1
|
Budhiraja S, McManus G, Baisiwala S, Perrault EN, Cho S, Saathoff M, Chen L, Park CH, Kazi HA, Dmello C, Lin P, James CD, Sonabend AM, Heiland DH, Ahmed AU. ARF4-mediated retrograde trafficking as a driver of chemoresistance in glioblastoma. Neuro Oncol 2024; 26:1421-1437. [PMID: 38506351 PMCID: PMC11300013 DOI: 10.1093/neuonc/noae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cellular functions hinge on the meticulous orchestration of protein transport, both spatially and temporally. Central to this process is retrograde trafficking, responsible for targeting proteins to the nucleus. Despite its link to many diseases, the implications of retrograde trafficking in glioblastoma (GBM) are still unclear. METHODS To identify genetic drivers of TMZ resistance, we conducted comprehensive CRISPR-knockout screening, revealing ADP-ribosylation factor 4 (ARF4), a regulator of retrograde trafficking, as a major contributor. RESULTS Suppressing ARF4 significantly enhanced TMZ sensitivity in GBM patient-derived xenograft (PDX) models, leading to improved survival rates (P < .01) in both primary and recurrent lines. We also observed that TMZ exposure stimulates ARF4-mediated retrograde trafficking. Proteomics analysis of GBM cells with varying levels of ARF4 unveiled the influence of this pathway on EGFR signaling, with increased nuclear trafficking of EGFR observed in cells with ARF4 overexpression and TMZ treatment. Additionally, spatially resolved RNA-sequencing of GBM patient tissues revealed substantial correlations between ARF4 and crucial nuclear EGFR (nEGFR) downstream targets, such as MYC, STAT1, and DNA-PK. Decreased activity of DNA-PK, a DNA repair protein downstream of nEGFR signaling that contributes to TMZ resistance, was observed in cells with suppressed ARF4 levels. Notably, treatment with DNA-PK inhibitor, KU-57788, in mice with a recurrent PDX line resulted in prolonged survival (P < .01), highlighting the promising therapeutic implications of targeting proteins reliant on ARF4-mediated retrograde trafficking. CONCLUSIONS Our findings demonstrate that ARF4-mediated retrograde trafficking contributes to the development of TMZ resistance, cementing this pathway as a viable strategy to overcome chemoresistance in GBM.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ella N Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sia Cho
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Miranda Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasaan A Kazi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Akhtar U, Khurshid Y, El-Aarag B, Syed B, Khan IA, Parang K, Ahmed A. Proteomic characterization and cytotoxic potential of proteins from Cuscuta (Cuscuta epithymum (L.) crude herbal product against MCF-7 human breast cancer cell line. BMC Complement Med Ther 2024; 24:195. [PMID: 38769554 PMCID: PMC11103822 DOI: 10.1186/s12906-024-04495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.
Collapse
Affiliation(s)
- Umaima Akhtar
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yamna Khurshid
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bishoy El-Aarag
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Basir Syed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Ishtiaq A Khan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Keykavous Parang
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
3
|
Taylor KE, Miller LG, Contreras LM. RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding. Biochem Soc Trans 2024; 52:111-122. [PMID: 38174726 DOI: 10.1042/bst20230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.
Collapse
Affiliation(s)
- Kathleen E Taylor
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lucas G Miller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
5
|
Ventura I, Revert F, Revert-Ros F, Gómez-Tatay L, Prieto-Ruiz JA, Hernández-Andreu JM. SP1 and NFY Regulate the Expression of PNPT1, a Gene Encoding a Mitochondrial Protein Involved in Cancer. Int J Mol Sci 2022; 23:ijms231911399. [PMID: 36232701 PMCID: PMC9570217 DOI: 10.3390/ijms231911399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
The Polyribonucleotide nucleotidyltransferase 1 gene (PNPT1) encodes polynucleotide phosphorylase (PNPase), a 3′-5′ exoribonuclease involved in mitochondrial RNA degradation and surveillance and RNA import into the mitochondrion. Here, we have characterized the PNPT1 promoter by in silico analysis, luciferase reporter assays, electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP), siRNA-based mRNA silencing and RT-qPCR. We show that the Specificity protein 1 (SP1) transcription factor and Nuclear transcription factor Y (NFY) bind the PNPT1 promoter, and have a relevant role regulating the promoter activity, PNPT1 expression, and mitochondrial activity. We also found in Kaplan–Meier survival curves that a high expression of either PNPase, SP1 or NFY subunit A (NFYA) is associated with a poor prognosis in liver cancer. In summary, our results show the relevance of SP1 and NFY in PNPT1 expression, and point to SP1/NFY and PNPase as possible targets in anti-cancer therapy.
Collapse
|
6
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
7
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Qi Y, Lang J, Zhu X, Huang J, Li L, Yi G. Retracted Article: Down-regulation of the radiation-induced pEGFR Thr654 mediated activation of DNA-PK by Cetuximab in cervical cancer cells. RSC Adv 2020; 10:1132-1141. [PMID: 35494466 PMCID: PMC9047960 DOI: 10.1039/c9ra04962b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma. Now, we aim to examine the role of pEGFRThr654 in the activation of DNA-PK and radio resistance. Either CaSki or HeLa cells were exposed to a dose of 4 Gy with a 6 MV X-ray in the presence or absence of Cetuximab or Gefitinib, then EGFR, pEGFRThr654, DNA-PKcs and pDNA-PKThr2609 levels were determined using a western blot. DNA damage was quantified with γH2AX foci analysis and the response of CaSki and HeLa cells to irradiation was determined using a colony formation assay. In CaSki and HeLa cells, irradiation induced nuclear EGFR accumulation, and pEGFRThr654 and pDNA-PKThr2609 levels were both significantly increased. Cetuximab pre-treatment significantly reduced the expression of pEGFRThr654 and pDNA-PKThr2609 and enhanced the γH2AX foci per cell and sensitivity enhancement ratio in CaSki cells. Gefitinib pre-treatment had a similar but weaker effect. In HeLa cells, similar effects of Cetuximab and Gefitinib on pEGFRThr654 and pDNA-PKThr2609 were observed, and no significant difference was found. We found that Cetuximab had a better effect than Gefitinib on attenuating the radio resistance in cervical squamous carcinoma cells via inhibiting pEGFRThr654-mediated nuclear EGFR transport and related DNA-PKT2609-mediated DNA repair. However, in adenocarcinoma cells, both EGFR-targeted drugs had no remarkable effects on the radio sensitivity. Taken together, radiotherapy combined with Cetuximab may be a promising strategy to improve the therapeutic gain for cervical squamous carcinoma patients. The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma.![]()
Collapse
Affiliation(s)
- Yunxiang Qi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Xiaodong Zhu
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jianming Huang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Lu Li
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Guangming Yi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| |
Collapse
|
9
|
Lee YJ, Ho SR, Graves JD, Xiao Y, Huang S, Lin WC. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res 2019; 21:134. [PMID: 31801577 PMCID: PMC6894136 DOI: 10.1186/s13058-019-1212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 01/25/2023] Open
Abstract
Background CGRRF1 is a growth suppressor and consists of a transmembrane domain and a RING-finger domain. It functions as a RING domain E3 ubiquitin ligase involved in endoplasmic reticulum-associated degradation. The expression of CGRRF1 is decreased in cancer tissues; however, the role of CGRRF1 in breast cancer and the mechanism(s) of its growth suppressor function remain to be elucidated. Methods To investigate whether CGRRF1 inhibits the growth of breast cancer, we performed MTT assays and a xenograft experiment. Tumors harvested from mice were further analyzed by reverse phase protein array (RPPA) analysis to identify potential substrate(s) of CGRRF1. Co-immunoprecipitation assay was used to verify the interaction between CGRRF1 and its substrate, followed by in vivo ubiquitination assays. Western blot, subcellular fractionation, and reverse transcription quantitative polymerase chain reaction (qRT-PCR) were performed to understand the mechanism of CGRRF1 action in breast cancer. Publicly available breast cancer datasets were analyzed to examine the association between CGRRF1 and breast cancer. Results We show that CGRRF1 inhibits the growth of breast cancer in vitro and in vivo, and the RING-finger domain is important for its growth-inhibitory activity. To elucidate the mechanism of CGRRF1, we identified EGFR as a new substrate of CGRRF1. CGRRF1 ubiquitinates EGFR through K48-linked ubiquitination, which leads to proteasome degradation. In addition to regulating the stability of EGFR, knockout of CGRRF1 enhances AKT phosphorylation after EGF stimulation. By analyzing the breast cancer database, we found that patients with low CGRRF1 expression have shorter survival. As compared to normal breast tissues, the mRNA levels of CGRRF1 are lower in breast carcinomas, especially in HER2-positive and basal-like breast cancers. We further noticed that CGRRF1 promoter methylation is increased in breast cancer as compared to that in normal breast tissue, suggesting that CGRRF1 is epigenetically modified in breast cancer. Treatment of 5-azactidine and panobinostat restored CGRRF1 expression, supporting that the promoter of CGRRF1 is epigenetically modified in breast cancer. Since 5-azactidine and panobinostat can increase CGRRF1 expression, they might be potential therapies for breast cancer treatment. Conclusion We demonstrated a tumor-suppressive function of CGRRF1 in breast cancer and identified EGFR as its target.
Collapse
Affiliation(s)
- Yu-Ju Lee
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA
| | - Joshua D Graves
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA.,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Xiao
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, MS: BCM187, Houston, TX, 77030, USA. .,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Shimada E, Ahsan FM, Nili M, Huang D, Atamdede S, TeSlaa T, Case D, Yu X, Gregory BD, Perrin BJ, Koehler CM, Teitell MA. PNPase knockout results in mtDNA loss and an altered metabolic gene expression program. PLoS One 2018; 13:e0200925. [PMID: 30024931 PMCID: PMC6053217 DOI: 10.1371/journal.pone.0200925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10-13), lipid (FDR = 3.21 x 10-11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10-3), axon development (FDR = 4.74 x 10-3), and axonal guidance (FDR = 4.74 x 10-3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.
Collapse
Affiliation(s)
- Eriko Shimada
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fasih M. Ahsan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mahta Nili
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dian Huang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tara TeSlaa
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dana Case
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Perrin
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Carla M. Koehler
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael A. Teitell
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Dittmann K, Mayer C, Czemmel S, Huber SM, Rodemann HP. New roles for nuclear EGFR in regulating the stability and translation of mRNAs associated with VEGF signaling. PLoS One 2017; 12:e0189087. [PMID: 29253018 PMCID: PMC5734708 DOI: 10.1371/journal.pone.0189087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/18/2017] [Indexed: 11/21/2022] Open
Abstract
Cell membrane-associated epidermal growth factor receptor (EGFR) translocates into a perinuclear/nuclear location upon stimulation, where it complexes with mRNAs. Treatment with radiation and cisplatin decreases the amounts of mRNAs present within this complex. Gene array analyses of mRNAs in complex with immunoprecipitated nEGFR revealed significant enrichment of different mRNA species compared to the control immunoprecipitation. Functional annotation with help of DAVID Gene Ontology Analysis identified under other terms the HIF-1A/VEGF signaling pathway as one of the top scoring KEGG pathways. RT-PCR and western blots revealed the radiation-induced expression of mRNAs and proteins involved in HIF-1A/VEGF signaling. Simultaneously, the levels of the corresponding validated miRNAs within the complex containing nEGFR and mRNAs were decreased. This finding argues that an mRNA/miRNA/nEGFR complex regulates protein expression. Indeed, we detected the GW182, AGO2, PABPC1 and cNOT1 proteins, which belong to the deadenylase complex, in a complex with nuclear EGFR. Erlotinib-mediated inhibition of EGFR kinase reduced the radiation-induced increase in mRNA expression. In this context, erlotinib reduced AGO2 phosphorylation by the EGFR kinase at residue Y393, which was associated with increased cNOT1 deadenylase activity and reduced mRNA stability. To prove the roles of miRNAs in this context, we transfected cells with an inhibitor of Hsa-mir-1180p5, which targets the NFATC4 mRNA, an mRNA associated with VEGF signaling, or pretreated cells with erlotinib. Indeed, Hsa-mir-1180p5 knockdown increased and the erlotinib treatment decreased the expression of the NFATC4 protein. The expression of the NFATC4 protein controlled the cloning efficiency and radiosensitivity of A549 and FaDu tumor cells. Thus, this study is the first to show that a membrane-located tyrosine kinase receptor, such as EGFR, is internalized to a nuclear/perinuclear location upon exposure to stress and modulates the stability and translation of miRNA-selected mRNAs. This mechanism enables cells to directly express proteins in response to EGFR activation and may contribute to treatment resistance in EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Klaus Dittmann
- Division of Radiobiology and Molecular Environmental Research, University of Tuebingen, Tuebingen, Germany
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| | - Claus Mayer
- Division of Radiobiology and Molecular Environmental Research, University of Tuebingen, Tuebingen, Germany
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tuebingen, Tuebingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, University of Tuebingen, Tuebingen, Germany
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Li H, You L, Xie J, Pan H, Han W. The roles of subcellularly located EGFR in autophagy. Cell Signal 2017; 35:223-230. [PMID: 28428083 DOI: 10.1016/j.cellsig.2017.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a well-studied receptor-tyrosine kinase that serves vital roles in regulation of organ development and cancer progression. EGFR not only exists on the plasma membrane, but also widely expressed in the nucleus, endosomes, and mitochondria. Most recently, several lines of evidences indicated that autophagy is regulated by EGFR in kinase-active and -independent manners. In this review, we summarized recent advances in our understanding of the functions of different subcellularly located EGFR on autophagy. Specifically, plasma membrane- and cytoplasm-located EGFR (pcEGFR) acts as a tyrosine kinase to regulate autophagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3, and STAT3 signaling pathways. The kinase-independent function of pcEGFR inhibits autophagy by maintaining SLC5A1-regulated intracellular glucose level. Endosome-located EGFR phosphorylates and inhibits Beclin1 to suppress autophagy, while kinase-independent endosome-located EGFR releases Beclin1 from the Rubicon-Beclin1 complex to increase autophagy. Additionally, the nuclear EGFR activates PRKDC/PNPase/MYC signaling to inhibit autophagy. Although the role of mitochondria-located EGFR in autophagy is largely unexplored, the production of ATP and reactive oxygen species mediated by mitochondrial dynamics is most likely to influence autophagy.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Xiong H, Nie X, Zou Y, Gong C, Li Y, Wu H, Qiu H, Yang L, Zhuang L, Zhang P, Zhang J, Wang Y, Xiong H. Twist1 Enhances Hypoxia Induced Radioresistance in Cervical Cancer Cells by Promoting Nuclear EGFR Localization. J Cancer 2017; 8:345-353. [PMID: 28261334 PMCID: PMC5332884 DOI: 10.7150/jca.16607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/29/2016] [Indexed: 01/02/2023] Open
Abstract
Twist1 is a crucial transcription factor that regulates epithelial mesenchymal transition and involves in metastasis. Recent evidence suggests that Twist1 plays important role in hypoxia-induced radioresistance, but the underlying mechanism remains elusive. Here we investigated the change of Twist1 expression in human cervical squamous cancer cell line SiHa after hypoxia treatment. We also explored the role of Twist1 in radioresistance by manipulating the expression level of Twist1. We observed that hypoxia treatment elevated the expression of Twist1 in SiHa cells. Knockdown of Twist1 with siRNA increased the radiosensitivity of SiHa cells under hypoxia condition, accompanied by reduced levels of nuclear Epidermal Growth Factor Receptor (EGFR) and DNA-dependent protein kinase (DNA-PK). Conversely, overexpression of Twist1 led to increased radioresistance of SiHa cells, which in turn increased nuclear EGFR localization and expression levels of nuclear DNA-PK. Moreover, concomitant high expression of hypoxia-inducible factor-1α (HIF-1α) and Twist1 in primary tumors of cervical cancer patients correlated with the worse prognosis after irradiation treatment. Taken together, these data provide new insights into molecular mechanism underlying hypoxia-induced radioresistance in cervical cancer cells, and suggest that Twist1 is a promising molecular target to improve the efficacy of cancer radiotherapy.
Collapse
Affiliation(s)
- Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Banerjee Mustafi S, Aznar N, Dwivedi SKD, Chakraborty PK, Basak R, Mukherjee P, Ghosh P, Bhattacharya R. Mitochondrial BMI1 maintains bioenergetic homeostasis in cells. FASEB J 2016; 30:4042-4055. [PMID: 27613804 PMCID: PMC5102112 DOI: 10.1096/fj.201600321r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
The polycomb complex proto-oncogene BMI1 [B lymphoma Mo-MLV insertion region 1 homolog (mouse)] is essential for self-renewal of normal and cancer stem cells. BMI1-null mice show severe defects in growth, development, and survival. Although BMI1 is known to exert its effect in the nucleus via repression of 2 potent cell-cycle regulators that are encoded by the Ink4a/Arf locus, deletion of this locus only partially rescues BMI1-null phenotypes, which is indicative of alternate mechanisms of action of BMI1. Here, we show that an extranuclear pool of BMI1 localizes to inner mitochondrial membrane and directly regulates mitochondrial RNA (mtRNA) homeostasis and bioenergetics. These mitochondrial functions of BMI1 are independent of its previously described nuclear functions because a nuclear localization-defective mutant BMI1 rescued several bioenergetic defects that we observed in BMI1-depleted cells, for example, mitochondrial respiration, cytochrome c oxidase activity, and ATP production. Mechanistically, BMI1 coprecipitated with polynucleotide phosphorylase, a ribonuclease that is responsible for decay of mtRNA transcripts. Loss of BMI1 enhanced ribonuclease activity of polynucleotide phosphorylase and reduced mtRNA stability. These findings not only establish a novel extranuclear role of BMI1 in the regulation of mitochondrial bioenergetics, but also provide new mechanistic insights into the role of this proto-oncogene in stem cell differentiation, neuronal aging, and cancer.-Banerjee Mustafi, S., Aznar, N., Dwivedi, S. K. D., Chakraborty, P. K., Basak, R., Mukherjee, P., Ghosh, P., Bhattacharya, R. Mitochondrial BMI1 maintains bioenergetic homeostasis in cells.
Collapse
Affiliation(s)
- Soumyajit Banerjee Mustafi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Prabir Kumar Chakraborty
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and
| | - Rumki Basak
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA; and
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA;
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| |
Collapse
|
15
|
NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci U S A 2016; 113:E2526-35. [PMID: 27091996 DOI: 10.1073/pnas.1522612113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3'UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs.
Collapse
|
16
|
Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res 2016; 6:827-842. [PMID: 27186434 PMCID: PMC4859887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023] Open
Abstract
In response to DNA damage lesions due to cellular stress, DNA damage response (DDR) pathways are activated to promote cell survival and genetic stability or unrepaired lesion-induced cell death. Current cancer treatments predominantly utilize DNA damaging agents, such as irradiation and chemotherapy drugs, to inhibit cancer cell proliferation and induce cell death through the activation of DDR. However, a portion of cancer patients is reported to develop therapeutic resistance to these DDR-inducing agents. One significant resistance mechanism in cancer cells is oncogenic kinase overexpression, which promotes cell survival by enhancing DNA damage repair pathways and evading cell cycle arrest. Among the oncogenic kinases, overexpression of receptor tyrosine kinases (RTKs) is reported in many of solid tumors, and numerous clinical trials targeting RTKs are currently in progress. As the emerging trend in cancer treatment combines DNA damaging agents and RTK inhibitors, it is important to understand the substrates of RTKs relative to the DDR pathways. In addition, alteration of RTK expression and their phosphorylated substrates can serve as biomarkers to stratify patients for combination therapies. In this review, we summarize the deleterious effects of RTKs on the DDR pathways and the emerging biomarkers for personalized therapy.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Graduate School of Biomedical Science, The University of Texas Health Science Center at HoustonHouston, Texas 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, 77030, USA
| | - Mien-Chie Hung
- Graduate School of Biomedical Science, The University of Texas Health Science Center at HoustonHouston, Texas 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, 77030, USA
- Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| |
Collapse
|
17
|
Cuneo KC, Nyati MK, Ray D, Lawrence TS. EGFR targeted therapies and radiation: Optimizing efficacy by appropriate drug scheduling and patient selection. Pharmacol Ther 2015; 154:67-77. [PMID: 26205191 PMCID: PMC4570853 DOI: 10.1016/j.pharmthera.2015.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection.
Collapse
Affiliation(s)
- Kyle C Cuneo
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States; Ann Arbor Veterans Affairs Hospital, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Mukesh K Nyati
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Dipankar Ray
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Theodore S Lawrence
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States.
| |
Collapse
|
18
|
Lee HH, Wang YN, Hung MC. Non-canonical signaling mode of the epidermal growth factor receptor family. Am J Cancer Res 2015; 5:2944-58. [PMID: 26693051 PMCID: PMC4656722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) and its family members are key players in both physiological and pathological settings for which they are well recognized as models for investigating the functions and regulations of other membrane receptor tyrosine kinases (RTKs) and serve as therapeutic targets critical to clinical need and fundamental research. The canonical view of the pivotal functions in the EGFR family has been well documented as being an initiator of signaling amplification cascades from the plasma membrane to different subcellular compartments via receptor endocytic trafficking, intermolecular interaction, and kinase-substrate reaction in a temporalspatial manner. However, several lines of evidence have identified non-canonical roles of the EGFR family, acting as a transcriptional factor and a chromatin regulator in the nucleus to regulate gene expression, DNA replication, and DNA damage repair. Moreover, the EGFR family can even exert its impact outside the host cell through exosomal vesicle secretion. The emerging concept of the non-canonical roles of the EGFR family reveals an astonishing and elaborate scheme on the molecular functions of membrane RTKs, offering new insights into the receptor biology as well as the development of comprehensive therapeutic strategies in the future.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung 404, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at HoustonHouston 77030, TX, USA
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| |
Collapse
|
19
|
Kuo HY, Huang YS, Tseng CH, Chen YC, Chang YW, Shih HM, Wu CW. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle 2015; 13:3132-42. [PMID: 25486572 DOI: 10.4161/15384101.2014.949212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Promyelocytic leukemia protein (PML) is emerging as an important tumor suppressor. Its expression is lost during the progression of several types of cancer, including lung cancer. The EGF receptor (EGFR), a membrane-bound receptor tyrosine kinase, transduces intracellular signals responsible for cell proliferation, differentiation and migration. EGFR activity is frequently abnormally upregulated in lung adenocarcinoma (LAC) and thus is considered to be a driving oncogene for LAC. EGFR translocates into the nucleus and transcriptionally activates genes, such as CCND1, that promote cell growth. Recently, we demonstrated that PML interacted with nuclear EGFR (nEGFR) and suppressed the nEGFR-mediated transcriptional activation of CCND1 in lung cancer cells, thereby restraining cell growth. When we further investigated the interplay between PML and EGFR in lung cancer metastasis, we found that the matrix metalloprotease-2 gene (MMP2) was a novel nEGFR target gene and was repressed by PML. We provide evidence that nEGFR bound to the AT-rich sequence (ATRS) in the MMP2 promoter and enhanced its transcriptional activity. In addition, we demonstrated that PML repressed nEGFR-induced MMP2 transcription and reduced cell invasion. PML was recruited by nEGFR to the MMP2 promoter where it reduced histone acetylation, leading to the transcriptional repression of MMP2. Finally, we demonstrated that PML upregulation by interferon-β (IFNβ) in lung cancer cells decreased MMP2 expression and cell invasion. Together, our results suggested that IFNβ induced PML to inhibit lung cancer metastasis by repressing the nEGFR-mediated transcriptional activation of MMP2.
Collapse
Affiliation(s)
- Hong-Yi Kuo
- a Institute of Biochemistry and Molecular Biology ; National Yang Ming University ; Taipei , Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Nuclear EGFR renders cells radio-resistant by binding mRNA species and triggering a metabolic switch to increase lactate production. Radiother Oncol 2015; 116:431-7. [PMID: 26320552 DOI: 10.1016/j.radonc.2015.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE EGFR is translocated into the cell nucleus in response to irradiation, where it is involved in regulation of radio-sensitivity. The aim of this study is to elucidate the functional role of nuclear EGFR. MATERIAL AND METHODS To identify EGFR-bound nuclear proteins and mRNAs, Maldi-TOF analysis and mRNA gene arrays were used. Complex formation of proteins was shown by confocal microscopy, immunoprecipitation and Western blotting. The effect of EGFR binding to mRNAs was exhibited by quantitative RT-PCR. Cellular endpoints were shown by Western blotting, mitochondrial mass quantification, lactate quantification and clonogenic survival assays. RESULTS Maldi-TOF analysis of proteins bound to nuclear EGFR in response to irradiation showed colocalization with Lamin A and heterogeneous nuclear ribonucleoproteins. Confocal microscopy and Western blotting confirmed this colocalization. Both Lamin A and heterogeneous nuclear ribonucleoproteins are involved in mRNA processing. To support a role of nEGFR in this context after irradiation, we isolated EGFR-bound mRNA and observed an EGFR kinase-dependent mRNA stabilizing effect. With the help of DNA microarrays, we identified mRNAs associated with the Warburg effect that were bound to nuclear EGFR. In this context, we observed radiation-induced HIF1α expression, which triggers inhibition of pyruvate dehydrogenase and blocks the tricarboxylic acid cycle. Consequently, we detected mitophagy and increased lactate production, which is associated with increased treatment resistance. Reduction of nEGFR decreased radiation-induced expression of Hif1α and lactate production. CONCLUSIONS We showed that nuclear EGFR selectively binds and stabilizes mRNA involved in the Warburg effect in response to irradiation. As a consequence, cells switch from aerobic to anaerobic glucose metabolism, which can be prevented by HIF1α inhibitor BAY87-2243, Dasatinib, Erlotinib or EGFR siRNA.
Collapse
|
21
|
Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Res 2015; 25:225-36. [PMID: 25601159 DOI: 10.1038/cr.2015.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 11/08/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition.
Collapse
|
22
|
Huo L, Li CW, Huang TH, Lam YC, Xia W, Tu C, Chang WC, Hsu JL, Lee DF, Nie L, Yamaguchi H, Wang Y, Lang J, Li LY, Chen CH, Mishra L, Hung MC. Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells. Am J Transl Res 2014; 6:649-663. [PMID: 25628777 PMCID: PMC4297334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
Nuclear translocation of EGFR has been shown to be important for tumor cell growth, survival, and therapeutic resistance. Previously, we detected the association of EGFR with Keap1 in the nucleus. Keap1 is a Kelch-like ECH-associated protein, which plays an important role in cellular response to chemical and oxidative stress by regulating Nrf2 protein stability and nuclear translocation. In this study, we investigate the role of EGFR in regulating Keap1/Nrf2 cascade in the nucleus and provide evidence to show that nuclear EGFR interacts with and phosphorylates nuclear Keap1 to reduce its nuclear protein level. The reduction of nuclear Keap1 consequently stabilizes nuclear Nrf2 and increases its transcriptional activity in cancer cells, which contributes to tumor cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Tzu-Hsuan Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Yung Carmen Lam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Chun Tu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Wei-Chao Chang
- Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
- Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| | - Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Hirohito Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Jingyu Lang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Long-Yuan Li
- Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia SinicaNankang, Taipei 105, Taiwan
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center1515 Holcombe Boulevard, Houston, TX 77030
- Graduate Institute for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
| |
Collapse
|
23
|
Chou RH, Wang YN, Hsieh YH, Li LY, Xia W, Chang WC, Chang LC, Cheng CC, Lai CC, Hsu JL, Chang WJ, Chiang SY, Lee HJ, Liao HW, Chuang PH, Chen HY, Wang HL, Kuo SC, Chen CH, Yu YL, Hung MC. EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4. Dev Cell 2014; 30:224-37. [PMID: 25073158 DOI: 10.1016/j.devcel.2014.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/21/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
Abstract
Posttranslational modifications of histones play fundamental roles in many biological functions. Specifically, histone H4-K20 methylation is critical for DNA synthesis and repair. However, little is known about how these functions are regulated by the upstream stimuli. Here, we identify a tyrosine phosphorylation site at Y72 of histone H4, which facilitates recruitment of histone methyltransferases (HMTases), SET8 and SUV4-20H, to enhance its K20 methylation, thereby promoting DNA synthesis and repair. Phosphorylation-defective histone H4 mutant is deficient in K20 methylation, leading to reduced DNA synthesis, delayed cell cycle progression, and decreased DNA repair ability. Disrupting the interaction between epidermal growth factor receptor (EGFR) and histone H4 by Y72 peptide significantly reduced tumor growth. Furthermore, EGFR expression clinically correlates with histone H4-Y72 phosphorylation, H4-K20 monomethylation, and the Ki-67 proliferation marker. These findings uncover a mechanism by which EGFR transduces signal to chromatin to regulate DNA synthesis and repair.
Collapse
Affiliation(s)
- Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ying-Nai Wang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi-Hsien Hsieh
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ling-Chu Chang
- Graduate Institute of Pharmaceutical Chemical, China Medical University, Taichung 404, Taiwan
| | - Chien-Chia Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chien-Chen Lai
- Graduate Institute of Chinese Medical Science, China Medical University and Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jennifer L Hsu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Shu-Ya Chiang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hong-Jen Lee
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hsin-Wei Liao
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pei-Huan Chuang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hui-Yu Chen
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Hung-Ling Wang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemical, China Medical University, Taichung 404, Taiwan
| | | | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Mien-Chie Hung
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Liccardi G, Hartley JA, Hochhauser D. Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin Cancer Res 2014; 20:3496-506. [PMID: 24780295 DOI: 10.1158/1078-0432.ccr-13-2695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) plays an important role in cellular response to chemotherapy and radiotherapy through modulation of DNA repair. EGFR activates DNA-dependent protein kinase (DNA-PK) stimulating repair of DNA strand breaks (SB) and interstrand crosslinks (ICL). We investigated the role of EGFR in repair of ionizing radiation (IR)-induced SB independently of DNA-PK. EXPERIMENTAL DESIGN The EGFR interactome was investigated via mass spectrometry. IR-induced EGFR-ERCC1 binding was validated biochemically and via proximity ligation assay in different cell lines including the M059K and M059J glioma cell lines, proficient and deficient for the expression of DNAPKcs, respectively. EGFR-ERCC1 functional significance following IR-induced SB was investigated in knockdown experiments with the Comet and γH2AX foci assays. The effect of this interaction was tested with EGFR-ERCC1 knockdown in combination with gefitinib and NU7026 using the MTT and apoptosis assays. RESULTS This study demonstrates that EGFR inhibition further impairs IR-induced DNA repair in cells lacking expression of DNAPKcs or in combination with the DNAPK inhibitor NU7026. Our data suggest a role for EGFR in DNA repair independent of DNAPKcs but dependent on ERCC1. Alkaline comet and γH2AX foci assays in cells depleted of EGFR, ERCC1, or EGFR-ERCC1 expression demonstrated involvement of this interaction in DNA repair. Cellular survival and apoptosis data correlate with levels of residual DNA damage underlying the importance of this complex following SB. CONCLUSION These data emphasize the importance of understanding the various mechanisms by which EGFR modulates DNA repair to optimize targeted therapy for patients with cancer.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - John A Hartley
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
25
|
Yu YL, Su KJ, Hsieh MJ, Wang SS, Wang PH, Weng WC, Yang SF. Impact of EZH2 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic features. PLoS One 2014; 9:e93635. [PMID: 24691023 PMCID: PMC3972169 DOI: 10.1371/journal.pone.0093635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/05/2014] [Indexed: 12/23/2022] Open
Abstract
Background The gene EZH2, the polycomb group protein enhancer of zeste 2, encodes a transcriptional repressor that also serves as a histone methyltransferase that is associated with progression to more advanced disease in a variety of malignancies. EZH2 expression level in urothelial cell carcinoma (UCC) is highly correlated with tumor aggressiveness, but it has not been determined if specific EZH2 genetic variants are associated with UCC risk. This study investigated the potential associations of EZH2 single-nucleotide polymorphisms with UCC susceptibility and its clinicopathologic characteristics. Methodology/Principal Findings A total of 233 UCC patients and 552 cancer-free controls, all of whom were from Taiwan, were analyzed for four EZH2 single-nucleotide polymorphisms (rs6950683, rs2302427, rs3757441, and rs41277434) using real-time PCR genotyping. After adjusting for other co-variants, we found that individuals carrying at least one C allele at EZH2 rs6950683 had a lower risk of developing UCC than did major allele carriers. The CCCA or TGTA haplotype among the four EZH2 sites was also associated with a reduced risk of UCC. Furthermore, UCC patients who carried at least one G allele at rs2302427 had a lower invasive tumor stage than did patients carrying the major allele. Conclusions The rs6950683 SNPs of EZH2 might contribute to the prediction of UCC susceptibility. This is the first study to provide insight into risk factors associated with EZH2 variants in carcinogenesis of UCC in Taiwan.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Kuo-Jung Su
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Weng
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- * E-mail: (SFY); (WCW)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (SFY); (WCW)
| |
Collapse
|
26
|
Mishra A, Gauri SS, Mukhopadhyay SK, Chatterjee S, Das SS, Mandal SM, Dey S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014; 54:148-58. [PMID: 24503375 DOI: 10.1016/j.peptides.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents.
Collapse
Affiliation(s)
- Abheepsa Mishra
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Samiran S Gauri
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sourav K Mukhopadhyay
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Soumya Chatterjee
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shibendu S Das
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Satyahari Dey
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
27
|
Yu YL, Yiang GT, Chou PL, Tseng HH, Wu TK, Hung YT, Lin PS, Lin SY, Liu HC, Chang WJ, Wei CW. Dual role of acetaminophen in promoting hepatoma cell apoptosis and kidney fibroblast proliferation. Mol Med Rep 2014; 9:2077-84. [PMID: 24682227 PMCID: PMC4055434 DOI: 10.3892/mmr.2014.2085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high‑dose APAP‑induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low‑dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high‑dose APAP treatment inhibited while therapeutic and low‑dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H2O2 level, activated the caspase‑9/‑3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low‑dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy‑Immunology‑Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Tsai-Kun Wu
- 2The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Pei-Shiuan Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Shu-Yu Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| |
Collapse
|
28
|
Chen DR, Chuang CY, Wu BC, Yang SF, Peng YH, Tsai HT. Association of novel gene polymorphisms RRM1 -756T>C and -269 C>A with breast cancer. J Clin Lab Anal 2014; 28:287-93. [PMID: 24578158 DOI: 10.1002/jcla.21682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Genetic variants are reported to play an important role in the susceptibility of breast cancer. Ribonucleotide reductase 1 (RRM1) is suggested to play an essential role in the regulation of cancer development. The purpose of this study was to identify novel gene polymorphisms of RRM1 -756T>C and RRM1 -269 C>A specific to patients with breast cancer and healthy controls. METHODS A total of 833 subjects, including 321 healthy controls and 512 patients with breast cancer, were recruited in this study. Allelic discrimination of RRM1 -756T>C (rs11030919) and RRM1 -269C>A (rs12806698) polymorphisms of the RRM1 gene was assessed with the real-time polymerase chain reaction. RESULTS The adjusted odds ratios and 95% confidence intervals were 1.20 (0.71-2.04) and 1.10 (0.65-1.86) to have breast cancer among individuals with CC alleles of RRM1 -756T>C and individuals with AA alleles of RRM1 -269C>A gene polymorphism, respectively, compared to individuals having wild type of RRM1 gene polymorphisms. Also, there was no significant genetic interaction effect on the susceptibility of breast cancer and nonassociation between genetic polymorphisms and clinical statuses of breast cancer. CONCLUSION Gene polymorphisms of RRM1 -756T>C and RRM1 -269C>A may be not an important factor for the susceptibility of breast cancer.
Collapse
Affiliation(s)
- Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Tsai JP, Hsiao PC, Yang SF, Hsieh SC, Bau DT, Ling CL, Pai CL, Hsieh YH. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-κB mediated urokinase plasminogen activator expression. PLoS One 2014; 9:e86537. [PMID: 24466137 PMCID: PMC3899273 DOI: 10.1371/journal.pone.0086537] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/14/2013] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular cell carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide and in Taiwan. Chemoprevention of cancer with dietary bioactive compounds could potentially reverse, suppress, or prevent cancer progression. Licochalcone A (LicA) is a characteristic chalcone of licorice, which is the root of Glycyrrhiza inflate. It had been reported that LicA has anti-inflammatory, anti-microbial, and anti-tumor properties. However, the effects of LicA on the migration and invasion of human HCC cells have not yet been reported. In the present study, it was found that LicA inhibits the migratory and invasion ability of SK-Hep-1 and HA22T/VGH cells in a dose-dependent manner, as assessed by the cell migration and Matrigel cell invasion assay. Using casein zymography, Western blotting, reverse transcriptase polymerase chain reaction, and an immunofluorescence assay, it was found that LicA induces a dose-dependent inhibition of uPA activity and expression, as well as reduces mRNA levels in SK-Hep-1 and HA22T/VGH cells. LicA was also found to inhibit the expression of phosphor-JNK and phosphor-MKK4 in SK-Hep-1 cells. Furthermore, LicA significantly decreased uPA levels in SP600125-treated or si-MKK4-transfected cells alongside a marked reduction in cell migration and invasion, which supports the notion that an inhibition of MKK4/JNK results in anti-metastatic effects. Moreover, LicA inhibited the expression of nuclear NF-κB, as well as the binding ability of NF-κB to the uPA promoter. These findings further our understanding of the role of LicA in suppressing tumor metastasis and its underlying molecular mechanisms, as well as suggest that LicA may be a promising anti-metastatic agent.
Collapse
Affiliation(s)
- Jen-Pi Tsai
- Department of Nephrology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Ching Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chu-Liang Ling
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Li Pai
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Sokhi UK, Bacolod MD, Dasgupta S, Emdad L, Das SK, Dumur CI, Miles MF, Sarkar D, Fisher PB. Identification of genes potentially regulated by human polynucleotide phosphorylase (hPNPase old-35) using melanoma as a model. PLoS One 2013; 8:e76284. [PMID: 24143183 PMCID: PMC3797080 DOI: 10.1371/journal.pone.0076284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.
Collapse
Affiliation(s)
- Upneet K. Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Manny D. Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Santanu Dasgupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Huang S, Peet CR, Saker J, Li C, Armstrong EA, Kragh M, Pedersen MW, Harari PM. Sym004, a novel anti-EGFR antibody mixture, augments radiation response in human lung and head and neck cancers. Mol Cancer Ther 2013; 12:2772-81. [PMID: 24130052 DOI: 10.1158/1535-7163.mct-13-0587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sym004 represents a novel EGF receptor (EGFR)-targeting approach comprising a mixture of two anti-EGFR antibodies directed against distinct epitopes of EGFR. In contrast with single anti-EGFR antibodies, Sym004 induces rapid and highly efficient degradation of EGFR. In the current study, we examine the capacity of Sym004 to augment radiation response in lung cancer and head and neck cancer model systems. We first examined the antiproliferative effect of Sym004 and confirmed 40% to 60% growth inhibition by Sym004. Using clonogenic survival analysis, we identified that Sym004 potently increased cell kill by up to 10-fold following radiation exposure. A significant increase of γH2AX foci resulting from DNA double-strand breaks was observed in Sym004-treated cells following exposure to radiation. Mechanistic studies further showed that Sym004 enhanced radiation response via induction of cell-cycle arrest followed by induction of apoptosis and cell death, reflecting inhibitory effects on DNA damage repair. The expression of several critical molecules involved in radiation-induced DNA damage repair was significantly inhibited by Sym004, including DNAPK, NBS1, RAD50, and BRCA1. Using single and fractionated radiation in human tumor xenograft models, we confirmed that the combination of Sym004 and radiation resulted in significant tumor regrowth delay and superior antitumor effects compared with treatment with Sym004 or radiation alone. Taken together, these data reveal the strong capacity of Sym004 to augment radiation response in lung and head and neck cancers. The unique action mechanism of Sym004 warrants further investigation as a promising EGFR targeting agent combined with radiotherapy in cancer therapy.
Collapse
Affiliation(s)
- Shyhmin Huang
- Corresponding Author: Paul M. Harari, Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, K4/336, 600 Highland Avenue, Madison, WI 53792-0600.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
To date, 18 distinct receptor tyrosine kinases (RTKs) are reported to be trafficked from the cell surface to the nucleus in response to ligand binding or heterologous agonist exposure. In most cases, an intracellular domain (ICD) fragment of the receptor is generated at the cell surface and translocated to the nucleus, whereas for a few others the intact receptor is translocated to the nucleus. ICD fragments are generated by several mechanisms, including proteolysis, internal translation initiation, and messenger RNA (mRNA) splicing. The most prevalent mechanism is intramembrane cleavage by γ-secretase. In some cases, more than one mechanism has been reported for the nuclear localization of a specific RTK. The generation and use of RTK ICD fragments to directly communicate with the nucleus and influence gene expression parallels the production of ICD fragments by a number of non-RTK cell-surface molecules that also influence cell proliferation. This review will be focused on the individual RTKs and to a lesser extent on other growth-related cell-surface transmembrane proteins.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
33
|
Gupta AA, Chou RH, Li H, Yang LW, Yu C. Structural insights into the interaction of human S100B and basic fibroblast growth factor (FGF2): Effects on FGFR1 receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2606-19. [PMID: 24063890 DOI: 10.1016/j.bbapap.2013.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 01/11/2023]
Abstract
S100B is a calcium sensing protein belonging to the S100 protein family with intracellular and extracellular roles. It is one of the EF hand homodimeric proteins, which is known to interact with various protein targets to regulate varied biological functions. Extracellular S100B has been recently reported to interact with FGF2 in a RAGE-independent manner. However, the recognition mechanism of S100B-FGF2 interaction at the molecular level remains unclear. In this study, the critical residues on S100B-FGF2 interface were mapped by combined information derived from NMR spectroscopy and site directed mutagenesis experiments. Utilizing NMR titration data, we generated the structural models of S100B-FGF2 complex from the computational docking program, HADDOCK which were further proved stable during 15ns unrestrained molecular dynamics (MD) simulations. Isothermal titration calorimetry studies indicated S100B interaction with FGF2 is an entropically favored process implying dominant role of hydrophobic contacts at the protein-protein interface. Residue level information of S100B interaction with FGF2 was useful to understand the varied target recognition ability of S100B and further explained its role in effecting extracellular signaling diversity. Mechanistic insights into the S100B-FGF2 complex interface and cell-based assay studies involving mutants led us to conclude the novel role of S100B in FGF2 mediated FGFR1 receptor inactivation.
Collapse
Affiliation(s)
- Arun A Gupta
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Chang SLY, Chou RH, Zeng HJ, Lin YH, Chiu TY, Yang DM, Hung SC, Lai CH, Hsieh JT, Shyu WC, Yu YL. Downregulation of DAB2IP promotes mesenchymal-to-neuroepithelial transition and neuronal differentiation of human mesenchymal stem cells. PLoS One 2013; 8:e75884. [PMID: 24073285 PMCID: PMC3779184 DOI: 10.1371/journal.pone.0075884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
The DOC-2/DAB2 interactive protein (DAB2IP) is a new member of the Ras GTPase–activating protein family. Recent studies have shown that, in addition to its tumor suppressive role in various tumors, DAB2IP also plays an important role in regulating neuronal migration and positioning during brain development. In this study, we determined the roles of DAB2IP in the neuronal differentiation of human mesenchymal stem cells (hMSCs). We found that lentiviral short hairpin RNA (shRNA)-mediated knockdown of DAB2IP promoted the mesenchymal-to-neuroepithelial stem cell transition (MtNeST) and neuronal differentiation, which were accompanied by a reduction of cell proliferation but not apoptosis or cellular senescence. This suggests that DAB2IP plays an important role in the neuronal induction of hMSCs. Moreover, our finding that reduction of glycogen synthase kinase 3 beta (GSK3β) activity upon LiCl pretreatment inhibited both the MtNeST and production of MAP2-positive cells upon DAB2IP knockdown suggests that this transition is most likely mediated by regulation of the GSK3β signaling pathway. Our study demonstrates that DAB2IP participates in the first step of neuron induction of hMSCs, which implies a potentially important role for DAB2IP in the MtNeST during neurogenesis.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Basic Medical Science, and Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Hong-Jie Zeng
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Hsuan Lin
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Tai-Yu Chiu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biophotonics, School of Medical Technology and Engineering and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - De-Ming Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biophotonics, School of Medical Technology and Engineering and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Stem Cell Laboratory, Department of Medical Research and Education, Orthopaedics and Traumatology, Taipei Veterans General Hospital and Institute of Clinical Medicine, Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jer-Tsong Hsieh
- University of Texas, Department of Urology, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center and Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (YLY); (WCS)
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail: (YLY); (WCS)
| |
Collapse
|
35
|
Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon. PLoS One 2013; 8:e74975. [PMID: 24073229 PMCID: PMC3779228 DOI: 10.1371/journal.pone.0074975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023] Open
Abstract
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.
Collapse
|
36
|
Lin CW, Chuang CY, Tang CH, Chang JL, Lee LM, Lee WJ, Chow JM, Yang SF, Chien MH. Combined effects of icam-1 single-nucleotide polymorphisms and environmental carcinogens on oral cancer susceptibility and clinicopathologic development. PLoS One 2013; 8:e72940. [PMID: 24069166 PMCID: PMC3771971 DOI: 10.1371/journal.pone.0072940] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In Taiwan, oral cancer has causally been associated with environmental carcinogens. Intercellular adhesion molecule (ICAM)-1, a cell adhesion molecule with a key role in inflammation and immunosurveillance, was implicated in carcinogenesis by facilitating instability in the tumor environment. The current study explored the combined effect of ICAM-1 gene polymorphisms and exposure to environmental carcinogens on the susceptibility of developing oral squamous cell carcinoma (OSCC) and the clinicopathological characteristics of the tumors. METHODOLOGY AND PRINCIPAL FINDINGS Four single-nucleotide polymorphisms (SNPs) of the ICAM-1 gene from 595 patients with oral cancer and 561 non-cancer controls were analyzed by a real-time PCR. We found that the ICAM-1 rs5498 polymorphism and the TAGG or TACG haplotype of 4 ICAM-1 SNPs (rs3093030, rs5491, rs281432, and rs5498) combined were associated with oral-cancer susceptibility. Among 727 smokers, ICAM-1 polymorphisms carriers with the betel-nut chewing habit had a 27.49-36.23-fold greater risk of having oral cancer compared to ICAM-1 wild-type (WT) carriers without the betel-nut chewing habit. Among 549 betel-nut chewers, ICAM-1 polymorphisms carriers who smoked had a 9.93-14.27-fold greater risk of having oral cancer compared to those who carried the WT but did not smoke. Finally, patients with oral cancer who had at least 1 T allele of ICAM-1 rs5491 or 1 G allele of rs281432 were at lower risk of developing an advanced clinical stage (III/IV) (p<0.05), compared to those patients with AA or CC homozygotes. CONCLUSIONS Our results suggest that the ICAM-1 rs5498 SNP and either of 2 haplotypes of 4 SNPs combined have potential predictive significance in oral carcinogenesis. Gene-environment interactions of ICAM-1 polymorphisms, smoking, and betel-nut chewing might alter oral-cancer susceptibility. ICAM-1 rs5491 and rs281432 may be applied as factors to predict the clinical stage in OSCC patients.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Junn-Liang Chang
- Department of Medical Management, Taoyuan Armed Forces General Hospital, Taoyuan County, Taiwan
- School of Medicine, Pathology Department, National Defense Medical Center, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fan Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fan Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Section of Hematology-Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (MHC); (SFY)
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MHC); (SFY)
| |
Collapse
|
37
|
Chou RH, Hsieh SC, Yu YL, Huang MH, Huang YC, Hsieh YH. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS One 2013; 8:e71983. [PMID: 23940799 PMCID: PMC3733924 DOI: 10.1371/journal.pone.0071983] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion.
Collapse
Affiliation(s)
- Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shu-Ching Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Min-Hsien Huang
- Department of Rehabilitation Science, Department of Acupressure Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, County, Taiwan
| | - Yi-Chang Huang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
38
|
α-Mangostin induces mitochondrial dependent apoptosis in human hepatoma SK-Hep-1 cells through inhibition of p38 MAPK pathway. Apoptosis 2013; 18:1548-60. [DOI: 10.1007/s10495-013-0888-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, Wheeler DL. Nuclear EGFR as a molecular target in cancer. Radiother Oncol 2013; 108:370-7. [PMID: 23830194 DOI: 10.1016/j.radonc.2013.06.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell's nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yu YL, Chou RH, Liang JH, Chang WJ, Su KJ, Tseng YJ, Huang WC, Wang SC, Hung MC. Targeting the EGFR/PCNA signaling suppresses tumor growth of triple-negative breast cancer cells with cell-penetrating PCNA peptides. PLoS One 2013; 8:e61362. [PMID: 23593472 PMCID: PMC3620387 DOI: 10.1371/journal.pone.0061362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
Tyrosine 211 (Y211) phosphorylation of proliferation cell nuclear antigen (PCNA) coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant cells, both nuclear EGFR (nEGFR) expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC). Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP) inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP), which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail: (YLY); (MCH)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jia-Hong Liang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Kuo-Jung Su
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yen-Ju Tseng
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mien-Chie Hung
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (YLY); (MCH)
| |
Collapse
|
41
|
Kuo HY, Chen YC, Chang HY, Jeng JC, Lin EH, Pan CM, Chang YW, Wang ML, Chou YT, Shih HM, Wu CW. The PML isoform IV is a negative regulator of nuclear EGFR’s transcriptional activity in lung cancer. Carcinogenesis 2013; 34:1708-16. [DOI: 10.1093/carcin/bgt109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Sokhi UK, Das SK, Dasgupta S, Emdad L, Shiang R, DeSalle R, Sarkar D, Fisher PB. Human polynucleotide phosphorylase (hPNPaseold-35): should I eat you or not--that is the question? Adv Cancer Res 2013; 119:161-90. [PMID: 23870512 DOI: 10.1016/b978-0-12-407190-2.00005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA degradation plays a fundamental role in maintaining cellular homeostasis whether it occurs as a surveillance mechanism eliminating aberrant mRNAs or during RNA processing to generate mature transcripts. 3'-5' exoribonucleases are essential mediators of RNA decay pathways, and one such evolutionarily conserved enzyme is polynucleotide phosphorylase (PNPase). The human homologue of this fascinating enzymatic protein (hPNPaseold-35) was cloned a decade ago in the context of terminal differentiation and senescence through a novel "overlapping pathway screening" approach. Since then, significant insights have been garnered about this exoribonuclease and its repertoire of expanding functions. The objective of this review is to provide an up-to-date perspective of the recent discoveries made relating to hPNPaseold-35 and the impact they continue to have on our comprehension of its expanding and diverse array of functions.
Collapse
|