1
|
Song A, Wu X. Mechanistic insights of substrate transport and inhibitor binding revealed by high-resolution structures of human norepinephrine transporter. Cell Res 2024; 34:810-813. [PMID: 39223283 DOI: 10.1038/s41422-024-01024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Ailong Song
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Dilweg MA, Mocking TAM, Maragkoudakis P, van Westen GJP, Heitman LH, IJzerman AP, Jespers W, van der Es D. Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors. RSC Med Chem 2024:d4md00521j. [PMID: 39345718 PMCID: PMC11428037 DOI: 10.1039/d4md00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (8), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the N,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure-activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based 'transporter activity through receptor activation' assay. Moreover, all stereoisomers of the most potent compound (27) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to 8, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the R 2 position with a rigid cyclohexanol yielded lead compound 27, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of 27 revealed varying inhibitory potencies, favoring a trans-orientation of the N,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.
Collapse
Affiliation(s)
- Majlen A Dilweg
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Pantelis Maragkoudakis
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
- Oncode Institute 2333 CC Leiden The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daan van der Es
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
3
|
Ji W, Miao A, Liang K, Liu J, Qi Y, Zhou Y, Duan X, Sun J, Lai L, Wu JX. Substrate binding and inhibition mechanism of norepinephrine transporter. Nature 2024; 633:473-479. [PMID: 39143211 DOI: 10.1038/s41586-024-07810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Norepinephrine transporter (NET; encoded by SLC6A2) reuptakes the majority of the released noradrenaline back to the presynaptic terminals, thereby affecting the synaptic noradrenaline level1. Genetic mutations and dysregulation of NET are associated with a spectrum of neurological conditions in humans, making NET an important therapeutic target1. However, the structure and mechanism of NET remain unclear. Here we provide cryogenic electron microscopy structures of the human NET (hNET) in three functional states-the apo state, and in states bound to the substrate meta-iodobenzylguanidine (MIBG) or the orthosteric inhibitor radafaxine. These structures were captured in an inward-facing conformation, with a tightly sealed extracellular gate and an open intracellular gate. The substrate MIBG binds at the centre of hNET. Radafaxine also occupies the substrate-binding site and might block the structural transition of hNET for inhibition. These structures provide insights into the mechanism of substrate recognition and orthosteric inhibition of hNET.
Collapse
Affiliation(s)
- Wenming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Anran Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Kai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiameng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuhan Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xinli Duan
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jixue Sun
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Lipeng Lai
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jing-Xiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
4
|
Pedersen CN, Yang F, Ita S, Xu Y, Akunuri R, Trampari S, Neumann CMT, Desdorf LM, Schiøtt B, Salvino JM, Mortensen OV, Nissen P, Shahsavar A. Cryo-EM structure of the dopamine transporter with a novel atypical non-competitive inhibitor bound to the orthosteric site. J Neurochem 2024; 168:2043-2055. [PMID: 39010681 PMCID: PMC11449642 DOI: 10.1111/jnc.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The regulation of dopamine (DA) removal from the synaptic cleft is a crucial process in neurotransmission and is facilitated by the sodium- and chloride-coupled dopamine transporter DAT. Psychostimulant drugs, cocaine, and amphetamine, both block the uptake of DA, while amphetamine also triggers the release of DA. As a result, they prolong or even amplify neurotransmitter signaling. Atypical inhibitors of DAT lack cocaine-like rewarding effects and offer a promising strategy for the treatment of drug use disorders. Here, we present the 3.2 Å resolution cryo-electron microscopy structure of the Drosophila melanogaster dopamine transporter (dDAT) in complex with the atypical non-competitive inhibitor AC-4-248. The inhibitor partially binds at the central binding site, extending into the extracellular vestibule, and locks the transporter in an outward open conformation. Our findings propose mechanisms for the non-competitive inhibition of DAT and attenuation of cocaine potency by AC-4-248 and provide a basis for the rational design of more efficacious atypical inhibitors.
Collapse
Affiliation(s)
- Clara Nautrup Pedersen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fuyu Yang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Samantha Ita
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yibin Xu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Sofia Trampari
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline Marie Teresa Neumann
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Azadeh Shahsavar
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Nielsen JC, Salomon K, Kalenderoglou IE, Bargmeyer S, Pape T, Shahsavar A, Loland CJ. Structure of the human dopamine transporter in complex with cocaine. Nature 2024; 632:678-685. [PMID: 39112703 DOI: 10.1038/s41586-024-07804-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.
Collapse
Affiliation(s)
- Jeppe C Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Salomon
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iris E Kalenderoglou
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Bargmeyer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Azadeh Shahsavar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Tan J, Xiao Y, Kong F, Zhang X, Xu H, Zhu A, Liu Y, Lei J, Tian B, Yuan Y, Yan C. Molecular basis of human noradrenaline transporter reuptake and inhibition. Nature 2024; 632:921-929. [PMID: 39048818 DOI: 10.1038/s41586-024-07719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.
Collapse
Affiliation(s)
- Jiaxin Tan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanwen Xu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Liu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Zhang H, Yin YL, Dai A, Zhang T, Zhang C, Wu C, Hu W, He X, Pan B, Jin S, Yuan Q, Wang MW, Yang D, Xu HE, Jiang Y. Dimerization and antidepressant recognition at noradrenaline transporter. Nature 2024; 630:247-254. [PMID: 38750358 DOI: 10.1038/s41586-024-07437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianwei Zhang
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chao Zhang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Wu J, Zhang Z, Zhang Q, Li J. Design, synthesis, and biological evaluation of aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT 1A/5-HT 7. Bioorg Med Chem 2024; 104:117698. [PMID: 38552597 DOI: 10.1016/j.bmc.2024.117698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.
Collapse
Affiliation(s)
- Jianwei Wu
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Zixue Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianqi Li
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China.
| |
Collapse
|
9
|
Karagöl T, Karagöl A, Zhang S. Structural bioinformatics studies of serotonin, dopamine and norepinephrine transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0300340. [PMID: 38517879 PMCID: PMC10959339 DOI: 10.1371/journal.pone.0300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.
Collapse
Affiliation(s)
- Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
10
|
Suchacki KJ, Ramage LE, Kwok TC, Kelman A, McNeill BT, Rodney S, Keegan M, Gray C, MacNaught G, Patel D, Fletcher AM, Simpson JP, Carter RN, Semple RK, Homer NZM, Morton NM, van Beek EJR, Wakelin SJ, Stimson RH. The serotonin transporter sustains human brown adipose tissue thermogenesis. Nat Metab 2023; 5:1319-1336. [PMID: 37537371 PMCID: PMC10447248 DOI: 10.1038/s42255-023-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lynne E Ramage
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - T'ng Choong Kwok
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Alexandra Kelman
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Stewart Rodney
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Matthew Keegan
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Calum Gray
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Gillian MacNaught
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Alison M Fletcher
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Roderick N Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Robert K Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Edwin J R van Beek
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
- Department of Medical Physics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sonia J Wakelin
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
11
|
Singh D, Singh P, Srivastava P, Kakkar D, Pathak M, Tiwari AK. Development and challenges in the discovery of 5-HT 1A and 5-HT 7 receptor ligands. Bioorg Chem 2023; 131:106254. [PMID: 36528920 DOI: 10.1016/j.bioorg.2022.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine) is a small molecule that acts both in the central and peripheral nervous system as a neurotransmitter and a hormone, respectively. Serotonin is synthesized via a multi-stage pathway beginning with l-tryptophan, which is converted by an enzyme called tryptophan hydroxylase into L-5-Hydroxytryptophan. It is well-known for its significance in the control of mood, anxiety, depression, and insomnia as well as in normal human functions such as sleep, sexual activity, and appetite. Thus, for medical chemists and pharmaceutical firms, serotonin is one of the most desirable targets. Among the seven different classes of serotonin receptors, the 5-HT1A was one of the first discovered serotonin receptors, and the 5-HT7 was the last addition to the serotonin receptor family. Both the classes were thoroughly examined. 5-HT1A neurotransmission-related dysfunctions are linked to many psychological conditions such as anxiety, depression, and movement disorders. 5-HT7 is a member of the cell surface receptor GPCR superfamily and is regulated by the serotonin neurotransmitter. It has been the focus of intensive research efforts since its discovery, which was prompted by its presence in functionally important regions of the brain. The thalamus and hypothalamus have the highest 5-HT7 receptor densities. They are also found in the hippocampus and cortex at higher densities. Thermoregulation, circadian rhythm, learning and memory, and sleep are all associated with the 5-HT7 receptor. It is also suspected that this receptor may be involved in the control of mood, indicating that it may be a beneficial target for depression treatment. Several differently structured molecules such as aminotetralins, ergolines, arylpiperazines, indolylalkylamines, aporphines, and aryloxyalkyl-amines are known to bind to 5-HT1A and 5-HT7 receptor sites. In brain serotonin receptors 5-HT1A and 5-HT7 are strongly co-expressed in regions involved in depression. However, their functional interaction has not been identified. An overview of the 5-HT1A and 5-HT7 receptor ligands belonging to different chemical groups is mentioned in this review.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi 110054, India
| | - Dipti Kakkar
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi 110054, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
12
|
Aggarwal S, Mortensen OV. Discovery and Development of Monoamine Transporter Ligands. ADVANCES IN NEUROBIOLOGY 2023; 30:101-129. [PMID: 36928847 PMCID: PMC10074400 DOI: 10.1007/978-3-031-21054-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Maphanga VB, Skalicka-Wozniak K, Budzynska B, Skiba A, Chen W, Agoni C, Enslin GM, Viljoen AM. Mesembryanthemum tortuosum L. alkaloids modify anxiety-like behaviour in a zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115068. [PMID: 35134486 DOI: 10.1016/j.jep.2022.115068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesembryanthemum tortuosum L. (previously known as Sceletium tortuosum (L.) N.E. Br.) is indigenous to South Africa and traditionally used to alleviate anxiety, stress and depression. Mesembrine and its alkaloid analogues such as mesembrenone, mesembrenol and mesembranol have been identified as the key compounds responsible for the reported effects on the central nervous system. AIM OF THE STUDY To investigate M. tortuosum alkaloids for possible anxiolytic-like effects in the 5-dpf in vivo zebrafish model by assessing thigmotaxis and locomotor activity. MATERIALS AND METHODS Locomotor activity and reverse-thigmotaxis, recognised anxiety-related behaviours in 5-days post fertilization zebrafish larvae, were analysed under simulated stressful conditions of alternating light-dark challenges. Cheminformatics screening and molecular docking were also performed to rationalize the inhibitory activity of the alkaloids on the serotonin reuptake transporter, the accepted primary mechanism of action of selective serotonin reuptake inhibitors. Mesembrine has been reported to have inhibitory effects on serotonin reuptake, with consequential anti-depressant and anxiolytic effects. RESULTS All four alkaloids assessed decreased the anxiety-related behaviour of zebrafish larvae exposed to the light-dark challenge. Significant increases in the percentage of time spent in the central arena during the dark phase were also observed when larvae were exposed to the pure alkaloids (mesembrenone, mesembrenol, mesembrine and mesembrenol) compared to the control. However, mesembrenone and mesembranol demonstrated a greater anxiolytic-like effect than the other alkaloids. In addition to favourable pharmacokinetic and physicochemical properties revealed via in silico predictions, high-affinity interactions characterized the binding of the alkaloids with the serotonin transporter. CONCLUSIONS M. tortuosum alkaloids demonstrated an anxiolytic-like effect in zebrafish larvae providing evidence for its traditional and modern day use as an anxiolytic.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Wozniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Behavioral Studies Laboratory, Department of Medicinal Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093, Lublin, Poland
| | - Andriana Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clement Agoni
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
14
|
Rayff da Silva P, Diniz Nunes Pazos N, Karla Silva do Nascimento Gonzaga T, Cabral de Andrade J, Brito Monteiro Á, Caroline Ribeiro Portela A, Fernandes Oliveira Pires H, Dos Santos Maia M, Vilar da Fonsêca D, T Scotti M, Maria Barbosa Filho J, Pergentino de Sousa D, Francisco Bezerra Felipe C, Nóbrega de Almeida R, Scotti L. Anxiolytic and antidepressant-like effects of monoterpene tetrahydrolinalool and in silico approach of new potential targets. Curr Top Med Chem 2022; 22:1530-1552. [PMID: 35524664 DOI: 10.2174/1568026622666220505104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION- The drugs currently available for treatment of anxiety and depression act through modulation of the neurotransmission systems involved in the neurobiology of the disorder, yet they of-ten present side effects, which can impair patient adherence to treatment. METHOD- This, has driven the search for new molecules with anxiolytic and antidepressant potential. Aromatic plants are rich in essential oils, and their chemical constituents, such as monoterpenes, are be-ing studied for these disorders. This study aims to evaluate the anxiolytic and antidepressant-like poten-tial of the monoterpene tetrahydrolinalool in in vivo animal models, and review pharmacological targets with validation through molecular docking. Male Swiss mice (Mus musculus) were treated with THL (37.5-600 mg kg-1 p.o.) and submitted to the elevated plus maze, open field, rota rod, and forced swim tests. In the elevated plus-maze, THL at doses of 37.5 and 75 mg kg-1 induced a significant increase in the percentage of entries (72.7 and 64.3% respectively), and lengths of stay (80.3 and 76.8% respective-ly) in the open arms tests. RESULT- These doses did not compromise locomotor activity or motor coordination in the animals. In the open field, rota rod tests, and the forced swimming model, treatment with THL significantly reduced immobility times at doses of 150, 300, and 600 mg kg-1, and by respective percentages of 69.3, 60.9 and 68.7%. CONCLUSION- In molecular docking assay, which investigated potential targets, THL presented sat-isfactory energy values for: nNOs, SGC, IL-6, 5-HT1A, NMDAr, and D1. These demonstrate the po-tential of THL (a derivative of natural origin) in in vivo and in silico models, making it a drug candidate.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Álefe Brito Monteiro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Mayara Dos Santos Maia
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, 48607-190, Rua Aurora, S/N, Bahia, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - José Maria Barbosa Filho
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Brazil
| | - Damião Pergentino de Sousa
- Pharmaceutical Chemistry Laboratory, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
15
|
Chan MC, Selvam B, Young HJ, Procko E, Shukla D. The substrate import mechanism of the human serotonin transporter. Biophys J 2022; 121:715-730. [PMID: 35114149 PMCID: PMC8943754 DOI: 10.1016/j.bpj.2022.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The serotonin transporter (SERT) initiates the reuptake of extracellular serotonin in the synapse to terminate neurotransmission. The cryogenic electron microscopy structures of SERT bound to ibogaine and the physiological substrate serotonin resolved in different states have provided a glimpse of the functional conformations at atomistic resolution. However, the conformational dynamics and structural transitions to intermediate states are not fully understood. Furthermore, the molecular basis of how serotonin is recognized and transported remains unclear. In this study, we performed unbiased microsecond-long simulations of the human SERT to investigate the structural dynamics to various intermediate states and elucidated the complete substrate import pathway. Using Markov state models, we characterized a sequential order of conformational-driven ion-coupled substrate binding and transport events and calculated the free energy barriers of conformation transitions associated with the import mechanism. We find that the transition from the occluded to inward-facing state is the rate-limiting step for substrate import and that the substrate decreases the free energy barriers to achieve the inward-facing state. Our study provides insights on the molecular basis of dynamics-driven ion-substrate recognition and transport of SERT that can serve as a model for other closely related neurotransmitter transporters.
Collapse
Affiliation(s)
- Matthew C Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Heather J Young
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
16
|
Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022; 13:340-351. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human serotine transporter (hSERT) is one of the most influential drug targets, and its allosteric modulators (e.g., escitalopram) have emerged to be the next-generation medication for psychiatric disorders. However, the molecular mechanism underlying the allosteric modulation of hSERT is still elusive. Here, the simulation strategies of conventional (cMD) and steered (SMD) molecular dynamics were applied to investigate this molecular mechanism from distinct perspectives. First, cMD simulations revealed that escitalopram's binding to hSERT's allosteric site simultaneously enhanced its binding to the orthosteric site. Then, SMD simulation identified that the occupation of hSERT's allosteric site by escitalopram could also block its dissociation from the orthosteric site. Finally, by comparing the simulated structures of two hSERT-escitalopram complexes with and without allosteric modulation, a new conformational coupling between an extracellular (Arg104-Glu494) and an intracellular (Lys490-Glu494) salt bridge was identified. In summary, this study explored the mechanism underlying the allosteric modulation of hSERT by collectively applying two MD simulation strategies, which could facilitate our understanding of the allosteric modulations of not only hSERT but also other clinically important therapeutic targets.
Collapse
Affiliation(s)
- Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Tingting Fu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
17
|
Frangos ZJ, Cantwell Chater RP, Vandenberg RJ. Glycine Transporter 2: Mechanism and Allosteric Modulation. Front Mol Biosci 2021; 8:734427. [PMID: 34805268 PMCID: PMC8602798 DOI: 10.3389/fmolb.2021.734427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors. Allosteric inhibitors are also likely to provide different clearance kinetics compared to competitive inhibitors and potentially better clinical outcomes. Crystal structures and homology models have identified several allosteric modulatory sites on NSS including the vestibule allosteric site (VAS), lipid allosteric site (LAS) and cholesterol binding site (CHOL1). Whilst the architecture of eukaryotic NSS is generally well conserved there are differences in regions that form the VAS, LAS, and CHOL1. Here, we describe ligand-protein interactions that stabilize binding in each allosteric site and explore how differences between transporters could be exploited to generate NSS specific compounds with an emphasis on GlyT2 modulation.
Collapse
Affiliation(s)
- Zachary J Frangos
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ryan P Cantwell Chater
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Paudel S, Wang S, Kim E, Kundu D, Min X, Shin CY, Kim KM. Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors. Biomol Ther (Seoul) 2021; 30:191-202. [PMID: 34789584 PMCID: PMC8902459 DOI: 10.4062/biomolther.2021.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/05/2022] Open
Abstract
Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Suresh Paudel
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shuji Wang
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dooti Kundu
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiao Min
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Wang P, Gao X, Zhang K, Pei Q, Xu X, Yan F, Dong J, Jing C. Exploring the binding mechanism of positive allosteric modulators in human metabotropic glutamate receptor 2 using molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:24125-24139. [PMID: 34596645 DOI: 10.1039/d1cp02157e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Positive allosteric modulators (PAMs) of human metabotropic glutamate receptor 2 (hmGlu2) are well-known in the treatment of psychiatric disorders for their higher selectivity and lower tolerance risk. A variety of PAMs have been reported over the last decade and two compounds were in Phase II clinical trials for schizophrenia and anxiety. These trials were discontinued on account of the unsatisfactory therapeutic efficacy, but PAMs were explored as novel treatments for addiction and epilepsy. Thus, it is still important to explore novel hmGlu2 PAMs in the near future. Nowadays, the challenges in optimizing drug potency and improving scaffold diversity for PAMs are the noncomprehensive character analyses of multiple scaffolds; the exploration of the binding modes of PAMs in the allosteric binding site have been proposed to reduce this difficulty. However, there has been no comprehensive research about the binding profiles of PAMs in the hmGlu2 receptor. To address this issue, this work explores the binding characters of eight PAMs representing five chemical series by multiple computational methods. As a result, the shared binding modes of the eight studied PAMs interacting with 15 residues in the allosteric binding site were defined. In addition, the reduced hydrophobicity with low electronegativity of R1, increased hydrophobicity with low negative electron density of R2 and the electronegativity of the linker were identified as indicators that regulate the affinity of PAMs. This finding agrees well with the physicochemical properties of reported multiple series PAMs. This comprehensive work sheds additional light on the binding mechanism and physicochemical regularity underlining PAMs affinity and could be further utilized as a structural and energetic blueprint for discovering and assessing novel PAMs for hmGlu2.
Collapse
Affiliation(s)
- Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaonan Gao
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Ke Zhang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Qinglan Pei
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fengmei Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Chenxi Jing
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
20
|
Lee KH, Fant AD, Guo J, Guan A, Jung J, Kudaibergenova M, Miranda WE, Ku T, Cao J, Wacker S, Duff HJ, Newman AH, Noskov SY, Shi L. Toward Reducing hERG Affinities for DAT Inhibitors with a Combined Machine Learning and Molecular Modeling Approach. J Chem Inf Model 2021; 61:4266-4279. [PMID: 34420294 DOI: 10.1021/acs.jcim.1c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Psychostimulant drugs, such as cocaine, inhibit dopamine reuptake via blockading the dopamine transporter (DAT), which is the primary mechanism underpinning their abuse. Atypical DAT inhibitors are dissimilar to cocaine and can block cocaine- or methamphetamine-induced behaviors, supporting their development as part of a treatment regimen for psychostimulant use disorders. When developing these atypical DAT inhibitors as medications, it is necessary to avoid off-target binding that can produce unwanted side effects or toxicities. In particular, the blockade of a potassium channel, human ether-a-go-go (hERG), can lead to potentially lethal ventricular tachycardia. In this study, we established a counter screening platform for DAT and against hERG binding by combining machine learning-based quantitative structure-activity relationship (QSAR) modeling, experimental validation, and molecular modeling and simulations. Our results show that the available data are adequate to establish robust QSAR models, as validated by chemical synthesis and pharmacological evaluation of a validation set of DAT inhibitors. Furthermore, the QSAR models based on subsets of the data according to experimental approaches used have predictive power as well, which opens the door to target specific functional states of a protein. Complementarily, our molecular modeling and simulations identified the structural elements responsible for a pair of DAT inhibitors having opposite binding affinity trends at DAT and hERG, which can be leveraged for rational optimization of lead atypical DAT inhibitors with desired pharmacological properties.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Andrew D Fant
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Jiqing Guo
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andy Guan
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Joslyn Jung
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Mary Kudaibergenova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Williams E Miranda
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Therese Ku
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Jianjing Cao
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Soren Wacker
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Achlys Inc., 7-126 Li Ka Shing Center for Health and Innovation, Edmonton, Alberta T6G 2E1, Canada
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Sergei Y Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
21
|
The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat Commun 2021; 12:5063. [PMID: 34417466 PMCID: PMC8379219 DOI: 10.1038/s41467-021-25363-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is a common mental disorder. The standard medical treatment is the selective serotonin reuptake inhibitors (SSRIs). All characterized SSRIs are competitive inhibitors of the serotonin transporter (SERT). A non-competitive inhibitor may produce a more favorable therapeutic profile. Vilazodone is an antidepressant with limited information on its molecular interactions with SERT. Here we use molecular pharmacology and cryo-EM structural elucidation to characterize vilazodone binding to SERT. We find that it exhibits non-competitive inhibition of serotonin uptake and impedes dissociation of [3H]imipramine at low nanomolar concentrations. Our SERT structure with bound imipramine and vilazodone reveals a unique binding pocket for vilazodone, expanding the boundaries of the extracellular vestibule. Characterization of the binding site is substantiated with molecular dynamics simulations and systematic mutagenesis of interacting residues resulting in decreased vilazodone binding to the allosteric site. Our findings underline the versatility of SERT allosteric ligands and describe the unique binding characteristics of vilazodone. Vilazodone (VLZ) is a drug for the treatment of major depressive disorders that targets the serotonin transporter (SERT). Here, the authors combine pharmacology measurements and cryo-EM structural analysis to characterize VLZ binding to SERT and observe that VLZ exhibits non-competitive inhibition of serotonin transport and binds with nanomolar affinity to an allosteric site in SERT.
Collapse
|
22
|
Sijben HJ, van Oostveen WM, Hartog PBR, Stucchi L, Rossignoli A, Maresca G, Scarabottolo L, IJzerman AP, Heitman LH. Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors. Sci Rep 2021; 11:12290. [PMID: 34112854 PMCID: PMC8192900 DOI: 10.1038/s41598-021-91700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.
Collapse
Affiliation(s)
- Hubert J Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Wieke M van Oostveen
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura Stucchi
- Axxam S.p.A, Openzone Science Park, Bresso, Milan, Italy
| | | | | | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands.
- Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
23
|
Bethea CL, Cameron JL. Neuro-pharmacological reinstatement of ovulation and associated neurobiology in a macaque model of functional hypothalamic amenorrhoea. Hum Reprod 2021; 36:175-188. [PMID: 33319240 DOI: 10.1093/humrep/deaa296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What is the underlying neuropathology in a cynomolgus macaque model of functional hypothalamic amenorrhoea (FHA) and can it be normalized to restore ovulation? SUMMARY ANSWER Anovulatory monkeys exhibited increased hypothalamic norepinephrine (NE), kisspeptin and gonadotropin-releasing hormone (GnRH) in the early follicular phase, but administration of the NE reuptake inhibitor (NRI), reboxetine (REB), restored ovulation during stress and normalized NE, kisspeptin and GnRH. WHAT IS KNOWN ALREADY Female cynomolgus macaques, like women, show individual reproductive sensitivity to modest psychosocial and metabolic stress. During stress, resilient females ovulate through two menstrual cycles whereas stress-sensitive (SS) macaques immediately cease ovulation. On Day 5 of a non-stressed menstrual cycle, resilient macaques have less NE synthesizing enzyme [dopamine β-hydroxylase (DBH)], kisspeptin and GnRH innervation of the medial basal hypothalamus but more endogenous serotonin than SS macaques. Stress increased DBH/NE, kisspeptin and GnRH but did not alter serotonin. STUDY DESIGN, SIZE, DURATION In a longitudinal design, 27 adult (7-13 years) female cynomolgus macaques (Macaca fascicularis) with three different levels of sensitivity to stress were monitored with daily vaginal swabs and frequent serum progesterone (P) measurements. Three 90-day experimental periods called 'Cycle Sets' were monitored. A Cycle Set consisted of one ovulatory menstrual cycle without stress, and two cycles, or 60 days, with modest stress. Each Cycle Set was followed by a rest period. During a Cycle Set, individuals were either untreated (placebo) or administered escitalopram (CIT) or REB. Ultimately, half of each sensitivity group was euthanized during stress with CIT or REB treatment and the hypothalamus was obtained. Neurobiological endpoints were compared between CIT and REB treatment groups in stress resilient and SS monkeys. PARTICIPANTS/MATERIALS, SETTING, METHODS The monkeys were housed at the University of Pittsburgh primate facility for the duration of the experiments. Upon euthanasia, their brains and serum samples were shipped to the Oregon National Primate Research Center. The hypothalamus was examined with immunohistochemistry for the expression of DBH (a marker for NE axons), kisspeptin and GnRH. P was measured in the serum samples by radioimmunoassay. MAIN RESULTS AND THE ROLE OF CHANCE Daily administration of REB restored ovulation in 9 of 10 SS animals during stress. Of note, REB significantly increased P secretion during stress in the most sensitive group (P = 0.032), which indicates ovulation. CIT lacked efficacy. REB significantly reduced DBH/NE, kisspeptin and GnRH axon density in the hypothalamus relative to CIT treatment (P = 0.003. 0.018 and 0.0001, respectively) on Day 5 of the menstrual cycle in resilient and sensitive groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The US FDA has not approved REB for human use, although it is used in Europe for the treatment of depression/anxiety as EdronaxTR. Whether REB could be useful for the treatment of FHA in women has not been determined. WIDER IMPLICATIONS FOR THE FINDINGS The use of an NRI to treat FHA is a novel approach and the potential reinstatement of ovulation could be straightforward compared to current treatment protocols. The underlying neurobiology provides a compelling case for treating the origin of the pathology, i.e. elevated NE, rather than circumventing the hypothalamus altogether with gonadotropins, which have associated risks such as hyperstimulation syndrome or multiple births. STUDY FUNDING/COMPETING INTEREST(S) Portions of this study were supported by NIH grant HD062864 to C.L.B., NIH grant HD62618 to J.L.C. and C.L.B. and 1P51 OD011092 for the operation of the Oregon National Primate Research Center. There were no competing interests.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
Pidathala S, Mallela AK, Joseph D, Penmatsa A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat Commun 2021; 12:2199. [PMID: 33850134 PMCID: PMC8044178 DOI: 10.1038/s41467-021-22385-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Norepinephrine is a biogenic amine neurotransmitter that has widespread effects on alertness, arousal and pain sensation. Consequently, blockers of norepinephrine uptake have served as vital tools to treat depression and chronic pain. Here, we employ the Drosophila melanogaster dopamine transporter as a surrogate for the norepinephrine transporter and determine X-ray structures of the transporter in its substrate-free and norepinephrine-bound forms. We also report structures of the transporter in complex with inhibitors of chronic pain including duloxetine, milnacipran and a synthetic opioid, tramadol. When compared to dopamine, we observe that norepinephrine binds in a different pose, in the vicinity of subsite C within the primary binding site. Our experiments reveal that this region is the binding site for chronic pain inhibitors and a determinant for norepinephrine-specific reuptake inhibition, thereby providing a paradigm for the design of specific inhibitors for catecholamine neurotransmitter transporters.
Collapse
Affiliation(s)
| | | | - Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
25
|
Tzeng YM, Li IH, Kao HH, Shih JH, Yeh CB, Chen YH, Kao LT. Protective Effects of Anti-depressants against the Subsequent Development of Psoriasis in Patients with Major Depressive Disorder: a Cohort Study. J Affect Disord 2021; 281:590-596. [PMID: 33257042 DOI: 10.1016/j.jad.2020.11.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inflammation may mediate the relationship between major depressive disorder (MDD) and psoriasis. However, it is unclear whether anti-depressants can decrease the subsequent risk of psoriasis among MDD patients. This study investigated the effects of anti-depressants on the subsequent risk of psoriasis in MDD patients. METHODS This was a population-based cohort study in Taiwan. 58,454 MDD patients who had received anti-depressants and 6,034 MDD patients who did not receive anti-depressants were included. Each patient was tracked for 5 years to confirm a diagnosis of psoriasis following the index date. Cox proportional hazards models were performed to estimate the hazard ratio (HR) for psoriasis. RESULTS In this study, after using time-dependent Cox regression with both inverse probability of treatment weighting (IPTW) and adjustment for confounders, anti-depressant users had a significantly lower risk of psoriasis than the nonusers (IPTW-adjusted HR [aHR] = 0.69). Additionally, most types and dosages of anti-depressants tended to protect against psoriasis. Selective serotonin reuptake inhibitor use (IPTW-aHR = 0.67) and low-dose anti-depressant use (IPTW-aHR = 0.66) had significant protective effects even after IPTW and adjustment for confounders. LIMITATIONS This study had no information about over-the-counter medications. CONCLUSIONS This study revealed the protective effects of anti-depressants on psoriasis risk in patients with MDD. Antidepressant users had significantly lower risk of psoriasis than the nonusers. Further analyses indicated that the usage of SSRIs and low antidepressant dosage could statistically decrease risk of psoriasis.
Collapse
Affiliation(s)
- Ya-Mei Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Han Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsien Chen
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
26
|
Paroxetine-Overview of the Molecular Mechanisms of Action. Int J Mol Sci 2021; 22:ijms22041662. [PMID: 33562229 PMCID: PMC7914979 DOI: 10.3390/ijms22041662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
In the 21st century and especially during a pandemic, the diagnosis and treatment of depression is an essential part of the daily practice of many family doctors. It mainly affects patients in the age category 15–44 years, regardless of gender. Anxiety disorders are often diagnosed in children and adolescents. Social phobias can account for up to 13% of these diagnoses. Social anxiety manifests itself in fear of negative social assessment and humiliation, which disrupts the quality of social functioning. Treatment of the above-mentioned disorders is based on psychotherapy and pharmacotherapy. Serious side effects or mortality from antidepressant drug overdose are currently rare. Recent studies indicate that paroxetine (ATC code: N06AB), belonging to the selective serotonin reuptake inhibitors, has promising therapeutic effects and is used off-label in children and adolescents. The purpose of this review is to describe the interaction of paroxetine with several molecular targets in various points of view including the basic chemical and pharmaceutical properties. The central point of the review is focused on the pharmacodynamic analysis based on the molecular mechanism of binding paroxetine to various therapeutic targets.
Collapse
|
27
|
Xue W, Fu T, Zheng G, Tu G, Zhang Y, Yang F, Tao L, Yao L, Zhu F. Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters. Curr Med Chem 2020; 27:3830-3876. [DOI: 10.2174/0929867325666181009123218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023]
Abstract
Background:
The human Monoamine Transporters (hMATs), primarily including hSERT,
hNET and hDAT, are important targets for the treatment of depression and other behavioral disorders
with more than the availability of 30 approved drugs.
Objective:
This paper is to review the recent progress in the binding mode and inhibitory mechanism of
hMATs inhibitors with the central or allosteric binding sites, for the benefit of future hMATs inhibitor
design and discovery. The Structure-Activity Relationship (SAR) and the selectivity for hit/lead compounds
to hMATs that are evaluated by in vitro and in vivo experiments will be highlighted.
Methods:
PubMed and Web of Science databases were searched for protein-ligand interaction, novel
inhibitors design and synthesis studies related to hMATs.
Results:
Literature data indicate that since the first crystal structure determinations of the homologous
bacterial Leucine Transporter (LeuT) complexed with clomipramine, a sizable database of over 100 experimental
structures or computational models has been accumulated that now defines a substantial degree
of structural variability hMATs-ligands recognition. In the meanwhile, a number of novel hMATs
inhibitors have been discovered by medicinal chemistry with significant help from computational models.
Conclusion:
The reported new compounds act on hMATs as well as the structures of the transporters
complexed with diverse ligands by either experiment or computational modeling have shed light on the
poly-pharmacology, multimodal and allosteric regulation of the drugs to transporters. All of the studies
will greatly promote the Structure-Based Drug Design (SBDD) of structurally novel scaffolds with high
activity and selectivity for hMATs.
Collapse
Affiliation(s)
- Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
28
|
Jha P, Ragnarsson L, Lewis RJ. Structure-Function of the High Affinity Substrate Binding Site (S1) of Human Norepinephrine Transporter. Front Pharmacol 2020; 11:217. [PMID: 32210813 PMCID: PMC7066499 DOI: 10.3389/fphar.2020.00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
The human norepinephrine transporter (hNET) is a member of the neurotransmitter/sodium symporter family, which also includes the neuronal monoamine transporters for serotonin (SERT) and dopamine (DAT). Its involvement in chronic pain and many neurological disorders underlies its pharmaceutical importance. Using the X-ray crystal structures of the human serotonin transporter (hSERT) (PDB 5I6X) and Drosophila melanogaster dopamine transporter (dDAT) (PDB 4M48 and PDB 4XPA) as templates, we developed molecular models for norepinephrine (NE) bound to its high affinity binding site (S1) in the hNET. Our model suggests that the S1 site for NE is deeply buried between transmembrane helices (TMHs) 1, 3, 6, and 8 and overlaps the binding site for leucine in the bacterial leucine transporter (LeuT) and dopamine (DA) in dDAT. Mutational studies identified the functional binding pocket for NE comprised residues A73, A77, N78, V148, N153, I156, G320, F329, N350, S420, G423, and M424, which all influenced NE affinity and/or transport. These effects support a NE-hNET docking model where A73, A77, G320, S420, G423, and M424 form H-bond interactions with NE, V148, I156, and F329 form hydrophobic interactions with NE, whereas N78 affects NE transport and N350 affects NE affinity and transport via an influence on the octahedral co-ordination of the Na1+ ion. Consistent with a conserved structure-function amongst sodium-dependent neurotransmitter transporters, S1 residues A73, A77 (G100 in hSERT), N78, V148 (I150 in hSERT), N153, G320, F329 (Y331 in d DAT), N350, and G423 are conserved in DAT and SERT, indicating they likely play conserved functional roles.
Collapse
Affiliation(s)
- Prerna Jha
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Slack RD, Abramyan AM, Tang H, Meena S, Davis BA, Bonifazi A, Giancola JB, Deschamps JR, Naing S, Yano H, Singh SK, Newman AH, Shi L. A Novel Bromine-Containing Paroxetine Analogue Provides Mechanistic Clues for Binding Ambiguity at the Central Primary Binding Site of the Serotonin Transporter. ACS Chem Neurosci 2019; 10:3946-3952. [PMID: 31424193 DOI: 10.1021/acschemneuro.9b00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The serotonin transporter (SERT) is the primary target for the selective serotonin reuptake inhibitors (SSRIs). However, the structural basis for the extraordinarily high binding affinity of the widely prescribed SSRI, paroxetine, to human SERT (hSERT) has not yet been fully elucidated. Our previous findings unveiled a plausible ambiguity in paroxetine's binding orientations that may constitute an integral component of this SSRI's high affinity for hSERT. Herein, we investigate factors contributing to paroxetine's high affinity by modifying both the ligand and the protein. We generated a series of bromine (Br)-containing derivatives and found that the one in which the 4-F of paroxetine had been replaced with the chemically similar but more electron-rich Br atom (13) had the highest affinity. By comparatively characterizing the binding of paroxetine and 13 to both wild type (WT) and a construct harboring a paroxetine-sensitive mutation in the binding cavity, we identified a mechanistic determinant responsible for the pose ambiguity of paroxetine, which can guide future drug design.
Collapse
Affiliation(s)
- Rachel D. Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ara M. Abramyan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Helen Tang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Sitaram Meena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Bruce A. Davis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - JoLynn B. Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jeffrey R. Deschamps
- Naval Research Laboratory, Code 6030, 4555 Overlook Avenue, Washington D. C. 20375, United States
| | - Sett Naing
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Satinder K. Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
30
|
Joseph D, Pidathala S, Mallela AK, Penmatsa A. Structure and Gating Dynamics of Na +/Cl - Coupled Neurotransmitter Transporters. Front Mol Biosci 2019; 6:80. [PMID: 31555663 PMCID: PMC6742698 DOI: 10.3389/fmolb.2019.00080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Neurotransmitters released at the neural synapse through vesicle exocytosis are spatiotemporally controlled by the action of neurotransmitter transporters. Integral membrane proteins of the solute carrier 6 (SLC6) family are involved in the sodium and chloride coupled uptake of biogenic amine neurotransmitters including dopamine, serotonin, noradrenaline and inhibitory neurotransmitters including glycine and γ-amino butyric acid. This ion-coupled symport works through a well-orchestrated gating of substrate through alternating-access, which is mediated through movements of helices that resemble a rocking-bundle. A large array of commercially prescribed drugs and psychostimulants selectively target neurotransmitter transporters thereby modulating their levels in the synaptic space. Drug-induced changes in the synaptic neurotransmitter levels can be used to treat depression or neuropathic pain whereas in some instances prolonged usage can lead to habituation. Earlier structural studies of bacterial neurotransmitter transporter homolog LeuT and recent structure elucidation of the Drosophila dopamine transporter (dDAT) and human serotonin transporter (hSERT) have yielded a wealth of information in understanding the transport and inhibition mechanism of neurotransmitter transporters. Computational studies based on the structures of dDAT and hSERT have shed light on the dynamics of varied components of these molecular gates in affecting the uphill transport of neurotransmitters. This review seeks to address structural dynamics of neurotransmitter transporters at the extracellular and intracellular gates and the effect of inhibitors on the ligand-binding pocket. We also delve into the effect of additional factors including lipids and cytosolic domains that influence the translocation of neurotransmitters across the membrane.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
31
|
Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. Nat Struct Mol Biol 2019; 26:545-556. [PMID: 31270469 DOI: 10.1038/s41594-019-0253-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Monoamine transporters (MATs) regulate neurotransmission via the reuptake of dopamine, serotonin and norepinephrine from extra-neuronal regions and thus maintain neurotransmitter homeostasis. As targets of a wide range of compounds, including antidepressants, substances of abuse and drugs for neuropsychiatric and neurodegenerative disorders, their mechanism of action and their modulation by small molecules have long been of broad interest. Recent advances in the structural characterization of dopamine and serotonin transporters have opened the way for structure-based modeling and simulations, which, together with experimental data, now provide mechanistic understanding of their transport function and interactions. Here we review recent progress in the elucidation of the structural dynamics of MATs and their conformational landscape and transitions, as well as allosteric regulation mechanisms.
Collapse
|
32
|
Möller IR, Slivacka M, Nielsen AK, Rasmussen SGF, Gether U, Loland CJ, Rand KD. Conformational dynamics of the human serotonin transporter during substrate and drug binding. Nat Commun 2019; 10:1687. [PMID: 30976000 PMCID: PMC6459873 DOI: 10.1038/s41467-019-09675-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
The serotonin transporter (SERT), a member of the neurotransmitter:sodium symporter family, is responsible for termination of serotonergic signaling by re-uptake of serotonin (5-HT) into the presynaptic neuron. Its key role in synaptic transmission makes it a major drug target, e.g. for the treatment of depression, anxiety and post-traumatic stress. Here, we apply hydrogen-deuterium exchange mass spectrometry to probe the conformational dynamics of human SERT in the absence and presence of known substrates and targeted drugs. Our results reveal significant changes in dynamics in regions TM1, EL3, EL4, and TM12 upon binding co-transported ions (Na+/K+) and ligand-mediated changes in TM1, EL3 and EL4 upon binding 5-HT, the drugs S-citalopram, cocaine and ibogaine. Our results provide a comprehensive direct view of the conformational response of SERT upon binding both biologically relevant substrate/ions and ligands of pharmaceutical interest, thus advancing our understanding of the structure-function relationship in SERT.
Collapse
Affiliation(s)
- Ingvar R Möller
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Marika Slivacka
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Kathrine Nielsen
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ulrik Gether
- Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
33
|
Navratna V, Gouaux E. Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Curr Opin Struct Biol 2019; 54:161-170. [PMID: 30921707 DOI: 10.1016/j.sbi.2019.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Neurotransmitter sodium symporters (NSS) belong to the SLC6 family of solute carriers and play an essential role in neurotransmitter homeostasis throughout the body. In the past decade, structural studies employing bacterial orthologs of NSSs have provided insight into the mechanism of neurotransmitter transport. While the overall architecture of SLC6 transporters is conserved among species, in comparison to the bacterial homologs, the eukaryotic SLC6 family members harbor differences in amino acid sequence and molecular structure, which underpins their functional and pharmacological diversity, as well as their ligand specificity. Here, we review the structures and mechanisms of eukaryotic NSSs, focusing on the molecular basis for ligand recognition and on transport mechanism.
Collapse
Affiliation(s)
- Vikas Navratna
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
34
|
Substrate and inhibitor binding to the serotonin transporter: Insights from computational, crystallographic, and functional studies. Neuropharmacology 2019; 161:107548. [PMID: 30807752 DOI: 10.1016/j.neuropharm.2019.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
The serotonin transporter (SERT) belongs to the monoamine transporter family, which also includes the dopamine and norepinephrine transporters. SERT is essential for regulating serotonergic signaling by the reuptake of serotonin from the synaptic cleft back into the presynaptic neuron. Dysregulation of SERT has been implicated in several major psychiatric disorders such as major depressive disorder (MDD). MDD was among the top five leading causes of years lived with disease in 2016 and is characterized as a major global burden. Several drugs have been developed to target SERT for use in the treatment of MDD, and their respective binding modes and locations within SERT have been studied. The elucidation of the first structure of a bacterial SERT homologue in 2005 has accelerated crystallographic, computational, and functional studies to further elucidate drug binding and method of action in SERT. Herein, we aim to highlight and compare these studies with an emphasis on what the different experimental methods conclude on substrate and inhibitor binding modes, and the potential caveats of using the different types of studies are discussed. We focus this review on the binding of cognate substrate and drugs belonging to the different families of antidepressants, including tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and multimodal drugs, as well as illicit drugs such as cocaine, amphetamines, and ibogaine. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
35
|
Thiesen L, Frølund B, Wellendorph P. Lack of evidence for synaptic high-affinity γ-hydroxybutyric acid (GHB) transport in rat brain synaptosomes and 11 Na + -dependent SLC neurotransmitter transporters. J Neurochem 2018; 149:195-210. [PMID: 30570143 DOI: 10.1111/jnc.14649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/14/2023]
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous compound proposed to act as a neurotransmitter. Na+ -dependent, high-affinity GHB transport has long been considered important evidence supporting this hypothesis. However, the molecular identity of such a high-affinity transporter remains unknown. In this study, we sought to identify and characterize GHB synaptic transport through a series of studies using both native and recombinant systems with the ultimate aim of providing evidence to clarify the proposed role of GHB as a neurotransmitter in the mammalian brain. Native [3 H]GHB transport was studied in isolated rat brain synaptosomes and compared to synaptic membranes. As a targeted approach, GHB was also screened against a panel of Na+ -dependent SLC6 neurotransmitter transporters recombinantly expressed in Xenopus laevis oocytes or tsA201 cells. Finally, the low-affinity GHB transporters, MCT1/2 and SMCT1, were probed as GHB transporters in L-[14 C]lactate uptake assays in synaptosomes. We found no evidence of high-affinity [3 H]GHB transport in purified rat brain cortical or striatal synaptosomes or at any of the 11 SLC6 transporters tested. Instead, our results indicate the binding of [3 H]GHB to an unidentified membrane component, distinct from any of the known GHB targets. In accordance with others, we found that GHB and the analog 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) can, in millimolar concentrations, inhibit L-[14 C]lactate uptake at MCT1 and/or MCT2 and that this also can occur in synaptosomes. In conclusion, through a variety of in vitro pharmacological studies, we were unsuccessful in identifying a specific synaptic high-affinity transporter for GHB. Our findings emphasize the need to reevaluate GHB's role as a potential neurotransmitter. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Abramyan AM, Slack RD, Meena S, Davis BA, Newman AH, Singh SK, Shi L. Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology 2018; 161:107411. [PMID: 30391505 DOI: 10.1016/j.neuropharm.2018.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
The serotonin transporter (SERT) is one of the primary targets for medications to treat neuropsychiatric disorders and functions by exploiting pre-existing ion gradients of Na+, Cl-, and K+ to translocate serotonin from the synaptic cleft into the presynaptic neuron. Although recent hSERT crystal structures represent a milestone for structure-function analyses of mammalian neurotransmitter:sodium symporters, they are all derived from thermostabilized but transport-deficient constructs. Two of these structures are in complex with paroxetine, the most potent selective serotonin reuptake inhibitor known. In this study, by carrying out and analyzing the results of extensive and comparative molecular dynamics simulations while also re-evaluating the transport and binding properties of the thermostabilized constructs, we identified functionally important structural elements that are perturbed by these mutations, revealed unexpected dynamics in the central primary binding site of SERT, and uncovered a conceivable ambiguity in paroxetine's binding orientation. We propose that the favored entropy contribution plays a significant role in paroxetine's extraordinarily high affinity for SERT. Our findings lay the foundation for future mechanistic studies and rational design of high-affinity SERT inhibitors. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Ara M Abramyan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Rachel D Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Sitaram Meena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Bruce A Davis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| | - Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States.
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| |
Collapse
|
37
|
Xue W, Yang F, Wang P, Zheng G, Chen Y, Yao X, Zhu F. What Contributes to Serotonin-Norepinephrine Reuptake Inhibitors' Dual-Targeting Mechanism? The Key Role of Transmembrane Domain 6 in Human Serotonin and Norepinephrine Transporters Revealed by Molecular Dynamics Simulation. ACS Chem Neurosci 2018; 9:1128-1140. [PMID: 29300091 DOI: 10.1021/acschemneuro.7b00490] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dual inhibition of serotonin and norepinephrine transporters (hSERT and hNET) gives greatly improved efficacy and tolerability for treating major depressive disorder (MDD) compared with selective reuptake inhibitors. Pioneer studies provided valuable information on structure, function, and pharmacology of drugs targeting both hSERT and hNET (serotonin-norepinephrine reuptake inhibitors, SNRIs), and the differential binding mechanism between SNRIs and selective inhibitors of 5-HT (SSRIs) or NE (sNRIs) to their corresponding targets was expected to be able to facilitate the discovery of a privileged drug-like scaffold with improved efficacy. However, the dual-target mechanism of SNRIs was still elusive, and the binding mode distinguishing SNRIs from SSRIs and sNRIs was also unclear. Herein, an integrated computational strategy was adopted to discover the binding mode shared by all FDA approved SNRIs. The comparative analysis of binding free energy at the per-residue level discovered that residues Phe335, Leu337, Gly338, and Val343 located at the transmembrane domain 6 (TM6) of hSERT (the corresponding residues Phe317, Leu319, Gly320, and Val325 in hNET) were the determinants accounting for SNRIs' dual-acting inhibition, while residues lining TM3 and 8 (Ile172, Ser438, Thr439, and Leu443 in hSERT; Val148, Ser419, Ser420, and Met424 in hNET) contributed less to the binding of SNRIs than that of SSRIs and sNRIs. Based on these results, the distances between an SNRI's centroid and the centroids of its two aromatic rings (measuring the depth of rings stretching into hydrophobic pockets) were discovered as the key to the SNRIs' dual-targeting mechanism. This finding revealed SNRIs' binding mechanism at an atomistic level, which could be further utilized as structural blueprints for the rational design of privileged drug-like scaffolds treating MDD.
Collapse
Affiliation(s)
- Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
38
|
Alam M, Najmi AK, Ahmad I, Ahmad FJ, Akhtar MJ, Imam SS, Akhtar M. Formulation and evaluation of nano lipid formulation containing CNS acting drug: molecular docking, in-vitro assessment and bioactivity detail in rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:46-57. [DOI: 10.1080/21691401.2018.1451873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mahtab Alam
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Iqbal Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| | - Syed Sarim Imam
- Department of Pharmaceutics, Glocal School of Pharmacy, The Glocal University, Saharnpur, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly: Faculty of Pharmacy), Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struct Mol Biol 2018; 25:170-175. [PMID: 29379174 DOI: 10.1038/s41594-018-0026-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Selective serotonin reuptake inhibitors are clinically prescribed antidepressants that act by increasing the local concentrations of neurotransmitters at synapses and in extracellular spaces via blockade of the serotonin transporter. Here we report X-ray structures of engineered thermostable variants of the human serotonin transporter bound to the antidepressants sertraline, fluvoxamine, and paroxetine. The drugs prevent serotonin binding by occupying the central substrate-binding site and stabilizing the transporter in an outward-open conformation. These structures explain how residues within the central site orchestrate binding of chemically diverse inhibitors and mediate transporter drug selectivity.
Collapse
|
40
|
Xue W, Wang P, Tu G, Yang F, Zheng G, Li X, Li X, Chen Y, Yao X, Zhu F. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys Chem Chem Phys 2018; 20:6606-6616. [DOI: 10.1039/c7cp07869b] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A shared binding mode involving eleven key residues at the S1 site of MATs for the binding of amitifadine is identified.
Collapse
|
41
|
Zheng G, Yang F, Fu T, Tu G, Chen Y, Yao X, Xue W, Zhu F. Computational characterization of the selective inhibition of human norepinephrine and serotonin transporters by an escitalopram scaffold. Phys Chem Chem Phys 2018; 20:29513-29527. [DOI: 10.1039/c8cp06232c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective inhibition of human norepinephrine and serotonin transporters has been studied by computational approaches. 4 warm spots in hNET and 4 in hSERT were found to exert a pronounced effect on inhibition by the studied ligands.
Collapse
Affiliation(s)
- Guoxun Zheng
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Fengyuan Yang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Tingting Fu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Gao Tu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| | - Yuzong Chen
- Bioinformatics and Drug Design Group
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
- Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
- Chongqing University
- Chongqing 401331
- China
| | - Feng Zhu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science
| |
Collapse
|
42
|
Zou MF, Cao J, Abramyan AM, Kopajtic T, Zanettini C, Guthrie DA, Rais R, Slusher BS, Shi L, Loland CJ, Newman AH. Structure-Activity Relationship Studies on a Series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders. J Med Chem 2017; 60:10172-10187. [PMID: 29227643 PMCID: PMC5746459 DOI: 10.1021/acs.jmedchem.7b01454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of medications to treat cocaine use disorders has thus far defied success, leaving this patient population without pharmacotherapeutic options. As the dopamine transporter (DAT) plays a prominent role in the reinforcing effects of cocaine that can lead to addiction, atypical DAT inhibitors have been developed that prevent cocaine from binding to DAT, but they themselves are not cocaine-like. Herein, a series of novel DAT inhibitors were synthesized, and based on its pharmacological profile, the lead compound 10a was evaluated in phase I metabolic stability studies in mouse liver microsomes and compared to cocaine in locomotor activity and drug discrimination paradigms in mice. A molecular dynamic simulation study supported the hypothesis that atypical DAT inhibitors have similar binding poses at DAT in a conformation that differs from that of cocaine. Such differences may ultimately contribute to their unique behavioral profiles and potential for development as cocaine use disorder therapeutics.
Collapse
Affiliation(s)
- Mu-Fa Zou
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ara M. Abramyan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Theresa Kopajtic
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, Maryland 21224, United States
| | - Claudio Zanettini
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Daryl A. Guthrie
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Claus J. Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
43
|
Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice. PLoS One 2017; 12:e0187445. [PMID: 29091968 PMCID: PMC5665604 DOI: 10.1371/journal.pone.0187445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were screened for their binding affinity with serotonin transporter (SERT) and dopamine transporter (DAT) by docking molecular. 5-(4methoxyphenyl)-1-(2-(phenylselanyl)phenyl)-1H-1,2,3-triazole-4-carbonitrile (SeTACN) exhibited the best conformation with SERT even higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demonstrated additional affinity to other serotonergic receptors involved in antidepressant effects: 5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reductions in the immobility time of mice submitted to forced swimming test (FST) in the dose range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism of action was investigated using serotonergic and dopaminergic antagonists. The antidepressant-like effect of SeTACN (0.1mg/kg i.g.) was prevented by the pretreatment with WAY100635 (a selective 5HT1a antagonist), ketanserin (a 5HT2a/c antagonist) and ondansetron (a selective 5ht3 antagonist), PCPA (an inhibitor of serotonin synthesis) but not with SCH23390 (dopaminergic D1 antagonist) and sulpiride (D2 antagonist). Sub-effective dose of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST. None of the treatments affected locomotor activity in open field test (OFT). These results together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts, by serotonergic system.
Collapse
|
44
|
Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters. Cell Mol Life Sci 2017; 75:921-938. [PMID: 29058016 PMCID: PMC5809530 DOI: 10.1007/s00018-017-2677-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/03/2022]
Abstract
Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.
Collapse
|
45
|
Rannversson H, Andersen J, Bang-Andersen B, Strømgaard K. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers. ACS Chem Biol 2017; 12:2558-2562. [PMID: 28910072 DOI: 10.1021/acschembio.7b00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In spite of the important role of the human serotonin transporter (hSERT) in depression treatment, the molecular details of how antidepressant drugs bind are still not completely understood, in particular those related to potential high- and low-affinity binding sites in hSERT. Here, we utilize amber codon suppression in hSERT to encode the photo-cross-linking unnatural amino acid p-azido-l-phenylalanine into the suggested high- and low-affinity binding sites. We then employ UV-induced cross-linking with azF to map the binding site of escitalopram and paroxetine, two prototypical selective serotonin reuptake inhibitors (SSRIs). We find that the two antidepressant drugs exclusively cross-link to azF incorporated at the high-affinity binding site of hSERT, while cross-linking is not observed at the low-affinity binding site. Combined with previous homology models and recent structural data on hSERT, our results provide important information to understand the molecular details of these clinical relevant binding sites.
Collapse
Affiliation(s)
- Hafsteinn Rannversson
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Jacob Andersen
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | | | - Kristian Strømgaard
- Center
for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
46
|
Abramyan AM, Stolzenberg S, Li Z, Loland CJ, Noé F, Shi L. The Isomeric Preference of an Atypical Dopamine Transporter Inhibitor Contributes to Its Selection of the Transporter Conformation. ACS Chem Neurosci 2017; 8:1735-1746. [PMID: 28441487 DOI: 10.1021/acschemneuro.7b00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cocaine, a widely abused psychostimulant, inhibits the dopamine transporter (DAT) by trapping the protein in an outward-open conformation, whereas atypical DAT inhibitors such as benztropine have low abuse liability and prefer less outward-open conformations. Here, we use a spectrum of computational modeling and simulation approaches to obtain the underlying molecular mechanism in atomistic detail. Interestingly, our quantum mechanical calculations and molecular dynamics (MD) simulations suggest that a benztropine derivative JHW007 prefers a different stereoisomeric conformation of tropane in binding to DAT compared to that of a cocaine derivative, CFT. To further investigate the different inhibition mechanisms of DAT, we carried out MD simulations in combination with Markov state modeling analysis of wild-type and Y156F DAT in the absence of any ligand or the presence of CFT or JHW007. Our results indicate that the Y156F mutation and CFT shift the conformational equilibrium toward an outward-open conformation, whereas JHW007 prefers an inward-occluded conformation. Our findings reveal the mechanistic details of DAT inhibition by JHW007 at the atomistic level, which provide clues for rational design of atypical inhibitors.
Collapse
Affiliation(s)
- Ara M. Abramyan
- Computational
Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications
Discovery Branch, NIH/NIDA/IRP, Baltimore, Maryland 21224, United States
| | - Sebastian Stolzenberg
- Computational
Molecular Biology group, Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Zheng Li
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Claus J. Loland
- Molecular
Neuropharmacology Group, Department of Neuroscience and Pharmacology,
The Faculty of Health Sciences, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frank Noé
- Computational
Molecular Biology group, Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications
Discovery Branch, NIH/NIDA/IRP, Baltimore, Maryland 21224, United States
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
47
|
Wang P, Fu T, Zhang X, Yang F, Zheng G, Xue W, Chen Y, Yao X, Zhu F. Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim Biophys Acta Gen Subj 2017; 1861:2766-2777. [PMID: 28757337 DOI: 10.1016/j.bbagen.2017.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Drugs available for treating attention-deficit hyperactivity disorder (ADHD) are mainly selective norepinephrine (sNRIs) and dual norepinephrine-dopamine (NDRIs) reuptake inhibitors. The major problem of sNRIs lines in their delayed onset of action and partial- or non-responses, which makes NDRIs distinguished in drug efficacy. Understanding of the differential binding modes of these 2 types of drugs to their corresponding targets can give great insights into the discovery of privileged drug-like scaffolds with improved efficacy. So far, no such study has been carried out. METHODS A combinatorial computational strategy, integrating homology modeling, molecular docking, molecular dynamics (MD) and binding free energy calculation, was employed to analyze the binding modes of 8 clinically important ADHD drugs in their targets. RESULTS Binding modes of 2 types of ADHD drugs (sNRIs and NDRIs) in their targets was identified for the first time by MD simulation, and 15 hot spot residues were discovered as crucial for NDRIs' binding in hNET and hDAT. Comparing to sNRIs, a clear reduction in the hydrophobic property of NDRIs' one functional group was observed, and the depth of drugs' aromatic ring stretched into the pocket of both targets was further identified as key contributors to drugs' selectivity. CONCLUSIONS The hydrophobic property of NDRI ADHD drugs' one functional group contributes to their selectivity when bind hNET and hDAT. GENERAL SIGNIFICANCE These results provide insights into NDRI ADHD drugs' binding mechanisms, which could be utilized as structural blueprints for assessing and discovering more efficacious drugs for ADHD therapy.
Collapse
Affiliation(s)
- Panpan Wang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
48
|
Wang P, Zhang X, Fu T, Li S, Li B, Xue W, Yao X, Chen Y, Zhu F. Differentiating Physicochemical Properties between Addictive and Nonaddictive ADHD Drugs Revealed by Molecular Dynamics Simulation Studies. ACS Chem Neurosci 2017; 8:1416-1428. [PMID: 28557437 DOI: 10.1021/acschemneuro.7b00173] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental disorder of children and adolescents. Although psychostimulants are currently the first-line drugs for ADHD, their highly addictive profile raises great abuse concerns. It is known that psychostimulants' addictiveness is largely attributed to their interaction with dopamine transporter (DAT) and their binding modes in DAT can thus facilitate the understanding of the mechanism underlining drugs' addictiveness. However, no DAT residue able to discriminate ADHD drugs' addictiveness is identified, and the way how different drug structures affect their abuse liability is still elusive. In this study, multiple computational methods were integrated to differentiate binding modes between approved psychostimulants and ADHD drugs of little addictiveness. As a result, variation in energy contribution of 8 residues between addictive and nonaddictive drugs was observed, and a reduction in hydrophobicity of drugs' 2 functional groups was identified as the indicator of drugs' addictiveness. This finding agreed well with the physicochemical properties of 8 officially reported controlled substances. The identified variations in binding mode can shed light on the mechanism underlining drugs' addictiveness, which may thus facilitate the discovery of improved ADHD therapeutics with reduced addictive profile.
Collapse
Affiliation(s)
- Panpan Wang
- College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Shuang Li
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Bo Li
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic
Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuzong Chen
- Bioinformatics and
Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Feng Zhu
- College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
49
|
Yang F, Fu T, Zhang X, Hu J, Xue W, Zheng G, Li B, Li Y, Yao X, Zhu F. Comparison of computational model and X-ray crystal structure of human serotonin transporter: potential application for the pharmacology of human monoamine transporters. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1309653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Jie Hu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Bo Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Yinghong Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, P.R. China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and School of Public Affairs, Chongqing University, Chongqing, P.R. China
| |
Collapse
|
50
|
Talbot JN, Geffert LM, Jorvig JE, Goldstein RI, Nielsen CL, Wolters NE, Amos ME, Munro CA, Dallman E, Mereu M, Tanda G, Katz JL, Indarte M, Madura JD, Choi H, Leak RK, Surratt CK. Rapid and sustained antidepressant properties of an NMDA antagonist/monoamine reuptake inhibitor identified via transporter-based virtual screening. Pharmacol Biochem Behav 2016; 150-151:22-30. [DOI: 10.1016/j.pbb.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023]
|