1
|
BenDavid E, Yang C, Zhou Y, Pfaller CK, Samuel CE, Ma D. Host WD repeat-containing protein 5 inhibits protein kinase R-mediated integrated stress response during measles virus infection. J Virol 2024; 98:e0102024. [PMID: 39194235 PMCID: PMC11406981 DOI: 10.1128/jvi.01020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Chuyuan Yang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
2
|
Siering O, Langbein M, Herrmann M, Wittwer K, von Messling V, Sawatsky B, Pfaller CK. Genetic diversity accelerates canine distemper virus adaptation to ferrets. J Virol 2024; 98:e0065724. [PMID: 39007615 PMCID: PMC11334482 DOI: 10.1128/jvi.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Mareike Langbein
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Maike Herrmann
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kevin Wittwer
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Perraud V, Vanderhoydonck B, Bouvier G, Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben Khalifa Y, Kergoat L, Lannoy J, Van Buyten T, Izadi-Pruneyre N, Chaltin P, Neyts J, Marchand A, Larrous F, Bourhy H. Mechanism of action of phthalazinone derivatives against rabies virus. Antiviral Res 2024; 224:105838. [PMID: 38373533 DOI: 10.1016/j.antiviral.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.
Collapse
Affiliation(s)
- Victoire Perraud
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Bart Vanderhoydonck
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Guillaume Bouvier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, F-75015, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Amuri Kilonda
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Mohamed Koukni
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | | | - Sophie Rogée
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Youcef Ben Khalifa
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | | | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium; Centre for Drug Design and Discovery (CD3), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| |
Collapse
|
4
|
Rubalskaia TS, Erokhov DV, Zherdeva PE, Mamaeva TA, Tikhonova NT. Global genetic diversity of measles virus (Paramyxoviridae: Morbillivirus: Morbillivirus hominis): historical aspects and current state. Vopr Virusol 2023; 68:361-371. [PMID: 38156571 DOI: 10.36233/0507-4088-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 12/30/2023]
Abstract
Monitoring the circulation of the measles virus and studying its genetic diversity is an important component of the measles elimination program. A methodological approach to molecular genetic studies and their interpretation in the measles surveillance was developed in the early 2000s. During its development, clear areas of circulation of each genotype of the virus were identified, therefore, the determination of viruses' genotypes was proposed to monitor circulation and identify transmission pathways. However, in the future, due to a significant decrease in the number of active genotypes, an approach based on sub-genotyping was proposed: determining not only the genotype of the virus, but also its genetic lineage/genetic variant. The Global Measles and Rubella Laboratory Network (GMRLN) systematically monitors the circulation of the measles virus at the sub-genotypic level, depositing the results in a specialized database MeaNS2. It is this database that is the most complete and reliable source of information about the genetic characteristic of measles viruses. This review presents both historical information and the latest data on the global genetic diversity of the measles virus.
Collapse
Affiliation(s)
- T S Rubalskaia
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - D V Erokhov
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - P E Zherdeva
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - T A Mamaeva
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - N T Tikhonova
- G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| |
Collapse
|
5
|
Bourhis JM, Yabukarski F, Communie G, Schneider R, Volchkova VA, Frénéat M, Gérard F, Ducournau C, Mas C, Tarbouriech N, Ringkjøbing Jensen M, Volchkov VE, Blackledge M, Jamin M. Structural dynamics of the C-terminal X domain of Nipah and Hendra viruses controls the attachment to the C-terminal tail of the nucleocapsid protein. J Mol Biol 2022; 434:167551. [DOI: 10.1016/j.jmb.2022.167551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
6
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
7
|
Cardone C, Caseau CM, Bardiaux B, Thureaux A, Galloux M, Bajorek M, Eléouët JF, Litaudon M, Bontems F, Sizun C. A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein. Biomolecules 2021; 11:biom11081225. [PMID: 34439894 PMCID: PMC8392014 DOI: 10.3390/biom11081225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD–PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD–PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.
Collapse
Affiliation(s)
- Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Claire-Marie Caseau
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 78015 Paris, France;
| | | | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Monika Bajorek
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
- Correspondence:
| |
Collapse
|
8
|
Su JM, Wilson MZ, Samuel CE, Ma D. Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections. Viruses 2021; 13:126. [PMID: 33477448 PMCID: PMC7835873 DOI: 10.3390/v13010126] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research. Herein, we review the literature leading to the discovery of LLPS-driven formation of IBs in NNS RNA virus-infected cells and the identification of viral scaffold components involved, and then outline important questions and challenges for IB assembly and disassembly. We discuss the functional implications of LLPS in the life cycle of NNS RNA viruses and host responses to infection. Finally, we speculate on the potential mechanisms underlying IB maturation, a phenomenon relevant to many human diseases.
Collapse
Affiliation(s)
| | | | | | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.M.S.); (M.Z.W.); (C.E.S.)
| |
Collapse
|
9
|
Lazar T, Guharoy M, Vranken W, Rauscher S, Wodak SJ, Tompa P. Distance-Based Metrics for Comparing Conformational Ensembles of Intrinsically Disordered Proteins. Biophys J 2020; 118:2952-2965. [PMID: 32502383 DOI: 10.1016/j.bpj.2020.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins are proteins whose native functional states represent ensembles of highly diverse conformations. Such ensembles are a challenge for quantitative structure comparisons because their conformational diversity precludes optimal superimposition of the atomic coordinates necessary for deriving common similarity measures such as the root mean-square deviation of these coordinates. Here, we introduce superimposition-free metrics that are based on computing matrices of the Cα-Cα distance distributions within ensembles and comparing these matrices between ensembles. Differences between two matrices yield information on the similarity between specific regions of the polypeptide, whereas the global structural similarity is captured by the root mean-square difference between the medians of the Cα-Cα distance distributions of two ensembles. Together, our metrics enable rigorous investigations of structure-function relationships in conformational ensembles of intrinsically disordered proteins derived using experimental restraints or by molecular simulations and for proteins containing both structured and disordered regions.
Collapse
Affiliation(s)
- Tamas Lazar
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mainak Guharoy
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Wim Vranken
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Sarah Rauscher
- Department of Physics & Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Shoshana J Wodak
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
10
|
Histopathological and Immunohistochemical Characteristics of Measles Exanthema: A Study of a Series of 13 Adult Cases and Review of the Literature. Am J Dermatopathol 2020; 41:914-923. [PMID: 31021834 DOI: 10.1097/dad.0000000000001431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite available vaccination, measles is one of the leading causes of death among young children in developing countries. In clinical practice, the spectrum of differential diagnoses of morbilliform exanthemas associated with fever is wide, and it can be hard to differentiate from other infectious eruptions, especially in adults or in atypical courses in immunocompromised patients. The goal of our study was to identify characteristic histomorphological and immunohistochemical patterns of measles exanthema through the study of 13 skin biopsy specimens obtained from 13 patients with this disease and a review of cases in the literature. Histopathological features of measles exanthema are quite distinctive and characterized by a combination of multinucleated keratinocytes, and individual and clustered necrotic keratinocytes in the epidermis with pronounced folliculosebaceous as well as acrosyringeal involvement. Immunohistochemical staining of skin biopsies with anti-measles virus (MeV) nucleoprotein and anti-MeV phosphoprotein can be of great value in confirming the diagnosis of measles. Both methods can serve as quick additional diagnostic tools for prompt implementation of quarantine measures and for providing medical assistance, even in patients in whom the clinician did not consider measles as a differential diagnosis of the rash due to the rarity of the disease in a putatively vaccinated community.
Collapse
|
11
|
Zhou Y, Su JM, Samuel CE, Ma D. Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles. J Virol 2019; 93:e00948-19. [PMID: 31375591 PMCID: PMC6803276 DOI: 10.1128/jvi.00948-19] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Nonsegmented negative-strand RNA viruses, including measles virus (MeV), a member of the Paramyxoviridae family, are assumed to replicate in cytoplasmic inclusion bodies. These cytoplasmic viral factories are not membrane bound, and they serve to concentrate the viral RNA replication machinery. Although inclusion bodies are a prominent feature in MeV-infected cells, their biogenesis and regulation are not well understood. Here, we show that infection with MeV triggers inclusion body formation via liquid-liquid phase separation (LLPS), a process underlying the formation of membraneless organelles. We find that the viral nucleoprotein (N) and phosphoprotein (P) are sufficient to trigger MeV phase separation, with the C-terminal domains of the viral N and P proteins playing a critical role in the phase transition. We provide evidence suggesting that the phosphorylation of P and dynein-mediated transport facilitate the growth of these organelles, implying that they may have key regulatory roles in the biophysical assembly process. In addition, our findings support the notion that these inclusions change from liquid to gel-like structures as a function of time after infection, leaving open the intriguing possibility that the dynamics of these organelles can be tuned during infection to optimally suit the changing needs during the viral replication cycle. Our study provides novel insight into the process of formation of viral inclusion factories, and taken together with earlier studies, suggests that Mononegavirales have broadly evolved to utilize LLPS as a common strategy to assemble cytoplasmic replication factories in infected cells.IMPORTANCE Measles virus remains a pathogen of significant global concern. Despite an effective vaccine, outbreaks continue to occur, and globally ∼100,000 measles-related deaths are seen annually. Understanding the molecular basis of virus-host interactions that impact the efficiency of virus replication is essential for the further development of prophylactic and therapeutic strategies. Measles virus replication occurs in the cytoplasm in association with discrete bodies, though little is known of the nature of the inclusion body structures. We recently established that the cellular protein WD repeat-containing protein 5 (WDR5) enhances MeV growth and is enriched in cytoplasmic viral inclusion bodies that include viral proteins responsible for RNA replication. Here, we show that MeV N and P proteins are sufficient to trigger the formation of WDR5-containing inclusion bodies, that these structures display properties characteristic of phase-separated liquid organelles, and that P phosphorylation together with the host dynein motor affect the efficiency of the liquid-liquid phase separation process.
Collapse
Affiliation(s)
- Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Justin M Su
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
12
|
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins - How to choose and combine them? Arch Biochem Biophys 2019; 676:108055. [PMID: 31356778 DOI: 10.1016/j.abb.2019.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs. Finally, we present recent developments that have enabled assessment of structural disorder in living cells, and discuss the currently available methods to model IDPs as conformational ensembles.
Collapse
Affiliation(s)
- Antoine Schramm
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Christophe Bignon
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France.
| |
Collapse
|
13
|
Bignon C, Troilo F, Gianni S, Longhi S. Modulation of Measles Virus N TAIL Interactions through Fuzziness and Sequence Features of Disordered Binding Sites. Biomolecules 2018; 9:biom9010008. [PMID: 30591682 PMCID: PMC6359293 DOI: 10.3390/biom9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
In this paper we review our recent findings on the different interaction mechanisms of the C-terminal domain of the nucleoprotein (N) of measles virus (MeV) NTAIL, a model viral intrinsically disordered protein (IDP), with two of its known binding partners, i.e., the C-terminal X domain of the phosphoprotein of MeV XD (a globular viral protein) and the heat-shock protein 70 hsp70 (a globular cellular protein). The NTAIL binds both XD and hsp70 via a molecular recognition element (MoRE) that is flanked by two fuzzy regions. The long (85 residues) N-terminal fuzzy region is a natural dampener of the interaction with both XD and hsp70. In the case of binding to XD, the N-terminal fuzzy appendage of NTAIL reduces the rate of α-helical folding of the MoRE. The dampening effect of the fuzzy appendage on XD and hsp70 binding depends on the length and fuzziness of the N-terminal region. Despite this similarity, NTAIL binding to XD and hsp70 appears to rely on completely different requirements. Almost any mutation within the MoRE decreases XD binding, whereas many of them increase the binding to hsp70. In addition, XD binding is very sensitive to the α-helical state of the MoRE, whereas hsp70 is not. Thus, contrary to hsp70, XD binding appears to be strictly dependent on the wild-type primary and secondary structure of the MoRE.
Collapse
Affiliation(s)
- Christophe Bignon
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
| | - Francesca Troilo
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Sonia Longhi
- CNRS and Aix-Marseille Univ Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257 Marseille, France.
| |
Collapse
|
14
|
Bignon C, Troilo F, Gianni S, Longhi S. Partner-Mediated Polymorphism of an Intrinsically Disordered Protein. J Mol Biol 2018; 430:2493-2507. [DOI: 10.1016/j.jmb.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
15
|
The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity. J Virol 2018; 92:JVI.02064-17. [PMID: 29437959 DOI: 10.1128/jvi.02064-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design.IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family.
Collapse
|
16
|
Troilo F, Bignon C, Gianni S, Fuxreiter M, Longhi S. Experimental Characterization of Fuzzy Protein Assemblies: Interactions of Paramyxoviral NTAIL Domains With Their Functional Partners. Methods Enzymol 2018; 611:137-192. [DOI: 10.1016/bs.mie.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
18
|
Cox RM, Krumm SA, Thakkar VD, Sohn M, Plemper RK. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. SCIENCE ADVANCES 2017; 3:e1602350. [PMID: 28168220 PMCID: PMC5291697 DOI: 10.1126/sciadv.1602350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maximilian Sohn
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author.
| |
Collapse
|
19
|
Bloyet LM, Brunel J, Dosnon M, Hamon V, Erales J, Gruet A, Lazert C, Bignon C, Roche P, Longhi S, Gerlier D. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathog 2016; 12:e1006058. [PMID: 27936158 PMCID: PMC5148173 DOI: 10.1371/journal.ppat.1006058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Marion Dosnon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Véronique Hamon
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Jenny Erales
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Antoine Gruet
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Carine Lazert
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Christophe Bignon
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Philippe Roche
- Aix Marseille University, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
- CNRS, CRCM UMR 7258, Marseille, France
- INSERM, CRCM U1068, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
20
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Crystal Structure of the Measles Virus Nucleoprotein Core in Complex with an N-Terminal Region of Phosphoprotein. J Virol 2015; 90:2849-57. [PMID: 26719278 DOI: 10.1128/jvi.02865-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The enveloped negative-stranded RNA virus measles virus (MeV) is an important human pathogen. The nucleoprotein (N(0)) assembles with the viral RNA into helical ribonucleocapsids (NC) which are, in turn, coated by a helical layer of the matrix protein. The viral polymerase complex uses the NC as its template. The N(0) assembly onto the NC and the activity of the polymerase are regulated by the viral phosphoprotein (P). In this study, we pulled down an N(0)₁₋₄₀₈ fragment lacking most of its C-terminal tail domain by several affinity-tagged, N-terminal P fragments to map the N(0)-binding region of P to the first 48 amino acids. We showed biochemically and using P mutants the importance of the hydrophobic interactions for the binding. We fused an N(0) binding peptide, P₁₋₄₈, to the C terminus of an N(0)₂₁₋₄₀₈ fragment lacking both the N-terminal peptide and the C-terminal tail of N protein to reconstitute and crystallize the N(0)-P complex. We solved the X-ray structure of the resulting N(0)-P chimeric protein at a resolution of 2.7 Å. The structure reveals the molecular details of the conserved N(0)-P interface and explains how P chaperones N(0), preventing both self-assembly of N(0) and its binding to RNA. Finally, we propose a model for a preinitiation complex for RNA polymerization. IMPORTANCE Measles virus is an important, highly contagious human pathogen. The nucleoprotein N binds only to viral genomic RNA and forms the helical ribonucleocapsid that serves as a template for viral replication. We address how N is regulated by another protein, the phosphoprotein (P), to prevent newly synthesized N from binding to cellular RNA. We describe the atomic model of an N-P complex and compare it to helical ribonucleocapsid. We thus provide insight into how P chaperones N and helps to start viral RNA synthesis. Our results provide a new insight into mechanisms of paramyxovirus replication. New data on the mechanisms of phosphoprotein chaperone action allows better understanding of virus genome replication and nucleocapsid assembly. We describe a conserved structural interface for the N-P interaction which could be a target for drug development to treat not only measles but also potentially other paramyxovirus diseases.
Collapse
|
22
|
Chung HK, Jacobs CL, Huo Y, Yang J, Krumm SA, Plemper RK, Tsien RY, Lin MZ. Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol 2015. [PMID: 26214256 PMCID: PMC4543534 DOI: 10.1038/nchembio.1869] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe Small Molecule-Assisted Shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, leaving untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized protein copies. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto a RNA virus for which no licensed inhibitors exist. As SMASh does not require permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh only involves a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts.
Collapse
Affiliation(s)
- Hokyung K Chung
- Department of Biology, Stanford University, Stanford, California, USA
| | - Conor L Jacobs
- Department of Biology, Stanford University, Stanford, California, USA
| | - Yunwen Huo
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jin Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stefanie A Krumm
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Richard K Plemper
- 1] Department of Pediatrics, Emory University, Atlanta, Georgia, USA. [2] Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Roger Y Tsien
- 1] Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. [2] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA. [3] Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| | - Michael Z Lin
- 1] Department of Pediatrics, Stanford University, Stanford, California, USA. [2] Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
24
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
25
|
Dosnon M, Bonetti D, Morrone A, Erales J, di Silvio E, Longhi S, Gianni S. Demonstration of a folding after binding mechanism in the recognition between the measles virus NTAIL and X domains. ACS Chem Biol 2015; 10:795-802. [PMID: 25511246 DOI: 10.1021/cb5008579] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the past decade, a wealth of experimental data has demonstrated that a large fraction of proteins, while functional, are intrinsically disordered at physiological conditions. Many intrinsically disordered proteins (IDPs) undergo a disorder-to-order transition upon binding to their biological targets, a phenomenon known as induced folding. Induced folding may occur through two extreme mechanisms, namely conformational selection and folding after binding. Although the pre-existence of ordered structures in IDPs is a prerequisite for conformational selection, it does not necessarily commit to this latter mechanism, and kinetic studies are needed to discriminate between the two possible scenarios. So far, relatively few studies have addressed this issue from an experimental perspective. Here, we analyze the interaction kinetics between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein. Data reveal that NTAIL recognizes XD by first forming a weak encounter complex in a disordered conformation, which is subsequently locked-in by a folding step; i.e., binding precedes folding. The implications of our kinetic results, in the context of previously reported equilibrium data, are discussed. These results contribute to enhancing our understanding of the molecular mechanisms by which IDPs recognize their partners and represent a paradigmatic example of the need of kinetic methods to discriminate between reaction mechanisms.
Collapse
Affiliation(s)
- Marion Dosnon
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
- CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Daniela Bonetti
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Angela Morrone
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Jenny Erales
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
- CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Eva di Silvio
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
- CNRS, AFMB UMR 7257, 13288, Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
- Department
of Chemistry, University of Cambridge, Cambridge CB21EW, United Kingdom
| |
Collapse
|
26
|
D'Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R. Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:472-481. [PMID: 25510932 DOI: 10.1007/s13361-014-1048-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high degree of conformational disorder, escaping structural characterization by conventional approaches. An example is offered by the complex between the intrinsically disordered N(TAIL) domain and the phosphoprotein X domain (P(XD)) from measles virus (MeV). Here, distinct conformers of the complex are detected by electrospray ionization-mass spectrometry (ESI-MS) and ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) in solution and the average collision cross-section (CCS) in the gas phase. Computational modeling of the complex in solution, based on experimental constraints, provides atomic-resolution structural models featuring different levels of compactness. The resulting models indicate high structural heterogeneity. The intermolecular interactions are predominantly hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered regions. Electrostatic interactions become involved in the more compact states. This system represents an illustrative example of a hydrophobic complex that could be directly detected in the gas phase by native mass spectrometry. This work represents the first attempt to modeling the entire N(TAIL) domain bound to P(XD) at atomic resolution.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
28
|
Ono YI, Miyashita M, Ono Y, Okazaki H, Watanabe S, Tochio N, Kigawa T, Nishimura C. Comparison of residual alpha- and beta-structures between two intrinsically disordered proteins by using NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:229-38. [PMID: 25523747 DOI: 10.1016/j.bbapap.2014.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins contain some residual structures, which may fold further upon binding to the partner protein for function. The residual structures observed in two intrinsically disordered proteins, including the C-terminal segment of peripherin-2 (63 residues) and measles virus nucleocapsid protein Ntail (125 residues), were compared using NMR. Differences in the chemical shifts of alpha-, beta- and carbonyl carbons between the observed structure and calculated random coil revealed the existence of a helix and some possible beta-structures in both proteins. The intensity of signals in the C-terminal segment of peripherin-2 in NMR spectra was informative and locally low, particularly in the middle and N-terminal parts: this suggested the broadening of the signals caused by the formation of residual structures in those areas. Furthermore, the protection of exchange of amide protons was significantly observed at the N-terminus. Conversely, the intensities of signals for Ntail were random beyond the overall areas of protein, and indicated no characteristic pattern. Only a faint protection of amide-proton exchange in Ntail was observed in the C-terminus. It was concluded that Ntail was more intrinsically disordered than the C-terminal segment of peripherin-2. The combination of chemical shifts with the amide-proton exchanges and signal intensities was useful for the analyses of the remaining secondary structures. The beta-structure might be more detectable by the protection of amide-proton exchange than the helical structure, although the changes in chemical shifts were sensitive for the detection of elements of both secondary structures.
Collapse
Affiliation(s)
- Yu-ichi Ono
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Manami Miyashita
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yumi Ono
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Honoka Okazaki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Satoru Watanabe
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Naoya Tochio
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Takanori Kigawa
- NMR Pipeline Methodology Team, RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama 230-0045, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan.
| |
Collapse
|
29
|
Louber J, Kowalinski E, Bloyet LM, Brunel J, Cusack S, Gerlier D. RIG-I self-oligomerization is either dispensable or very transient for signal transduction. PLoS One 2014; 9:e108770. [PMID: 25259935 PMCID: PMC4178188 DOI: 10.1371/journal.pone.0108770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023] Open
Abstract
Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN) response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in vitro upon activation, RIG-I is believed to oligomerize after RNA binding in order to transduce a signal. Here, we show that in vitro binding of synthetic RNA mimicking that of Mononegavirales (Ebola, rabies and measles viruses) leader sequences to purified RIG-I does not induce RIG-I oligomerization. Furthermore, in cells devoid of endogenous functional RIG-I-like receptors, after activation of exogenous Flag-RIG-I by a 62-mer-5'ppp-dsRNA or by polyinosinic:polycytidylic acid, a dsRNA analogue, or by measles virus infection, anti-Flag immunoprecipitation and specific elution with Flag peptide indicated a monomeric form of RIG-I. Accordingly, when using the Gaussia Luciferase-Based Protein Complementation Assay (PCA), a more sensitive in cellula assay, no RIG-I oligomerization could be detected upon RNA stimulation. Altogether our data indicate that the need for self-oligomerization of RIG-I for signal transduction is either dispensable or very transient.
Collapse
Affiliation(s)
- Jade Louber
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Eva Kowalinski
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, Grenoble Cedex 9, France
| | - Louis-Marie Bloyet
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Joanna Brunel
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, Grenoble Cedex 9, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| |
Collapse
|
30
|
Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014; 88:10851-63. [PMID: 25008930 DOI: 10.1128/jvi.00664-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template.
Collapse
|
31
|
Yegambaram K, Bulloch EMM, Kingston RL. Protein domain definition should allow for conditional disorder. Protein Sci 2013; 22:1502-18. [PMID: 23963781 DOI: 10.1002/pro.2336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.
Collapse
Affiliation(s)
- Kavestri Yegambaram
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | |
Collapse
|
32
|
Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proc Natl Acad Sci U S A 2013; 110:E3743-52. [PMID: 24043820 DOI: 10.1073/pnas.1308381110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous relatively short regions within intrinsically disordered proteins (IDPs) serve as molecular recognition elements (MoREs). They fold into ordered structures upon binding to their partner molecules. Currently, there is still a lack of in-depth understanding of how coupled binding and folding occurs in MoREs. Here, we quantified the unbound ensembles of the α-MoRE within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein. We developed a multiscaled approach by combining a physics-based and an atomic hybrid model to decipher the mechanism by which the α-MoRE interacts with the X domain of the measles virus phosphoprotein. Our multiscaled approach led to remarkable qualitative and quantitative agreements between the theoretical predictions and experimental results (e.g., chemical shifts). We found that the free α-MoRE rapidly interconverts between multiple discrete partially helical conformations and the unfolded state, in accordance with the experimental observations. We quantified the underlying global folding-binding landscape. This leads to a synergistic mechanism in which the recognition event proceeds via (minor) conformational selection, followed by (major) induced folding. We also provided evidence that the α-MoRE is a compact molten globule-like IDP and behaves as a downhill folder in the induced folding process. We further provided a theoretical explanation for the inherent connections between "downhill folding," "molten globule," and "intrinsic disorder" in IDP-related systems. Particularly, we proposed that binding and unbinding of IDPs proceed in a stepwise way through a "kinetic divide-and-conquer" strategy that confers them high specificity without high affinity.
Collapse
|
33
|
Krumm SA, Takeda M, Plemper RK. The measles virus nucleocapsid protein tail domain is dispensable for viral polymerase recruitment and activity. J Biol Chem 2013; 288:29943-53. [PMID: 24003217 DOI: 10.1074/jbc.m113.503862] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paramyxovirus genomes are ribonucleoprotein (RNP) complexes consisting of nucleoprotein (N)-encapsidated viral RNA. Measles virus (MeV) N features an amino-terminal RNA-binding core and a 125-residue tail domain, of which only the last 75 residues are considered fully mobile on the nucleocapsid surface. A molecular recognition element (MoRE) domain mediates binding of the viral phosphoprotein (P). This P N-tail interaction is considered instrumental for recruiting the polymerase complex to the template. We have engineered MeV N variants with tail truncations progressively eliminating the MoRE domain and upstream tail sections. Confirming previous reports, RNPs with N truncations lacking the carboxyl-terminal 43-residues harboring the MoRE domain cannot serve as polymerase template. Remarkably, further removal of all tail residues predicted to be surface-exposed significantly restores RNP bioactivity. Insertion of structurally dominant tags into the central N-tail section reduces bioactivity, but the negative regulatory effect of exposed N-tail stems is sequence-independent. Bioactive nucleocapsids lacking exposed N-tail sections are unable to sustain virus replication, because of weakened interaction of the advancing polymerase complex with the template. Deletion of the N-MoRE-binding domain in P abrogates polymerase recruitment to standard nucleocapsids, but polymerase activity is partially restored when N-tail truncated RNPs serve as template. Revising central elements of the current replication model, these data reveal that MeV polymerase is capable of productively docking directly to the nucleocapsid core. Dispensable for polymerase recruitment, N-MoRE binding to P-tail stabilizes the advancing polymerase-RNP complex and may rearrange unstructured central tail sections to facilitate polymerase access to the template.
Collapse
Affiliation(s)
- Stefanie A Krumm
- From the Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, Georgia 30303 and
| | | | | |
Collapse
|
34
|
Gruet A, Dosnon M, Vassena A, Lombard V, Gerlier D, Bignon C, Longhi S. Dissecting partner recognition by an intrinsically disordered protein using descriptive random mutagenesis. J Mol Biol 2013; 425:3495-509. [PMID: 23811056 DOI: 10.1016/j.jmb.2013.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023]
Abstract
In view of getting insights into the molecular determinants of the binding efficiency of intrinsically disordered proteins (IDPs), we used random mutagenesis. As a proof of concept, we chose the interaction between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein and assessed how amino acid substitutions introduced at random within NTAIL affect partner recognition. In contrast with directed evolution approaches, we did not apply any selection and used the gene library approach not for production purposes but for achieving a better understanding of the NTAIL/XD interaction. For that reason, and to differentiate our approach from similar approaches that make use of systematic (i.e., targeted) mutagenesis, we propose to call it "descriptive random mutagenesis" (DRM). NTAIL variants generated by error-prone PCR were picked at random in the absence of selection pressure and were characterized in terms of sequence and binding abilities toward XD. DRM not only identified determinants of NTAIL/XD interaction that were in good agreement with previous work but also provided new insights. In particular, we discovered that the primary interaction site is poorly evolvable in terms of binding abilities toward XD. We also identified a critical NTAIL residue whose role in stabilizing the NTAIL/XD complex had previously escaped detection, and we identified NTAIL regulatory sites that dampen the interaction while being located outside the primary interaction site. Results show that DRM is a valuable approach to study binding abilities of IDPs.
Collapse
Affiliation(s)
- Antoine Gruet
- CNRS and Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Blocquel D, Habchi J, Costanzo S, Doizy A, Oglesbee M, Longhi S. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site. Protein Sci 2012; 21:1577-85. [PMID: 22887965 DOI: 10.1002/pro.2138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 11/09/2022]
Abstract
The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point.
Collapse
Affiliation(s)
- David Blocquel
- CNRS, Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|