasic and sigmoidal kinetics) as well as proposed underlying mechanisms supported by recent insights in mechanistic enzymology. In particular, substrate inhibition kinetics in P450 as well as concurrent drug inhibition of P450 in the presence of substrate inhibition will be further discussed. Moreover, mounting evidence has revealed that despite the high degree of sequence homology between CYP3A isoforms (i.e. CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different susceptibilities and potencies of mechanism-based inactivation (MBI) with a common drug inhibitor. These experimental observations pertaining to the presence of these atypical isoform- and probe substrate-specific complexities in CYP3A isoforms by several clinically-relevant drugs will therefore be expounded and elaborated upon in the second half of this book chapter.
Collapse
|
8
|
Fu K, Zhou H, Wang C, Gong L, Ma C, Zhang Y, Li Y. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother Res 2022; 36:2375-2393. [DOI: 10.1002/ptr.7456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
9
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
10
|
Li M, Tian X, Li X, Huang M, Huang S, Wu Y, Jiang M, Shi Y, Shi L, Wang Z. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147130. [PMID: 34088150 DOI: 10.1016/j.scitotenv.2021.147130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The effects of global warming and anthropogenic disturbance force animals to migrate from lower to higher elevations to find suitable new habitats. As such migrations increase hypoxic stress on the animals, it is important to understand how plateau- and plain-dwelling animals respond to low-oxygen environments. We used comparative transcriptomics to explore the response of Neodon fuscus, Lasiopodomys brandtii, and Mus musculus skeletal muscle tissues to hypoxic conditions. Results indicate that these species have adopted different oxygen transport and energy metabolism strategies for dealing with a hypoxic environment. N. fuscus promotes oxygen transport by increasing hemoglobin synthesis and reduces the risk of thrombosis through cooperative regulation of genes, including Fga, Fgb, Alb, and Ttr; genes such as Acs16, Gpat4, and Ndufb7 are involved in regulating lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis, and electron-linked transmission, thereby maintaining a normal energy supply in hypoxic conditions. In contrast, the oxygen-carrying capacity and angiogenesis of red blood cells in L. brandtii are promoted by genes in the CYP and COL families; this species maintains its bodily energy supply by enhancing the pentose phosphate pathway and mitochondrial fatty acid synthesis pathway. However, under hypoxia, M. musculus cannot effectively transport additional oxygen; thus, its cell cycle, proliferation, and migration are somewhat affected. Given its lack of hypoxic tolerance experience, M. musculus also shows significantly reduced oxidative phosphorylation levels under hypoxic conditions. Our results suggest that the glucose capacity of M. musculus skeletal muscle does not provide sufficient energy during hypoxia; thus, we hypothesize that it supplements its bodily energy by synthesizing ketone bodies. For the first time, we describe the energy metabolism pathways of N. fuscus and L. brandtii skeletal muscle tissues under hypoxic conditions. Our findings, therefore, improve our understanding of how vertebrates thrive in high altitude and plain habitats when faced with hypoxic conditions.
Collapse
Affiliation(s)
- Mengyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuang Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Physical Education (Main campus), Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
11
|
Kocova M, Anastasovska V, Falhammar H. Clinical outcomes and characteristics of P30L mutations in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocrine 2020; 69:262-277. [PMID: 32367336 PMCID: PMC7392929 DOI: 10.1007/s12020-020-02323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/18/2020] [Indexed: 01/07/2023]
Abstract
Despite numerous studies in the field of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, some clinical variability of the presentation and discrepancies in the genotype/phenotype correlation are still unexplained. Some, but not all, discordant phenotypes caused by mutations with known enzyme activity have been explained by in silico structural changes in the 21-hydroxylase protein. The incidence of P30L mutation varies in different populations and is most frequently found in several Central and Southeast European countries as well as Mexico. Patients carrying P30L mutation present predominantly as non-classical CAH; however, simple virilizing forms are found in up to 50% of patients. Taking into consideration the residual 21-hydroxulase activity present with P30L mutation this is unexpected. Different mechanisms for increased androgenization in patients carrying P30L mutation have been proposed including influence of different residues, accompanying promotor allele variability or mutations, and individual androgene sensitivity. Early diagnosis of patients who would present with SV is important in order to improve outcome. Outcome studies of CAH have confirmed the uniqueness of this mutation such as difficulties in phenotype classification, different fertility, growth, and psychologic issues in comparison with other genotypes. Additional studies of P30L mutation are warranted.
Collapse
Affiliation(s)
- Mirjana Kocova
- Medical Faculty, University"Cyril&Methodius", Skopje, Republic of North Macedonia
| | - Violeta Anastasovska
- Genetic Laboratory, University Pediatric Hospital, Skopje, Republic of North Macedonia
| | - Henrik Falhammar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
- Departement of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Dandekar BR, Mondal J. Capturing Protein-Ligand Recognition Pathways in Coarse-Grained Simulation. J Phys Chem Lett 2020; 11:5302-5311. [PMID: 32520567 DOI: 10.1021/acs.jpclett.0c01683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-ligand recognition is dynamic and complex. A key approach in deciphering the mechanism underlying the recognition process is to capture the kinetic process of the ligand in its act of binding to its designated protein cavity. Toward this end, ultralong all-atom molecular dynamics simulation has recently emerged as a popular method of choice because of its ability to record these events at high spatial and temporal resolution. However, success via this route comes at an exorbitant computational cost. Herein, we demonstrate that coarse-grained models of the protein, when systematically optimized to maintain its tertiary fold, can capture the complete process of spontaneous protein-ligand binding from bulk media to the cavity at crystallographic precision and within wall clock time that is orders of magnitude shorter than that of all-atom simulations. The exhaustive sampling of ligand exploration in protein and solvent, harnessed by coarse-grained simulation, leads to elucidation of new ligand recognition pathways and discovery of non-native binding poses.
Collapse
Affiliation(s)
- Bhupendra R Dandekar
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
13
|
Sakumoto R, Hayashi KG, Hosoe M, Iga K, Kizaki K. Pregnancy-associated changes of peroxisome proliferator-activated receptor delta (PPARD) and cytochrome P450 family 21 subfamily A member 2 (CYP21A2) expression in the bovine corpus luteum. J Reprod Dev 2020; 66:205-213. [PMID: 32037375 PMCID: PMC7297635 DOI: 10.1262/jrd.2019-132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated gene expression profiles of the corpus luteum (CL) at the time of maternal recognition to evaluate the functional changes of the CL during early pregnancy in cows and help
improve reproductive efficiency and avoid defective fetuses. Microarray analyses using a 15 K bovine oligo DNA microarray detected 30 differentially expressed genes and 266 differentially
expressed genes (e.g., PPARD and CYP21A2) in the CL on pregnancy days 15 (P15) and 18 (P18), respectively, compared with the CL on day 15 (NP15) of
non-pregnancy (n = 4 for each group). PPARD expression was the highest while the CYP21A2 expression was the lowest in P15 and P18 compared with that of
NP15. These microarray results were validated by quantitative real-time PCR analysis. The addition of interferon-τ and supernatants derived from homogenized fetal trophoblast increased
ISG15 and MX1 expressions in the cultured luteal tissue (P < 0.01), but did not affect PPARD and CYP21A2 expressions.
PPARD expression in the luteal tissue was stimulated (P < 0.05) by GW0742, known as a selective PPARD agonist, and PPARD ligands (i.e., arachidonic, linoleic and
linolenic acids). In contrast, CYP21A2 mRNA expression was not affected by both agonist and ligands. The concentration of prostaglandin (PG) E2 and PGF2α decreased after
GW0742 stimulation and increased after arachidonic acid stimulation (P < 0.05). The addition of GW0742 and arachidonic acid increased progesterone (P4) concentration. Collectively, these
findings suggest that high expression levels of PPARD and low expression levels of CYP21A2 in the CL during early pregnancy may support P4 production by bovine luteal cells.
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Ken-Go Hayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Misa Hosoe
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Kosuke Iga
- Division of Livestock and Forage Research, Tohoku Agricultural Research Center, NARO, Morioka 020-0198, Japan
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
14
|
Profiling of anabolic androgenic steroids and selective androgen receptor modulators for interference with adrenal steroidogenesis. Biochem Pharmacol 2020; 172:113781. [DOI: 10.1016/j.bcp.2019.113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
|
15
|
König L, Brixius‐Anderko S, Milhim M, Tavouli‐Abbas D, Hutter MC, Hannemann F, Bernhardt R. Identification and circumvention of bottlenecks in CYP21A2‐mediated premedrol production using recombinantEscherichia coli. Biotechnol Bioeng 2019; 117:901-911. [DOI: 10.1002/bit.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa König
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | - Mohammed Milhim
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | | | - Frank Hannemann
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
16
|
Karlsson L, de Paula Michelatto D, Lusa ALG, D'Almeida Mgnani Silva C, Östberg LJ, Persson B, Guerra-Júnior G, Valente de Lemos-Marini SH, Baldazzi L, Menabó S, Balsamo A, Greggio NA, Palandi de Mello M, Barbaro M, Lajic S. Novel non-classic CYP21A2 variants, including combined alleles, identified in patients with congenital adrenal hyperplasia. Clin Biochem 2019; 73:50-56. [PMID: 31344365 DOI: 10.1016/j.clinbiochem.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Congenital adrenal hyperplasia (CAH) is an inborn error of metabolism and a common disorder of sex development where >90% of all cases are due to 21-hydroxylase deficiency. Novel and rare pathogenic variants account for 5% of all clinical cases. Here, we sought to investigate the functional and structural effects of four novel (p.Val358Ile, p.Arg369Gln, p.Asp377Tyr, and p.Leu461Pro) and three combinations of CYP21A2 variants (i.e. one allele containing two variants p.[Ile172Asn;Val358Ile], p.[Val281Leu;Arg369Gln], or p.[Asp377Tyr;Leu461Pro]) identified in patients with CAH. METHODS All variants were reconstructed by in vitro site-directed mutagenesis, the proteins were transiently expressed in COS-1 cells and enzyme activities directed toward the two natural substrates (17-hydroxyprogesterone and progesterone) were determined. In parallel, in silico prediction of the pathogenicity of the variants based on the human CYP21 X-ray structure was performed. RESULTS The novel variants, p.Val358Ile, p.Arg369Gln, p.Asp377Tyr, and p.Leu461Pro exhibited residual enzymatic activities within the range of non-classic (NC) CAH variants (40-82%). An additive effect on the reduction of enzymatic activity (1-17%) was observed when two variants were expressed together, as identified in several patients, resulting in either NC or more severe phenotypes. In silico predictions were in line with the in vitro data except for p.Leu461Pro. CONCLUSIONS Altogether, the combination of clinical data, in silico prediction, and data from in vitro studies are important for establishing a correct genotype and phenotype correlation in patients with CAH.
Collapse
Affiliation(s)
- Leif Karlsson
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, Stockholm, Sweden
| | - Débora de Paula Michelatto
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, Stockholm, Sweden; Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ana Letícia Gori Lusa
- Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Linus J Östberg
- Science for Life Laboratory and eSSENCE, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Persson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gil Guerra-Júnior
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Lilia Baldazzi
- Department of Woman, Child and Urological Diseases, Centre for Rare Endocrine Conditions (CARENDO BO; Endo-ERN), S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Soara Menabó
- Department of Woman, Child and Urological Diseases, Centre for Rare Endocrine Conditions (CARENDO BO; Endo-ERN), S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Antonio Balsamo
- Department of Woman, Child and Urological Diseases, Centre for Rare Endocrine Conditions (CARENDO BO; Endo-ERN), S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Nella Augusta Greggio
- Department of Women's and Children's Health of Padua, Pediatric Endocrinology Unit, Italy
| | - Maricilda Palandi de Mello
- Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Michela Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Inherited Metabolic Diseases (CMMS L7:05), Karolinska University Hospital, Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
18
|
Neves Cruz J, da Costa KS, de Carvalho TAA, de Alencar NAN. Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia. J Biomol Struct Dyn 2019; 38:1425-1434. [PMID: 30982438 DOI: 10.1080/07391102.2019.1607560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Congenital adrenal hyperplasia is an inherited autosomal recessive disorder related to deficient cortisol synthesis. The deficiency of steroid 21-hydroxylase (cytochrome P450 21A2), an enzyme involved in cortisol synthesis, is responsible for ∼95% of cases of congenital adrenal hyperplasia. This metabolic disease exhibits three clinical forms: salt-wasting, simple virilizing, and non-classical form, which are divided according to the degree of severity. In the present study, structural and mutational analyses were performed in order to identify the structural impact of mutations on cytochrome P450 21A2 and correlate them with patient clinical severity. The following mutations were selected: arginine-356 to tryptophan (R356W), proline-30 to leucine (P30L), isoleucine-172 to asparagine (I172N), valine-281 to leucine (V281L), and the null mutation glutamine-318 (Q318X). Our computational approach mapped the location of residues on P450 and identified their implications on enzyme electrostatic potential mapping to progesterone and heme binding pockets. Using molecular dynamics simulations, we analyzed the structural stability of ligand binding and protein structure, as well as possible conformational changes at the catalytic pocket that leads to impairment of enzymatic activity. Our study sheds light on the impact structural mutations have over steroid 21-hydroxylase structure-function in the cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jorddy Neves Cruz
- Faculty of Pharmaceutical Sciences, University of the Amazon, Belém, Brazil.,Institute of Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | |
Collapse
|
19
|
Ahalawat N, Mondal J. Mapping the Substrate Recognition Pathway in Cytochrome P450. J Am Chem Soc 2018; 140:17743-17752. [PMID: 30479124 DOI: 10.1021/jacs.8b10840] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytochrome P450s are ubiquitous metalloenzymes involved in the metabolism and detoxification of foreign components via catalysis of the hydroxylation reactions of a vast array of organic substrates. However, the mechanism underlying the pharmaceutically critical process of substrate access to the catalytic center of cytochrome P450 is a long-standing puzzle, further complicated by the crystallographic evidence of a closed catalytic center in both substrate-free and substrate-bound cytochrome P450. Here, we address a crucial question whether the conformational heterogeneity prevalent in cytochrome P450 translates to heterogeneous pathways for substrate access to the catalytic center of these metalloenzymes. By atomistically capturing the full process of spontaneous substrate association from bulk solvent to the occluded catalytic center of an archetypal system P450cam in multi-microsecond-long continuous unbiased molecular dynamics simulations, we here demonstrate that the substrate recognition in P450cam always occurs through a single well-defined dominant pathway. The simulated final bound pose resulting from these unguided simulations is in striking resemblance with the crystallographic bound pose. Each individual binding trajectory reveals that the substrate, initially placed at random locations in bulk solvent, spontaneously lands on a single key channel on the protein-surface of P450cam and resides there for an uncharacteristically long period, before correctly identifying the occluded target-binding cavity. Surprisingly, the passage of substrate to the closed catalytic center is not accompanied by any large-scale opening in protein. Rather, the unbiased simulated trajectories (∼57 μs) and underlying Markov state model, in combination with free-energy analysis, unequivocally show that the substrate recognition process in P450cam needs a substrate-induced side-chain displacement coupled with a complex array of dynamical interconversions of multiple metastable substrate conformations. Further, the work reconciles multiple precedent experimental and theoretical observations on P450cam and establishes a comprehensive view of substrate-recognition in cytochrome P450 that only occurs via substrate-induced structural rearrangements.
Collapse
Affiliation(s)
- Navjeet Ahalawat
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500107 , India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences , Hyderabad 500107 , India
| |
Collapse
|
20
|
Liu Q, Wang LA, Su J, Tong D, Lan W, Wang L, Liu G, Zhang J, Zhang VW, Zhang D, Chen R, Zhu Q, Jiang J. Giant bilateral adrenal myelolipomas in two Chinese families with congenital adrenal hyperplasia. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0273.xml. [PMID: 30352423 PMCID: PMC6215793 DOI: 10.1530/ec-18-0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
CONTEXT AND OBJECTIVES Congenital adrenal hyperplasia (CAH) is one of the most prevalent, and potentially severe, genetic inborn errors of steroid synthesis directly affecting metabolism. Most patients are diagnosed and treated at an early age. There have been very limited reports of adults with CAH-associated adrenal myelolipomas. We aimed to analyze two families with CAH-associated giant adrenal myelolipomas caused by defects in CYP21A2 and CYP17A1 genes. PARTICIPANTS AND METHODS A total of 14 individuals from two unrelated families were identified with either CYP21A2 or CYP17A1 mutations. Of note, 5 patients were found with adrenal myelolipomas. Total DNA isolated from the peripheral blood of the two probands was screened for potential mutations in the following susceptibility genes of CAH: CYP21A2, CYP11B1, CYP17A1, HSD17B3, HSD3B2, ARMC5, and STAR using Target Capture-Based Deep Sequencing; and Sanger sequencing was conducted for the family members to detect the potential mutations. RESULTS In family 1, molecular genetics sequencing revealed a compound heterozygous mutation (c.293-13C>G / c.518T>A, p.I173N) in CYP12A2 in the patient and his brother. In family 2, all three female patients with adrenal myelolipomas were found to have a compound heterozygous mutation (c.1118A>T, p.H373L / c.1459_1467del9, p.D487_F489del) in CYP17A1. CONCLUSION To avoid giant CAH-associated adrenal myelolipomas in adults, it is important to identify CAH early so appropriate treatment can be initiated to interrupt the chronic adrenal hyperstimulation resulting from increased ACTH. Genetic testing and counseling could be useful in CAH.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Lin-ang Wang
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jian Su
- Department of UrologyAffiliated Hospital of Nanjing University of Traditional Chinese Medical, Nanjing, People’s Republic of China
| | - Dali Tong
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Weihua Lan
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Luofu Wang
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Gaolei Liu
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Department of ObstetricsThird Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Victor Wei Zhang
- Department of Molecular and Human GeneticsBaylor College of Medicine, Houston, Texas, USA
- AmCare Genomics LabGuangzhou, People’s Republic of China
| | - Dianzheng Zhang
- Department of Bio-Medical SciencesPhiladelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rongrong Chen
- Geneplus-Beijing InstituteBeijing, People’s Republic of China
| | - Qingyi Zhu
- Department of UrologyAffiliated Hospital of Nanjing University of Traditional Chinese Medical, Nanjing, People’s Republic of China
| | - Jun Jiang
- Department of UrologyInstitute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Acevedo-Rocha CG, Gamble CG, Lonsdale R, Li A, Nett N, Hoebenreich S, Lingnau JB, Wirtz C, Fares C, Hinrichs H, Deege A, Mulholland AJ, Nov Y, Leys D, McLean KJ, Munro AW, Reetz MT. P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00389] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Charles G. Gamble
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Nathalie Nett
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Cornelia Wirtz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Christophe Fares
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Alfred Deege
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa 31905, Israel
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
22
|
Congenital Adrenal Hyperplasia (CAH) due to 21-Hydroxylase Deficiency: A Comprehensive Focus on 233 Pathogenic Variants of CYP21A2 Gene. Mol Diagn Ther 2018; 22:261-280. [DOI: 10.1007/s40291-018-0319-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Petrunak EM, Rogers SA, Aubé J, Scott EE. Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metab Dispos 2017; 45:635-645. [PMID: 28373265 PMCID: PMC5438109 DOI: 10.1124/dmd.117.075317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Human steroidogenic cytochrome P450 17A1 (CYP17A1) is a bifunctional enzyme that performs both hydroxylation and lyase reactions, with the latter required to generate androgens that fuel prostate cancer proliferation. The steroid abiraterone, the active form of the only CYP17A1 inhibitor approved by the Food and Drug Administration, binds the catalytic heme iron, nonselectively impeding both reactions and ultimately causing undesirable corticosteroid imbalance. Some nonsteroidal inhibitors reportedly inhibit the lyase reaction more than the preceding hydroxylase reaction, which would be clinically advantageous, but the mechanism is not understood. Thus, the nonsteroidal inhibitors seviteronel and orteronel and the steroidal inhibitors abiraterone and galeterone were compared with respect to their binding modes and hydroxylase versus lyase inhibition. Binding studies and X-ray structures of CYP17A1 with nonsteroidal inhibitors reveal coordination to the heme iron like the steroidal inhibitors. (S)-seviteronel binds similarly to both observed CYP17A1 conformations. However, (S)-orteronel and (R)-orteronel bind to distinct CYP17A1 conformations that differ in a region implicated in ligand entry/exit and the presence of a peripheral ligand. To reconcile these binding modes with enzyme function, side-by-side enzymatic analysis was undertaken and revealed that neither the nonsteroidal seviteronel nor the (S)-orteronel inhibitors demonstrated significant lyase selectivity, but the less potent (R)-orteronel was 8- to 11-fold selective for lyase inhibition. While active-site iron coordination is consistent with competitive inhibition, conformational selection for binding of some inhibitors and the differential presence of a peripheral ligand molecule suggest the possibility of CYP17A1 functional modulation by features outside the active site.
Collapse
Affiliation(s)
- Elyse M Petrunak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Steven A Rogers
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Jeffrey Aubé
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| |
Collapse
|
24
|
Wang C, Pallan PS, Zhang W, Lei L, Yoshimoto FK, Waterman MR, Egli M, Guengerich FP. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia. J Biol Chem 2017; 292:10767-10778. [PMID: 28539365 DOI: 10.1074/jbc.m117.792465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12 variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37-13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C-H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.
Collapse
Affiliation(s)
- Chunxue Wang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Pradeep S Pallan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Wei Zhang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Lei
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Francis K Yoshimoto
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
25
|
Bruque CD, Delea M, Fernández CS, Orza JV, Taboas M, Buzzalino N, Espeche LD, Solari A, Luccerini V, Alba L, Nadra AD, Dain L. Structure-based activity prediction of CYP21A2 stability variants: A survey of available gene variations. Sci Rep 2016; 6:39082. [PMID: 27966633 PMCID: PMC5155424 DOI: 10.1038/srep39082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023] Open
Abstract
Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90-95% of CAH cases. In this work we performed an extensive survey of mutations and SNPs modifying the coding sequence of the CYP21A2 gene. Using bioinformatic tools and two plausible CYP21A2 structures as templates, we initially classified all known mutants (n = 343) according to their putative functional impacts, which were either reported in the literature or inferred from structural models. We then performed a detailed analysis on the subset of mutations believed to exclusively impact protein stability. For those mutants, the predicted stability was calculated and correlated with the variant's expected activity. A high concordance was obtained when comparing our predictions with available in vitro residual activities and/or the patient's phenotype. The predicted stability and derived activity of all reported mutations and SNPs lacking functional assays (n = 108) were assessed. As expected, most of the SNPs (52/76) showed no biological implications. Moreover, this approach was applied to evaluate the putative synergy that could emerge when two mutations occurred in cis. In addition, we propose a putative pathogenic effect of five novel mutations, p.L107Q, p.L122R, p.R132H, p.P335L and p.H466fs, found in 21-hydroxylase deficient patients of our cohort.
Collapse
Affiliation(s)
- Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | | | - Juan V Orza
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Noemí Buzzalino
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Andrea Solari
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | | | - Liliana Alba
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Liliana Dain
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Jóźwik IK, Kiss FM, Gricman Ł, Abdulmughni A, Brill E, Zapp J, Pleiss J, Bernhardt R, Thunnissen AMWH. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J 2016; 283:4128-4148. [PMID: 27686671 PMCID: PMC5132081 DOI: 10.1111/febs.13911] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Flora M Kiss
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Łukasz Gricman
- Institute of Technical Biochemistry, University of Stuttgart, Germany
| | - Ammar Abdulmughni
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Elisa Brill
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Josef Zapp
- Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Juergen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Andy-Mark W H Thunnissen
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
27
|
Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 2016; 37:625-640. [PMID: 27267697 PMCID: PMC4961565 DOI: 10.1016/j.tips.2016.05.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
28
|
Lei L, Egli M. In Situ Proteolysis for Crystallization of Membrane Bound Cytochrome P450 17A1 and 17A2 Proteins from Zebrafish. ACTA ACUST UNITED AC 2016; 84:29.16.1-29.16.19. [PMID: 27038268 DOI: 10.1002/0471140864.ps2916s84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fish and human cytochrome P450 (P450) 17A1 catalyze both steroid 17α-hydroxylation and 17α,20-lyase reactions. Fish P450 17A2 catalyzes only 17α-hydroxylation. Both enzymes are microsomal-type P450s, integral membrane proteins that bind to the membrane through their N-terminal hydrophobic segment, the signal anchor sequence. The presence of this N-terminal region renders expression of full-length proteins challenging or impossible. For some proteins, variable truncation of the signal anchor sequence precludes expression or results in poor expression levels. To crystallize P450 17A1 and 17A2 in order to gain insight into their different activities, we used an alternative N-terminal sequence to boost expression together with in situ proteolysis. Key features of our approach to identify crystallizable P450 fragments were the use of an N-terminal leader sequence, a screen composed of 12 proteases to establish optimal cleavage, variations of protease concentration in combination with an SDS-PAGE assay, and analysis of the resulting fragments using Edman sequencing. Described in this unit are protocols for vector preparation, expression, purification, and in situ proteolytic crystallization of two membrane-bound P450 proteins.
Collapse
Affiliation(s)
- Li Lei
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee
| |
Collapse
|
29
|
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59:5131-48. [PMID: 26689671 DOI: 10.1021/acs.jmedchem.5b01281] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aromatase catalyzes the synthesis of estrogen from androgen with high substrate specificity. For the past 40 years, aromatase has been a target of intense inhibitor discovery research for the prevention and treatment of estrogen-dependent breast cancer. The so-called third generation aromatase inhibitors (AIs) letrozole, anastrozole, and the steroidal exemestane were approved in the U.S. in the late 1990s for estrogen-dependent postmenopausal breast cancer. Efforts to develop better AIs with higher selectivity and lower side effects were handicapped by the lack of an experimental structure of this unique P450. The year 2009 marked the publication of the crystal structure of aromatase purified from human placenta, revealing an androgen-specific active site. The structure has reinvigorated research activities on this fascinating enzyme and served as the catalyst for next generation AI discovery research. Here, we present an account of recent developments in the AI field from the perspective of the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
30
|
de Paula Michelatto D, Karlsson L, Lusa ALG, Silva CDM, Östberg LJ, Persson B, Guerra-Júnior G, de Lemos-Marini SHV, Barbaro M, de Mello MP, Lajic S. Functional and Structural Consequences of Nine CYP21A2 Mutations Ranging from Very Mild to Severe Effects. Int J Endocrinol 2016; 2016:4209670. [PMID: 27721825 PMCID: PMC5046037 DOI: 10.1155/2016/4209670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022] Open
Abstract
We present the functional and structural effects of seven novel (p.Leu12Met, p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, p.Gln389_Ala391del, and p.Thr450Met) and two previously reported but not studied (p.Ser113Phe and p.Thr450Pro) CYP21A2 mutations. Functional analyses were complemented with in silico prediction of mutation pathogenicity based on the recently crystallized human CYP21A2 structure. Mutated proteins were transiently expressed in COS-1 cells and enzyme activities towards 17-hydroxyprogesterone and progesterone were determined. Residual enzyme activities between 43% and 97% were obtained for p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, and p.Thr450Met, similar to the activities of the well-known nonclassic mutations p.Pro453Ser and p.Pro482Ser, whereas the p.Leu12Met variant showed an activity of 100%. Conversely, the novel p.Ser113Phe, p.Gln389_Ala391del, and p.Thr450Pro mutations drastically reduced the enzyme function below 4%. The Km values for all novel variants were in the same order of magnitude as for the wild-type protein except for p.The450Met. The maximum velocity was decreased for all mutants except for p.Leu12Met. We conclude that p.Leu12Met is a normal variant; the mutations p.Arg16Cys, p.Ser101Asn, p.Ser202Gly, p.Pro267Leu, and p.Thr450Met could be associated with very mild nonclassic CAH, and the mutations p.Ser113Phe, p.Gln389_Ala391del, and p.Thr450Pro are associated with classic CAH. The obtained residual activities indicated a good genotype-phenotype correlation.
Collapse
Affiliation(s)
- Débora de Paula Michelatto
- Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon 400, 13083-875 Campinas, SP, Brazil
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Leif Karlsson
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ana Letícia Gori Lusa
- Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon 400, 13083-875 Campinas, SP, Brazil
| | - Camila D'Almeida Mgnani Silva
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Linus Joakim Östberg
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Persson
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Gil Guerra-Júnior
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Sofia Helena Valente de Lemos-Marini
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Michela Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Inherited Metabolic Diseases (CMMS L7:05) Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Maricilda Palandi de Mello
- Laboratório de Genética Molecular Humana, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon 400, 13083-875 Campinas, SP, Brazil
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, 171 76 Stockholm, Sweden
- *Svetlana Lajic:
| |
Collapse
|
31
|
Denisov IG, Mak PJ, Grinkova YV, Bastien D, Bérubé G, Sligar SG, Kincaid JR. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4. J Inorg Biochem 2015; 158:77-85. [PMID: 26774838 DOI: 10.1016/j.jinorgbio.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/07/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| | - Piotr J Mak
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, United States.
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States.
| | - Dominic Bastien
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada.
| | - Gervais Bérubé
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada.
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois, Urbana, IL 61801, United States.
| | - James R Kincaid
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, United States.
| |
Collapse
|
32
|
Seo MJ, Shin KC, An JU, Kang WR, Ko YJ, Oh DK. Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate. Appl Microbiol Biotechnol 2015; 100:3087-99. [DOI: 10.1007/s00253-015-7132-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
33
|
Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact 2015; 14:135. [PMID: 26374204 PMCID: PMC4572648 DOI: 10.1186/s12934-015-0333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. RESULTS We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). CONCLUSIONS We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol, a pharmaceutically relevant glucocorticoid, in E. coli and could improve the system by optimizing the redox system concerning reaction velocity and endpoint yield. This is the first step for a sustainable replacement of a complicated chemical low-yield hydroxylation by a biocatalytic cytochrome P450-based whole-cell system.
Collapse
Affiliation(s)
| | - Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Bernd Janocha
- Sanofi-Aventis Deutschland GmbH, C&BD Frankfurt Biotechnology, 65926, Frankfurt-Höchst, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
34
|
Gricman Ł, Vogel C, Pleiss J. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining. Proteins 2015; 83:1593-603. [DOI: 10.1002/prot.24840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Łukasz Gricman
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Constantin Vogel
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
35
|
Pallan PS, Lei L, Wang C, Waterman MR, Guengerich FP, Egli M. Research Resource: Correlating Human Cytochrome P450 21A2 Crystal Structure and Phenotypes of Mutations in Congenital Adrenal Hyperplasia. Mol Endocrinol 2015; 29:1375-84. [PMID: 26172259 DOI: 10.1210/me.2015-1127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 21A2 is a key player in steroid 21-hydroxylation and converts progesterone to 11-deoxycorticosterone and 17α-hydroxy progesterone to 11-deoxycortisol. More than 100 mutations in P450 21A2 have been established in patients thus far; these account for the vast majority of occurrences of congenital adrenal hyperplasia (CAH), which is among the most common heritable metabolic diseases in humans. CAH phenotypes range from the most severe, salt-wasting (SW), to the simple virilizing (SV), and nonclassical (NC) CAH forms. We recently determined the crystal structure of human P450 21A2 in complex with progesterone. To gain more insight into the structural and stability changes underlying the phenotypes of individual mutations, we analyzed 24 SW, SV, and NC mutants in the context of the crystal structure of the human enzyme. Our analysis reveals clear differences in the localization of SW, SV, and NC mutations, with many of the first type mapping to the active site and near the heme and/or substrate and mostly resulting in complete loss of enzyme activity. Conversely, NC mutations are often found near the periphery and close to the surface of the protein, and mutant enzymes retain partial activity. The main conclusion from the mutation-structure-activity study is that the severity of the CAH clinical manifestations can be directly correlated with the degree of mutation-induced damage in terms of protein fold stability and active site changes in the structural model. Thus, the NC phenotype is typically associated with mutations that have a compensatory effect, ie, H-bonding replacing hydrophobic interactions and vice versa.
Collapse
Affiliation(s)
- Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Lei
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| | - Chunxue Wang
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
36
|
Pallan PS, Wang C, Lei L, Yoshimoto FK, Auchus RJ, Waterman MR, Guengerich FP, Egli M. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase: STRUCTURE OF THE ENZYME·PROGESTERONE SUBSTRATE COMPLEX AND RATE-LIMITING C-H BOND CLEAVAGE. J Biol Chem 2015; 290:13128-43. [PMID: 25855791 DOI: 10.1074/jbc.m115.646307] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613-10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C-H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 10(7) M(-1) s(-1)) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 10(7) M(-1) s(-1)) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants.
Collapse
Affiliation(s)
- Pradeep S Pallan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Chunxue Wang
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Li Lei
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Francis K Yoshimoto
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Richard J Auchus
- the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| |
Collapse
|
37
|
Wang A, Stout CD, Zhang Q, Johnson EF. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J Biol Chem 2015; 290:5092-5104. [PMID: 25555909 PMCID: PMC4335244 DOI: 10.1074/jbc.m114.627661] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
P450 2D6 contributes significantly to the metabolism of >15% of the 200 most marketed drugs. Open and closed crystal structures of P450 2D6 thioridazine complexes were obtained using different crystallization conditions. The protonated piperidine moiety of thioridazine forms a charge-stabilized hydrogen bond with Asp-301 in the active sites of both complexes. The more open conformation exhibits a second molecule of thioridazine bound in an expanded substrate access channel antechamber with its piperidine moiety forming a charge-stabilized hydrogen bond with Glu-222. Incubation of the crystalline open thioridazine complex with alternative ligands, prinomastat, quinidine, quinine, or ajmalicine, displaced both thioridazines. Quinine and ajmalicine formed charge-stabilized hydrogen bonds with Glu-216, whereas the protonated nitrogen of quinidine is equidistant from Asp-301 and Glu-216 with protonated nitrogen H-bonded to a water molecule in the access channel. Prinomastat is not ionized. Adaptations of active site side-chain rotamers and polypeptide conformations were evident between the complexes, with the binding of ajmalicine eliciting a closure of the open structure reflecting in part the inward movement of Glu-216 to form a hydrogen bond with ajmalicine as well as sparse lattice restraints that would hinder adaptations. These results indicate that P450 2D6 exhibits sufficient elasticity within the crystal lattice to allow the passage of compounds between the active site and bulk solvent and to adopt a more closed form that adapts for binding alternative ligands with different degrees of closure. These crystals provide a means to characterize substrate and inhibitor binding to the enzyme after replacement of thioridazine with alternative compounds.
Collapse
Affiliation(s)
- An Wang
- From the Department of Molecular and Experimental Medicine and
| | - C David Stout
- the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Qinghai Zhang
- the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine and.
| |
Collapse
|
38
|
Barbaro M, Soardi FC, Östberg LJ, Persson B, de Mello MP, Wedell A, Lajic S. In vitro functional studies of rare CYP21A2 mutations and establishment of an activity gradient for nonclassic mutations improve phenotype predictions in congenital adrenal hyperplasia. Clin Endocrinol (Oxf) 2015; 82:37-44. [PMID: 24953648 DOI: 10.1111/cen.12526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND A detailed genotype-phenotype evaluation is presented by studying the enzyme activities of five rare amino acid substitutions (Arg233Gly, Ala265Ser, Arg341Trp, Arg366Cys and Met473Ile) identified in the CYP21A2 gene in patients investigated for Congenital adrenal hyperplasia (CAH). OBJECTIVE To investigate whether the mutations identified in the CYP21A2 gene are disease causing and to establish a gradient for the degree of enzyme impairment to improve prediction of patient phenotype. DESIGN AND PATIENTS The CYP21A2 genes of seven patients investigated for CAH were sequenced and five mutations were identified. The mutant proteins were expressed in vitro in COS-1 cells, and the enzyme activities towards the two natural substrates were determined to verify the disease-causing state of the mutations. The in vitro activities of these rare mutations were also compared with the activities of four mutations known to cause nonclassic CAH (Pro30Leu, Val281Leu, Pro453Ser and Pro482Ser) in addition to an in silico structural evaluation of the novel mutants. MAIN OUTCOME MEASURE To verify the disease-causing state of novel mutations. RESULTS Five CYP21A2 mutations were identified (Arg233Gly, Ala265Ser, Arg341Trp, Arg366Cys and Met473Ile). All mutant proteins exhibited enzyme activities above 5%, and four mutations were classified as nonclassic and one as a normal variant. By comparing the investigated protein changes with four common mutations causing nonclassic CAH, a gradient for the degree of enzyme impairment could be established. Studying rare mutations in CAH increases our knowledge regarding the molecular mechanisms that render a mutation pathogenic. It also improves phenotype predictions and genetic counselling for future generations.
Collapse
Affiliation(s)
- Michela Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Pallan PS, Nagy LD, Lei L, Gonzalez E, Kramlinger VM, Azumaya CM, Wawrzak Z, Waterman MR, Guengerich FP, Egli M. Structural and kinetic basis of steroid 17α,20-lyase activity in teleost fish cytochrome P450 17A1 and its absence in cytochrome P450 17A2. J Biol Chem 2014; 290:3248-68. [PMID: 25533464 DOI: 10.1074/jbc.m114.627265] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116-119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity.
Collapse
Affiliation(s)
- Pradeep S Pallan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Leslie D Nagy
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Li Lei
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Eric Gonzalez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Valerie M Kramlinger
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Caleigh M Azumaya
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Zdzislaw Wawrzak
- the Life Sciences Collaborative Access Team, Sector 21, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Martin Egli
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
40
|
Yoshimoto FK, Peng HM, Zhang H, Anderson SM, Auchus RJ. Epoxidation activities of human cytochromes P450c17 and P450c21. Biochemistry 2014; 53:7531-40. [PMID: 25386927 PMCID: PMC4263428 DOI: 10.1021/bi5011865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Some cytochrome P450 enzymes epoxidize
unsaturated substrates,
but this activity has not been described for the steroid hydroxylases.
Physiologic steroid substrates, however, lack carbon–carbon
double bonds in the parts of the pregnane molecules where steroidogenic
hydroxylations occur. Limited data on the reactivity of steroidogenic
P450s toward olefinic substrates exist, and the study of occult activities
toward alternative substrates is a fundamental aspect of the growing
field of combinatorial biosynthesis. We reasoned that human P450c17
(steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates
progesterone, might catalyze the formation of the 16α,17-epoxide
from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1
catalyzed the novel 16α,17-epoxidation and the ordinarily minor
21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1
mutation A105L, which has reduced progesterone 16α-hydroxylase
activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In
contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted
16,17-dehydroprogesterone to the 21-hydroxylated product and only
a trace of epoxide. CYP21A2 mutation V359A, which has significant
16α-hydroxylase activity, likewise afforded the 21-hydroxylated
product and slightly more epoxide. CYP17A1 wild-type and mutation
A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes
21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone
(pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively.
Catalase and superoxide dismutase did not prevent epoxide formation.
The progesterone epoxide was not a time-dependent, irreversible CYP17A1
inhibitor. Our substrate modification studies have revealed occult
epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction
of epoxide formed correlated with the 16α-hydroxylase activity
of the enzymes.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine and ‡Department of Pharmacology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
41
|
Structural basis for the 4′-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Appl Microbiol Biotechnol 2014; 99:3081-91. [DOI: 10.1007/s00253-014-6148-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
|
42
|
Fechter K, Porollo A. MutaCYP: Classification of missense mutations in human cytochromes P450. BMC Med Genomics 2014; 7:47. [PMID: 25073475 PMCID: PMC4119178 DOI: 10.1186/1755-8794-7-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenases (CYPs) represent a large and diverse family of enzymes involved in various biological processes in humans. Individual genome sequencing has revealed multiple mutations in human CYPs, and many missense mutations have been associated with variety of diseases. Since 3D structures are not resolved for most human CYPs, there is a need for a reliable sequence-based prediction that discriminates benign and disease causing mutations. METHODS A new prediction method (MutaCYP) has been developed for scoring de novo missense mutations to have a deleterious effect. The method utilizes only five features, all of which are sequence-based: predicted relative solvent accessibility (RSA), variance of predicted RSA among the residues in close sequence proximity, Z-score of Shannon entropy for a given position, difference in similarity scores and weighted difference in size between wild type and new amino acids. The method is based on a single neural network. RESULTS MutaCYP achieves MCC = 0.70, Q2 = 88.52%, Recall = 93.40% with Precision = 91.09%, and AUC = 0.909. Comparative evaluation with other existing methods indicates that MutaCYP outperforms SIFT and PolyPhen-2. Predictions by MutaCYP appear to be orthogonal to predictions by the evaluated methods. Potential issues on reliability of annotations of mutations in the existing databases are discussed. CONCLUSIONS A new accurate method, MutaCYP, for classification of missense mutations in human CYPs is presented. The prediction model consists of only five sequence-based features, including a real-valued predicted relative solvent accessibility. The method is publicly available at http://research.cchmc.org/MutaSense/.
Collapse
Affiliation(s)
| | - Aleksey Porollo
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Abstract
17-Hydroxyprogesterone (17-OHP) is an intermediate steroid in the adrenal biosynthetic pathway from cholesterol to cortisol and is the substrate for steroid 21-hydroxylase. An inherited deficiency of 21-hydroxylase leads to greatly increased serum concentrations of 17-OHP, while the absence of cortisol synthesis causes an increase in adrenocorticotrophic hormone. The classical congenital adrenal hyperplasia (CAH) presents usually with virilisation of a girl at birth. Affected boys and girls can have renal salt loss within a few days if aldosterone production is also compromised. Diagnosis can be delayed in boys. A non-classical form of congenital adrenal hyperplasia (NC-CAH) presents later in life usually with androgen excess. Moderately raised or normal 17-OHP concentrations can be seen basally but, if normal and clinical suspicion is high, an ACTH stimulation test will show 17-OHP concentrations (typically >30 nmol/L) above the normal response. NC-CAH is more likely to be detected clinically in females and may be asymptomatic particularly in males until families are investigated. The prevalence of NC-CAH in women with androgen excess can be up to 9% according to ethnic background and genotype. Mutations in the 21-hydroxylase genes in NC-CAH can be found that have less deleterious effects on enzyme activity. Other less-common defects in enzymes of cortisol synthesis can be associated with moderately elevated 17-OHP. Precocious puberty, acne, hirsutism and subfertility are the commonest features of hyperandrogenism. 17-OHP is a diagnostic marker for CAH but opinions differ on the role of 17OHP or androstenedione in monitoring treatment with renin in the salt losing form. This review considers the utility of 17-OHP measurements in children, adolescents and adults.
Collapse
Affiliation(s)
- John W Honour
- Institute of Women’s Health, University College London, London, UK
| |
Collapse
|
44
|
Jang HH, Davydov DR, Lee GY, Yun CH, Halpert JR. The role of cytochrome P450 2B6 and 2B4 substrate access channel residues predicted based on crystal structures of the amlodipine complexes. Arch Biochem Biophys 2014; 545:100-7. [PMID: 24445070 DOI: 10.1016/j.abb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
Abstract
Recent X-ray crystal structures of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 in complex with amlodipine showed two bound ligand molecules, one in the active site and one in the substrate access channel. Based on the X-ray crystal structures, we investigated the interactions of P450 2B4 and 2B6 with amlodipine using absorbance spectroscopy, and determined the steady-state kinetics of 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin oxidation by some access channel mutants to evaluate the functional role of these residues in substrate turnover. The results of absorbance titrations are consistent with a simple mechanism with two parallel binding events that result in the formation of the enzyme complex with two molecules of amlodipine. Using this model we were able to resolve two separate ligand-binding events, which are characterized by two distinct KD values in each enzyme. The access channel mutants R73K in P450 2B6 and R73K, V216W, L219W, and F220W in P450 2B4 showed a significant decrease in kcat/KM with the both substrates. Overall, the results suggest that P450 2B4 and 2B6 form an enzyme complex with two molecules of amlodipine in solution, and R73, V216, L219 and F220 in P450 2B4 may play an important role in substrate metabolism.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ga-Young Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
45
|
Both positive and negative selection pressures contribute to the polymorphism pattern of the duplicated human CYP21A2 gene. PLoS One 2013; 8:e81977. [PMID: 24312389 PMCID: PMC3843699 DOI: 10.1371/journal.pone.0081977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022] Open
Abstract
The human steroid 21-hydroxylase gene (CYP21A2) participates in cortisol and aldosterone biosynthesis, and resides together with its paralogous (duplicated) pseudogene in a multiallelic copy number variation (CNV), called RCCX CNV. Concerted evolution caused by non-allelic gene conversion has been described in great ape CYP21 genes, and the same conversion activity is responsible for a serious genetic disorder of CYP21A2, congenital adrenal hyperplasia (CAH). In the current study, 33 CYP21A2 haplotype variants encoding 6 protein variants were determined from a European population. CYP21A2 was shown to be one of the most diverse human genes (HHe=0.949), but the diversity of intron 2 was greater still. Contrary to previous findings, the evolution of intron 2 did not follow concerted evolution, although the remaining part of the gene did. Fixed sites (different fixed alleles of sites in human CYP21 paralogues) significantly accumulated in intron 2, indicating that the excess of fixed sites was connected to the lack of effective non-allelic conversion and concerted evolution. Furthermore, positive selection was presumably focused on intron 2, and possibly associated with the previous genetic features. However, the positive selection detected by several neutrality tests was discerned along the whole gene. In addition, the clear signature of negative selection was observed in the coding sequence. The maintenance of the CYP21 enzyme function is critical, and could lead to negative selection, whereas the presumed gene regulation altering steroid hormone levels via intron 2 might help fast adaptation, which broadly characterizes the genes of human CNVs responding to the environment.
Collapse
|
46
|
Zharkova MS, Sobolev BN, Yu Oparina N, Veselovsky AV, Archakov AI. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity. J Mol Recognit 2013; 26:86-91. [PMID: 23334916 DOI: 10.1002/jmr.2251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/12/2012] [Accepted: 10/26/2012] [Indexed: 12/12/2022]
Abstract
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross-substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily-specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition.
Collapse
Affiliation(s)
- Maria S Zharkova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya str 10, Moscow 119121, Russia
| | | | | | | | | |
Collapse
|
47
|
Sushko TA, Gilep AA, Yantsevich AV, Usanov SA. Role of microsomal steroid hydroxylases in Δ7-steroid biosynthesis. BIOCHEMISTRY (MOSCOW) 2013; 78:282-9. [PMID: 23586722 DOI: 10.1134/s0006297913030103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CYP17 (steroid 17α-hydroxylase/17,20-lyase) is a key enzyme in steroid hormone biosynthesis. It catalyzes two independent reactions at the same active center and has a unique ability to differentiate Δ(4)-steroids and Δ(5)-steroids in the 17,20-lyase reaction. The present work presents a complex experimental analysis of the role of CYP17 in the metabolism of 7-dehydrosteroids. The data indicate the existence of a possible alternative pathway of steroid hormone biosynthesis using 7-dehydrosteroids. The major reaction products of CYP17 catalyzed hydroxylation of 7-dehydropregnenolone have been identified. Catalytic activity of CYP17 from different species with 7-dehydropregnenolone has been estimated. It is shown that CYP21 cannot use Δ(5)-Δ(7) steroids as a substrate.
Collapse
Affiliation(s)
- T A Sushko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | | | | | | |
Collapse
|
48
|
Abstract
The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
49
|
Abstract
X-ray crystal structures are available for 29 eukaryotic microsomal, chloroplast, or mitochondrial cytochrome P450s, including two non-monooxygenase P450s. These structures provide a basis for understanding structure-function relations that underlie their distinct catalytic activities. Moreover, structural plasticity has been characterized for individual P450s that aids in understanding substrate binding in P450s that mediate drug clearance.
Collapse
Affiliation(s)
- Eric F Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
50
|
Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc Natl Acad Sci U S A 2013; 110:2605-10. [PMID: 23359706 DOI: 10.1073/pnas.1221133110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the cytochrome p450 (CYP)21A2 gene, which encodes the enzyme steroid 21-hydroxylase, cause the majority of cases in congenital adrenal hyperplasia, an autosomal recessive disorder. To date, more than 100 CYP21A2 mutations have been reported. These mutations can be associated either with severe salt-wasting or simple virilizing phenotypes or with milder nonclassical phenotypes. Not all CYP21A2 mutations have, however, been characterized biochemically, and the clinical consequences of these mutations remain unknown. Using the crystal structure of its bovine homolog as a template, we have constructed a humanized model of CYP21A2 to provide comprehensive structural explanations for the clinical manifestations caused by each of the known disease-causing missense mutations in CYP21A2. Mutations that affect membrane anchoring, disrupt heme and/or substrate binding, or impair stability of CYP21A2 cause complete loss of function and salt-wasting disease. In contrast, mutations altering the transmembrane region or conserved hydrophobic patches cause up to a 98% reduction in enzyme activity and simple virilizing disease. Mild nonclassical disease can result from interference in oxidoreductase interactions, salt-bridge and hydrogen-bonding networks, and nonconserved hydrophobic clusters. A simple in silico evaluation of previously uncharacterized gene mutations could, thus, potentially help predict the often diverse phenotypes of a monogenic disorder.
Collapse
|