1
|
Marchetti L, Rebucci R, Lanzoni D, Giromini C, Aidos L, Di Giancamillo A, Cremonesi P, Biscarini F, Castiglioni B, Bontempo V. Dietary supplementation with a blend composed of carvacrol, tannic acid derived from Castanea sativa and Glycyrrhiza glabra, and glycerides of medium chain fatty acids for weanling piglets raised in commercial farm. Vet Res Commun 2024; 48:3773-3791. [PMID: 39269670 PMCID: PMC11538194 DOI: 10.1007/s11259-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.
Collapse
Affiliation(s)
- Luca Marchetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy.
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Davide Lanzoni
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, 20100, Italy
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Filippo Biscarini
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Lodi, 26900, Italy
| | - Valentino Bontempo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, 26900, Italy
| |
Collapse
|
2
|
Mincy C, Revelt L, Carter K, Reed D, Joy A. Unique Cohorts of Salivary Gland Cancer Cells as an in-vitro Model of Circulating Tumor Cells. J Maxillofac Oral Surg 2024; 23:896-908. [PMID: 39118911 PMCID: PMC11303642 DOI: 10.1007/s12663-024-02250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction The characterization of circulating tumor cells (CTC) and circulating tumor microemboli (CTM) has emerged as both a challenge to the standard view of metastasis, and as a valuable means for understanding genotypic and phenotypic variability shown even within the same cancer type. However, in the case of salivary gland neoplasms, limited data are available for the role that CTCs and CTMs play in metastasis and secondary tumor formation.ru.AQ1 In response to this, we propose that similarities between in vitro clusters of cultured salivary gland cancer cells may act as a surrogate model for in vivo CTCs and CTMs isolated from patients. Materials and Methods Using techniques in immunofluorescence, immunoblotting, and 2-dimensional migration, we isolated and characterized a group of cohort cells from a commercially available cell line (HTB-41). Results: Here, cells exhibited a hybrid phenotype with simultaneous expression of both epithelial and mesenchymal markers (E-cadherin, vimentin, and α-SMA). Cohort cells also exhibited increased migration in comparison to parental cells. Conclusion Data suggest that these isolated cell clusters may fucntion as a potential in vitro model of CTCs and CTMs.
Collapse
Affiliation(s)
- Callie Mincy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL USA
- Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, IL USA
| | - Luke Revelt
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL USA
| | - Kathryn Carter
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL USA
| | - Donald Reed
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, IL USA
| | - Anita Joy
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Houston School of Dentistry, 7500 Cambridge Ave., Houston, TX USA
| |
Collapse
|
3
|
Seidelin JB, Bronze M, Poulsen A, Attauabi M, Woetmann A, Mead BE, Karp JM, Riis LB, Bjerrum JT. Non-TGFβ profibrotic signaling in ulcerative colitis after in vivo experimental intestinal injury in humans. Am J Physiol Gastrointest Liver Physiol 2024; 327:G70-G79. [PMID: 38713614 DOI: 10.1152/ajpgi.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Although impaired regeneration is important in many gastrointestinal diseases including ulcerative colitis (UC), the dynamics of mucosal regeneration in humans are poorly investigated. We have developed a model to study these processes in vivo in humans. Epithelial restitution (ER) and extracellular matrix (ECM) regulation after an experimental injury of the sigmoid colonic mucosa was assessed by repeated high-resolution endoscopic imaging, histological assessment, RNA sequencing, deconvolution analysis, and 16S rDNA sequencing of the injury niche microbiome of 19 patients with UC in remission and 20 control subjects. Human ER had a 48-h lag before induction of regenerative epithelial cells [wound-associated epithelial (WAE) and transit amplifying (TA) cells] along with the increase of fibroblast-derived stem cell growth factor gremlin 1 mRNA (GREM1). However, UC deconvolution data showed rapid induction of inflammatory fibroblasts and upregulation of major structural ECM collagen mRNAs along with tissue inhibitor of metalloproteinase 1 (TIMP1), suggesting increased profibrotic ECM deposition. No change was seen in transforming growth factor β (TGFβ) mRNA, whereas the profibrotic cytokines interleukin 13 (IL13) and IL11 were upregulated in UC, suggesting that human postinjury responses could be TGFβ-independent. In conclusion, we found distinct regulatory layers of regeneration in the normal human colon and a potential targetable profibrotic dysregulation in UC that could lead to long-term end-organ failure, i.e., intestinal damage.NEW & NOTEWORTHY The study reveals the regulatory dynamics of epithelial regeneration and extracellular matrix remodeling after experimental injury of the human colon in vivo and shows that human intestinal regeneration is different from data obtained from animals. A lag phase in epithelial restitution is associated with induction of stromal cell-derived epithelial growth factors. Postinjury regeneration is transforming growth factor β-independent, and we find a profibrotic response in patients with ulcerative colitis despite being in remission.
Collapse
Affiliation(s)
- Jakob B Seidelin
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariana Bronze
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Attauabi
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E Mead
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Chemistry; Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, United States
| | - Jeffrey M Karp
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Anesthesiology, Perioperative and Pain Medicine,Brigham and Women's Hospital, Cambridge, Massachusetts, United States
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob T Bjerrum
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Liu ZL, Hua FF, Qu L, Yan N, Zhang HF. Evaluating serum CXCL12, sCD22, Lp-PLA2 levels and ratios as biomarkers for diagnosis of Alzheimer's disease. World J Psychiatry 2024; 14:380-387. [PMID: 38617987 PMCID: PMC11008386 DOI: 10.5498/wjp.v14.i3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease (AD) is still a work in progress, and existing diagnostic techniques encounter various obstacles. Therefore, the discovery of dependable biomarkers is essential for early detection, tracking the disease's advancement, and steering treatment strategies. AIM To explore the diagnostic potential of serum CXCL12, sCD22, Lp-PLA2, and their ratios in AD, aiming to enhance early detection and inform targeted treatment strategies. METHODS The study was conducted in Dongying people's Hospital from January 2021 to December 2022. Participants included 60 AD patients (AD group) and 60 healthy people (control group). Using a prospective case-control design, the levels of CXCL12, sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD. The differences between the two groups were analyzed by statistical methods, and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis. RESULTS Serum CXCL12 levels were higher in the AD group (47.2 ± 8.5 ng/mL) than the control group (32.8 ± 5.7 ng/mL, P < 0.001), while sCD22 levels were lower (14.3 ± 2.1 ng/mL vs 18.9 ± 3.4 ng/mL, P < 0.01). Lp-PLA2 levels were also higher in the AD group (112.5 ± 20.6 ng/mL vs 89.7 ± 15.2 ng/mL, P < 0.05). Significant differences were noted in CXCL12/sCD22 (3.3 vs 1.7, P < 0.001) and Lp-PLA2/sCD22 ratios (8.0 vs 5.2, P < 0.05) between the groups. Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD, with area under the curves ranging from 0.568 to 0.787. CONCLUSION Serum CXCL12 and Lp-PLA2 levels were significantly increased, while sCD22 were significantly decreased, as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22, are closely related to the onset of AD. These biomarkers and their ratios can be used as potential diagnostic indicators for AD, providing an important clinical reference for early intervention and treatment.
Collapse
Affiliation(s)
- Zeng-Ling Liu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Fei-Fei Hua
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Lei Qu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Na Yan
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Hui-Fang Zhang
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| |
Collapse
|
5
|
He JY, Li J, Zhang YY, He HB, He YM, Xu DX, Wang X, Wu HY, Zhang JH, Jahid H, Sadia A, Yu HF, Wang JZ, Zou K. Tormentic acid, a triterpenoid isolated from the fruits of Chaenomeles speciose, protected indomethacin-induced gastric mucosal lesion via modulating miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho a/MLC pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1343-1363. [PMID: 37623313 PMCID: PMC10461523 DOI: 10.1080/13880209.2023.2249526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Tormentic acid (TA), an effective triterpenoid isolated from Chaenomeles speciosa (Sweet) Nakai (Rosaceae) fruits, exerts an effective treatment for gastric damage. OBJECTIVE To investigate the gastroprotective effect of TA on indomethacin (IND) damaged GES-1 cells and rats, and explore potential mechanisms. MATERIALS AND METHODS TA concentrations of 1.563-25 µM were used. Cell proliferation, apoptosis and migration were performed using MTT, colony formation, wound healing, migration, Hoechst staining assays. SD rats were divided into control, IND, TA (1, 2 and 4 mg/kg) + IND groups, once a day for 21 continuous days. Twenty-four hours after the last administration, all groups except the control group were given IND (100 mg/kg) by gavage. Gastric juice parameters, gastric ulcer, gastric blood flow (GBF), blood biochemical parameters and cytokine analysis and gastric mucosal histopathology were detected for 2 h and 6 h after IND oral administration. The mRNA and protein expression of miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho A/MLC pathway were analyzed in the IND-damaged GES-1 cells and gastric tissue of rats. RESULTS TA might ameliorate the gastric mucosal injury by accelerating the IND-damaged GES-1 cell proliferation and migration, ameliorating GBF, ulcer area and pathologic changes, the redox system and cytokine levels, the gastric juice parameters, elevating the gastric pH in IND damaged rats; suppressed miR-139 mRNA expression, elevated CXCR4 and CXCL12 mRNA and protein expression, p-PLC, p-PKC, Rho A, MLCK and p-MLC protein expression. DISCUSSION AND CONCLUSIONS TA may have potential use as a clinical drug candidate for gastric mucosal lesion treatment.
Collapse
Affiliation(s)
- Jun-Yu He
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Jie Li
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Yuan-Yuan Zhang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hai-Bo He
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, P.R. China
| | - Yu-Min He
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Dao-Xiang Xu
- Department of Gastroenterology, Seventh People’s Hospital of Wenzhou, Wenzhou, P.R. China
| | - Xiao Wang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hao-Yang Wu
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Ji-Hong Zhang
- Department of Gastroenterology, Chinese Medicine Clinical Medical College & Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, China Three Gorges University, Yichang, P.R. China
| | - Hasan Jahid
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Akter Sadia
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hui-Fan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, P.R. China
| | - Jun-Zhi Wang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Kun Zou
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| |
Collapse
|
6
|
Osteopontin Exacerbates High-Fat Diet-Induced Metabolic Disorders in a Microbiome-Dependent Manner. mBio 2022; 13:e0253122. [PMID: 36300928 PMCID: PMC9765578 DOI: 10.1128/mbio.02531-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiome is involved in metabolic disorders. Osteopontin (OPN), as a key cytokine, contributes to various inflammation-related diseases. The underlying role of OPN in the microbiome remains poorly understood. Here, we investigated whether OPN could modulate metabolic disorders by affecting gut microbiota. In our present study, we found that the expression of OPN was elevated in individuals with obesity compared to that observed in healthy controls. There was a positive correlation between plasma OPN levels and body mass index (BMI) in humans. Moreover, OPN significantly exacerbated lipid accumulation and metabolic disorders in high-fat diet (HFD)-fed mice. Importantly, OPN significantly aggravated HFD-induced gut dysbiosis with a key signature profile. Fecal microbiota transplantation also supported the role of OPN in HFD-induced metabolic disorders in a microbiota-dependent manner. Moreover, the microbiome shift of OPN-deficient mice would be compensated to resemble those of wild-type mice by feeding with either OPN-containing milk or recombinant OPN protein in vivo. Furthermore, metagenomic analysis showed that OPN induced a higher abundance of Dorea and a lower abundance of Lactobacillus, which were positively and negatively correlated with body weight, respectively. Indeed, the abundance of Dorea was significantly decreased after Lactobacillus administration, suggesting that OPN may regulate the intestinal abundance of Dorea by reducing the colonization of Lactobacillus. We further confirmed that OPN decreased the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. This study suggested that OPN could exacerbate HFD-induced metabolic dysfunctions through the OPN-induced alteration of the gut microbiome. Therefore, OPN could be a potential therapeutic target for metabolic syndrome. IMPORTANCE Gut microbiota are involved in metabolic disorders. However, microbiome-based therapeutic interventions are not always effective, which might be due to interference of the host factors. Here, we identified a strong positive correlation between OPN levels and BMI in humans. Next, we confirmed that OPN could aggravate high-fat diet-induced metabolic disorders in mice. Importantly, we found that fecal microbiota transplantation from OPN-deficient mice significantly alleviated metabolic disorders in WT mice. OPN directly induces the remodeling of the gut microbiota both in vitro and in vivo. These findings indicate that OPN could contribute to metabolic disorders by inducing an alteration of gut microbiota. OPN regulated the relative abundance of Lactobacillus by decreasing the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. These data identify OPN as a potential pharmaceutical target for weight control and for the treatment of metabolic disorders.
Collapse
|
7
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|
9
|
Xue F, Bai Y, Jiang Y, Liu J, Jian K. Construction and a preliminary study of paracrine effect of bone marrow-derived endothelial progenitor cell sheet. Cell Tissue Bank 2021; 23:185-197. [PMID: 34052984 PMCID: PMC8854320 DOI: 10.1007/s10561-021-09932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
The release of paracrine factors from endothelial progenitor cell (EPC) sheet is a central mechanism of tissue repair. The purpose of this study was to constuct the rat bone marrow derived-endothelial progenitor cell (BM-EPCs) sheet and investigate invest the role of stromal cell-derived factor-1α (SDF-1α)/CXCR4 axis in the biological function of BM-EPCs sheet. BM-EPC cells were identified by the cell-surface markers-CD34/CD133/VE-cadherin/KDR using flow cytometry and dual affinity for acLDL and UEA-1. After 7 days of incubation, the BM-EPC single-cell suspensions were seeded on thermo-sensitive plate to harvest the BM-EPC cell sheets. The expression levels of SDF-1α/CXCR4 axis-associated genes and proteins were examined using RT-qPCR and western blot analysis, and enzyme-linked immunosorbent assay (ELISA) was applied to determine the concentration of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and SDF-1α in the cell culture medium. The BM-EPC cell sheets were successfully harvested. Moreover, BM-EPC cell sheets have superior migration and tube formation activity when compared with single cell suspension. When capillary-like tube were formed from EPCs sheets, the releasing of paracrine factors such as VEGF, EGF and SDF-1α were increased. To reveal the mechanism of tube formation of BM-EPCs sheets, our research showed that the activation of PI3K/AKT/eNOS pathway was involved in the process, because the phosphorylation of CXCR, PI3K, AKT and eNOS were increased. BM-EPC cell sheets have superior paracrine and tube formation activity than the BM-EPC single-cell. The strong ability to secrete paracrine factors was be potentially related to the SDF-1α/CXCR4 axis through PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Fenlong Xue
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yunpeng Bai
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Yiyao Jiang
- Department of Cardiovascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, China
| | - Jianshi Liu
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China
| | - Kaitao Jian
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, 300051, China.
- Department of Cardiovascular Surgery, DeltaHealth Hospital Shanghai, Shanghai, 200336, China.
| |
Collapse
|
10
|
Kell MJ, Ang SF, Pigati L, Halpern A, Fölsch H. Novel function for AP-1B during cell migration. Mol Biol Cell 2020; 31:2475-2493. [PMID: 32816642 PMCID: PMC7851849 DOI: 10.1091/mbc.e20-04-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelial cell-specific clathrin adaptor protein (AP)-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we show that β1 integrin was dependent on AP-1B and its coadaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. We further demonstrate an unprecedented role for AP-1B at the basal plasma membrane during collective cell migration of epithelial sheets. During wound healing, expression of AP-1B (and ARH in AP–1B-positive cells) slowed epithelial-cell migration. We show that AP-1B colocalized with β1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence microscopy on fixed specimens. Further, AP-1B labeling in cell protrusions was distinct from labeling for the endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy we identified numerous AP–1B-coated structures at or close to the basal plasma membrane in cell protrusions. In addition, immunoelectron microscopy showed AP-1B in coated pits and vesicles at the plasma membrane during cell migration. Lastly, quantitative real-time reverse transcription PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly migratory metastatic cancer cells suggesting that AP-1B’s novel role at the basal plasma membrane during cell migration might be an anticancer mechanism.
Collapse
Affiliation(s)
- Margaret Johnson Kell
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Su Fen Ang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucy Pigati
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Abby Halpern
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Heike Fölsch
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
11
|
Cao X, Sun L, Lechuga S, Naydenov NG, Feygin A, Ivanov AI. A Novel Pharmacological Approach to Enhance the Integrity and Accelerate Restitution of the Intestinal Epithelial Barrier. Inflamm Bowel Dis 2020; 26:1340-1352. [PMID: 32266946 PMCID: PMC7441106 DOI: 10.1093/ibd/izaa063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disruption of the gut barrier is an essential mechanism of inflammatory bowel diseases (IBDs) contributing to the development of mucosal inflammation. A hallmark of barrier disruption is the disassembly of epithelial adherens junctions (AJs) driven by decreased expression of a major AJ protein, E-cadherin. A group of isoxazole compounds, such as E-cadherin-upregulator (ECU) and ML327, were previously shown to stimulate E-cadherin expression in poorly differentiated human cancer cells. This study was designed to examine whether these isoxazole compounds can enhance and protect model intestinal epithelial barriers in vitro. METHODS The study was conducted using T84, SK-CO15, and HT-29 human colonic epithelial cell monolayers. Disruption of the epithelial barrier was induced by pro-inflammatory cytokines, tumor necrosis factor-α, and interferon-γ. Barrier integrity and epithelial junction assembly was examined using different permeability assays, immunofluorescence labeling, and confocal microscopy. Epithelial restitution was analyzed using a scratch wound healing assay. RESULTS E-cadherin-upregulator and ML327 treatment of intestinal epithelial cell monolayers resulted in several barrier-protective effects, including reduced steady-state epithelial permeability, inhibition of cytokine-induced barrier disruption and junction disassembly, and acceleration of epithelial wound healing. Surprisingly, these effects were not due to upregulation of E-cadherin expression but were mediated by multiple mechanisms including inhibition of junction protein endocytosis, attenuation of cytokine-induced apoptosis, and activation of promigratory Src and AKT signaling. CONCLUSIONS Our data highlight ECU and ML327 as promising compounds for developing new therapeutic strategies to protect the integrity and accelerate the restitution of the intestinal epithelial barrier in IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University, Richmond, VA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH,Address correspondence to: Andrei I. Ivanov, PhD, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC22, Cleveland, OH 44195, USA. E-mail:
| |
Collapse
|
12
|
Nava-Sedeño JM, Voß-Böhme A, Hatzikirou H, Deutsch A, Peruani F. Modelling collective cell motion: are on- and off-lattice models equivalent? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190378. [PMID: 32713300 DOI: 10.1098/rstb.2019.0378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biological processes, such as embryonic development, wound repair and cancer invasion, or bacterial swarming and fruiting body formation, involve collective motion of cells as a coordinated group. Collective cell motion of eukaryotic cells often includes interactions that result in polar alignment of cell velocities, while bacterial patterns typically show features of apolar velocity alignment. For analysing the population-scale effects of these different alignment mechanisms, various on- and off-lattice agent-based models have been introduced. However, discriminating model-specific artefacts from general features of collective cell motion is challenging. In this work, we focus on equivalence criteria at the population level to compare on- and off-lattice models. In particular, we define prototypic off- and on-lattice models of polar and apolar alignment, and show how to obtain an on-lattice from an off-lattice model of velocity alignment. By characterizing the behaviour and dynamical description of collective migration models at the macroscopic level, we suggest the type of phase transitions and possible patterns in the approximative macroscopic partial differential equation descriptions as informative equivalence criteria between on- and off-lattice models. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Josué Manik Nava-Sedeño
- Technische Universität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, 01062 Dresden, Germany
| | - Anja Voß-Böhme
- Technische Universität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, 01062 Dresden, Germany.,Fakultät Informatik/Mathematik, Hochschule für Technik und Wirtschaft, Dresden, Germany
| | - Haralampos Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Center of Systems Biology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Andreas Deutsch
- Technische Universität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, 01062 Dresden, Germany
| | - Fernando Peruani
- Laboratoire J. A. Dieudonné, Université Côte d'Azur, UMR 7351 CNRS, Parc Valrose, 06108 Nice Cedex 02, France
| |
Collapse
|
13
|
Buonpane C, Yuan C, Wood D, Ares G, Klonoski SC, Hunter CJ. ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G781-G792. [PMID: 32090605 PMCID: PMC7191467 DOI: 10.1152/ajpgi.00195.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of newborns. Although incompletely understood, NEC is associated with intestinal barrier dysfunction. E-cadherin, an adherens junction, is a protein complex integral in maintaining normal barrier homeostasis. Rho-associated protein kinase-1 (ROCK1) is a kinase that regulates the E-cadherin complex, and p120-catenin is a subunit of the E-cadherin complex that has been implicated in stabilizing the cadherin complex at the plasma membrane. We hypothesized that E-cadherin is decreased in NEC and that inhibition of ROCK1 would protect against adherens junction disruption. To investigate this, a multimodal approach was used: In vitro Caco-2 model of NEC (LPS/TNFα), rap pup model (hypoxia + bacteria-containing formula), and human intestinal samples. E-cadherin was decreased in NEC compared with controls, with relocalization from the cell border to an intracellular location. ROCK1 exhibited a time-dependent response to disease, with increased early expression in NEC and decreased expression at later time points and disease severity. Administration of ROCK1 inhibitor (RI) resulted in preservation of E-cadherin expression at the cell border, preservation of intestinal villi on histological examination, and decreased apoptosis. ROCK1 upregulation in NEC led to decreased association of E-cadherin to p120 and increased intestinal permeability. RI helped maintain the stability of the E-cadherin-p120 complex, leading to improved barrier integrity and protection from experimental NEC.NEW & NOTEWORTHY This paper is the first to describe the effect of ROCK1 on E-cadherin expression in the intestinal epithelium and the protective effects of ROCK inhibitor on E-cadherin stability in necrotizing enterocolitis.
Collapse
Affiliation(s)
- Christie Buonpane
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Carrie Yuan
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas Wood
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guillermo Ares
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Samuel C. Klonoski
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Catherine J. Hunter
- 3Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
14
|
Mizukoshi K, Okazawa Y, Haeno H, Koyama Y, Sulidan K, Komiyama H, Saeki H, Ohtsuji N, Ito Y, Kojima Y, Goto M, Habu S, Hino O, Sakamoto K, Orimo A. Metastatic seeding of human colon cancer cell clusters expressing the hybrid epithelial/mesenchymal state. Int J Cancer 2019; 146:2547-2562. [PMID: 31506938 DOI: 10.1002/ijc.32672] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence supports the theory that tumor cell clusters efficiently metastasize to distant organs. However, the roles of epithelial-to-mesenchymal transition (EMT) in metastasizing tumor cell clusters have not yet been fully elucidated. To investigate this issue, tumor fragments were dissected from 40 colorectal cancer (CRC) patients and implanted subcutaneously into immunodeficient mice. We observed that tumors developed from the tumor fragments obtained from 28 of the 40 CRC patients. The tumors were then dissociated into cell suspensions to be orthotopically injected into secondary mice. The tumors from 13 of the 28 patients progressed. Furthermore, metastases formed spontaneously in the liver and lungs from the tumor fragments obtained from 8 of these 13 patients. Moreover, employing a mathematical analysis, we showed that tumor cell clusters seeded these metastases significantly more often than did single tumor cells. Membrane E-cadherin- and nuclear ZEB1-positive tumor cells indicating the hybrid epithelial/mesenchymal state were also detected in primary tumors of various CRC patients, and in the corresponding patient-derived xenografts (PDXs) and circulating tumor cell clusters in the bloodstreams of mice. In contrast, ZEB1 staining was barely detectable in the patient-matched liver metastases presumably developing through mesenchymal-to-epithelial transition. Inhibition of E-cadherin or ZEB1 expression by shRNA notably prevented the PDX-derived tumor organoids from colonizing the liver, when injected intrasplenically into mice, indicating E-cadherin and ZEB1 expressions to be required for their metastatic colonization. Taken together, these findings suggest that the epithelial/mesenchymal state mediates metastatic seeding of human CRC cell clusters into distant organs.
Collapse
Affiliation(s)
- Kosuke Mizukoshi
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yu Okazawa
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Haeno
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Koyama
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kaidiliayi Sulidan
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromitsu Komiyama
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Harumi Saeki
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Naomi Ohtsuji
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yasuhiko Ito
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yutaka Kojima
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Michitoshi Goto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Atopy Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Small molecule FAK activator promotes human intestinal epithelial monolayer wound closure and mouse ulcer healing. Sci Rep 2019; 9:14669. [PMID: 31604999 PMCID: PMC6789032 DOI: 10.1038/s41598-019-51183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 01/23/2023] Open
Abstract
GI mucosal healing requires epithelial sheet migration. The non-receptor tyrosine kinase focal adhesion kinase (FAK) stimulates epithelial motility. A virtual screen identified the small drug-like FAK mimic ZINC40099027, which activates FAK. We assessed whether ZINC40099027 promotes FAK-Tyr-397 phosphorylation and wound healing in Caco-2 monolayers and two mouse intestinal injury models. Murine small bowel ulcers were generated by topical serosal acetic acid or subcutaneous indomethacin in C57BL/6J mice. One day later, we began treatment with ZINC40099027 or DMSO, staining the mucosa for phosphorylated FAK and Ki-67 and measuring mucosal ulcer area, serum creatinine, ALT, and body weight at day 4. ZINC40099027 (10–1000 nM) dose-dependently activated FAK phosphorylation, without activating Pyk2-Tyr-402 or Src-Tyr-419. ZINC40099027 did not stimulate proliferation, and stimulated wound closure independently of proliferation. The FAK inhibitor PF-573228 prevented ZINC40099027-stimulated wound closure. In both mouse ulcer models, ZINC40099027accelerated mucosal wound healing. FAK phosphorylation was increased in jejunal epithelium at the ulcer edge, and Ki-67 staining was unchanged in jejunal mucosa. ZINC40099027 serum concentration at sacrifice resembled the effective concentration in vitro. Weight, creatinine and ALT did not differ between groups. Small molecule FAK activators can specifically promote epithelial restitution and mucosal healing and may be useful to treat gut mucosal injury.
Collapse
|
16
|
Royal JM, Oh YJ, Grey MJ, Lencer WI, Ronquillo N, Galandiuk S, Matoba N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response. FASEB J 2019; 33:13527-13545. [PMID: 31560862 DOI: 10.1096/fj.201901255r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholera toxin B subunit (CTB) exhibits broad-spectrum biologic activity upon mucosal administration. Here, we found that a recombinant CTB containing an endoplasmic reticulum (ER) retention motif (CTB-KDEL) induces colon epithelial wound healing in colitis via the activation of an unfolded protein response (UPR) in colon epithelial cells. In a Caco2 cell wound healing model, CTB-KDEL, but not CTB or CTB-KDE, facilitated cell migration via interaction with the KDEL receptor, localization in the ER, UPR activation, and subsequent TGF-β signaling. Inhibition of the inositol-requiring enzyme 1/X-box binding protein 1 arm of UPR abolished the cell migration effect of CTB-KDEL, indicating that the pathway is indispensable for the activity. CTB-KDEL's capacity to induce UPR and epithelial restitution or wound healing was corroborated in a dextran sodium sulfate-induced acute colitis mouse model. Furthermore, CTB-KDEL induced a UPR, up-regulated wound healing pathways, and maintained viable crypts in colon explants from patients with inflammatory bowel disease (IBD). In summary, CTB-KDEL exhibits unique wound healing effects in the colon that are mediated by its localization to the ER and subsequent activation of UPR in epithelial cells. The results provide implications for a novel therapeutic approach for mucosal healing, a significant unmet need in IBD treatment.-Royal, J. M., Oh, Y. J., Grey, M. J., Lencer, W. I., Ronquillo, N., Galandiuk, S., Matoba, N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response.
Collapse
Affiliation(s)
- Joshua M Royal
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Young Jun Oh
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael J Grey
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nemencio Ronquillo
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Susan Galandiuk
- The Hiram C. Polk Jr., M.D. Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
17
|
Yang Y, Zheng H, Zhan Y, Fan S. An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res 2019; 11:5301-5312. [PMID: 31632511 PMCID: PMC6789225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Traditionally, the metastasis has been detected in the late stage of the cancer, which mostly leads to death. The classical opinion about tumor metastasis is that tumor cell migration begins with the single tumor cell and goes through a series of complicated procedures, and lastly arrives and survives at distant tissues and organs. However, emerging studies have found a new migration mechanism called collective cell migration in many cancers. The collective cell migration could move as clusters with the tight cell-cell junction in the tumor microenvironments, toward the traction established by the leader cells. In addition, the collective cell migration has been shown to have higher invasive capacity and higher resistance to the clinical treatments than the single tumor cell migration. Interestingly, the collective clusters of tumor cells have been detected in the early stage of the cancer patient, which has led to the understanding of the significance of early cancer screenings. Here, we reviewed the major principles and guidance of the collective cell migration mechanisms, and the specific manifestations in the different tumors such as breast cancer and lung cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| |
Collapse
|
18
|
Matsumura Y, Ito Y, Mezawa Y, Sulidan K, Daigo Y, Hiraga T, Mogushi K, Wali N, Suzuki H, Itoh T, Miyagi Y, Yokose T, Shimizu S, Takano A, Terao Y, Saeki H, Ozawa M, Abe M, Takeda S, Okumura K, Habu S, Hino O, Takeda K, Hamada M, Orimo A. Stromal fibroblasts induce metastatic tumor cell clusters via epithelial-mesenchymal plasticity. Life Sci Alliance 2019; 2:e201900425. [PMID: 31331982 PMCID: PMC6653778 DOI: 10.26508/lsa.201900425] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the hypothesis that multicellular tumor clusters invade and seed metastasis. However, whether tumor-associated stroma induces epithelial-mesenchymal plasticity in tumor cell clusters, to promote invasion and metastasis, remains unknown. We demonstrate herein that carcinoma-associated fibroblasts (CAFs) frequently present in tumor stroma drive the formation of tumor cell clusters composed of two distinct cancer cell populations, one in a highly epithelial (E-cadherinhiZEB1lo/neg: Ehi) state and another in a hybrid epithelial/mesenchymal (E-cadherinloZEB1hi: E/M) state. The Ehi cells highly express oncogenic cell-cell adhesion molecules, such as carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and CEACAM6 that associate with E-cadherin, resulting in increased tumor cell cluster formation and metastatic seeding. The E/M cells also retain associations with Ehi cells, which follow the E/M cells leading to collective invasion. CAF-produced stromal cell-derived factor 1 and transforming growth factor-β confer the Ehi and E/M states as well as invasive and metastatic traits via Src activation in apposed human breast tumor cells. Taken together, these findings indicate that invasive and metastatic tumor cell clusters are induced by CAFs via epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Yuko Matsumura
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasuhiko Ito
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihiro Mezawa
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaidiliayi Sulidan
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nadila Wali
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Hokkaido, Japan
| | - Takumi Itoh
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoru Shimizu
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Harumi Saeki
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masayuki Ozawa
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaaki Abe
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Sonoko Habu
- Atopy Research Center, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Akira Orimo
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Cancer Research (CR)-UK Stromal-Tumor Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Robinson SC, Chaudhary R, Jiménez-Saiz R, Rayner LGA, Bayer L, Jordana M, Daniel JM. Kaiso-induced intestinal inflammation is preceded by diminished E-cadherin expression and intestinal integrity. PLoS One 2019; 14:e0217220. [PMID: 31199830 PMCID: PMC6568390 DOI: 10.1371/journal.pone.0217220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic intestinal inflammation contributes to pathologies such as inflammatory bowel disease (IBD) and colon cancer. While the precise etiology remains controversial, IBD is believed to manifest as a result of various factors. We previously reported that intestinal-specific overexpression of the transcription factor Kaiso results in an intestinal inflammatory response; however, the cause of this inflammation is unknown. To elucidate the underlying mechanism(s) of the Kaiso-mediated intestinal inflammatory phenotype, we evaluated two independent transgenic mouse lines that express varying levels of Kaiso (KaisoTg). Histological analyses of KaisoTg mice revealed intestinal damage including thickening of the mucosa, intestinal “lesions” and crypt abscesses, which are reminiscent of IBD pathology. Additionally, higher Kaiso levels induced intestinal neutrophilia as early as 12 weeks, which worsened as the mice aged. Notably, the Kaiso-induced intestinal inflammation correlated with a leaky intestinal barrier and mis-regulation of E-cadherin expression and localization. Interestingly, Kaiso overexpression resulted in reduced proliferation but enhanced migration of intestinal epithelial cells prior to the onset of inflammation. Collectively, these data suggest that Kaiso plays a role in regulating intestinal epithelial cell integrity and function, dysregulation of which contributes to a chronic inflammatory phenotype as mice age.
Collapse
Affiliation(s)
| | - Roopali Chaudhary
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Luke Bayer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | - Juliet M. Daniel
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Tu CL, Celli A, Mauro T, Chang W. Calcium-Sensing Receptor Regulates Epidermal Intracellular Ca 2+ Signaling and Re-Epithelialization after Wounding. J Invest Dermatol 2019; 139:919-929. [PMID: 30404020 PMCID: PMC6431556 DOI: 10.1016/j.jid.2018.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023]
Abstract
Extracellular Ca2+ (Ca2+o) is a crucial regulator of epidermal homeostasis and its receptor, the Ca2+-sensing receptor (CaSR), conveys the Ca2+o signals to promote keratinocyte adhesion, differentiation, and survival via activation of intracellular Ca2+ (Ca2+i) and E-cadherin-mediated signaling. Here, we took genetic loss-of-function approaches to delineate the functions of CaSR in wound re-epithelialization. Cutaneous injury triggered a robust CaSR expression and a surge of Ca2+i in epidermis. CaSR and E-cadherin were co-expressed at the cell-cell membrane between migratory keratinocytes in the nascent epithelial tongues. Blocking the expression of CaSR or E-cadherin in cultured keratinocytes markedly inhibited the wound-induced Ca2+i propagation and their ability to migrate collectively. Depleting CaSR also suppressed keratinocyte proliferation by downregulating the E-cadherin/epidermal growth factor receptor/mitogen-activated protein kinase signaling axis. Blunted epidermal Ca2+i response to wounding and retarded wound healing were observed in the keratinocyte-specific CaSR knockout (EpidCasr-/-) mice, whose shortened neo-epithelia exhibited declined E-cadherin expression and diminished keratinocyte proliferation and differentiation. Conversely, stimulating endogenous CaSR with calcimimetic NPS-R568 accelerated wound re-epithelialization through enhancing the epidermal Ca2+i signals and E-cadherin membrane expression. These findings demonstrated a critical role for the CaSR in epidermal regeneration and its therapeutic potential for improving skin wound repair.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, California, USA.
| | - Anna Celli
- Dermatology Department, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Theodora Mauro
- Dermatology Department, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Fernando EH, Gordon MH, Beck PL, MacNaughton WK. Inhibition of Intestinal Epithelial Wound Healing through Protease-Activated Receptor-2 Activation in Caco2 Cells. J Pharmacol Exp Ther 2018; 367:382-392. [DOI: 10.1124/jpet.118.249524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
|
22
|
Dual role of E-cadherin in the regulation of invasive collective migration of mammary carcinoma cells. Sci Rep 2018; 8:4986. [PMID: 29563585 PMCID: PMC5862898 DOI: 10.1038/s41598-018-22940-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
In this article, we explore a non-canonical form of collective cell migration, displayed by the metastatic murine mammary carcinoma cell line 4T1. We show here that in sparsely plated 4T1 cells, E-cadherin levels are moderately reduced (~50%), leading to the development of collective migration, whereby cells translocate in loose clusters, interconnected by thin membrane tethers. Knocking down E-cadherin blocked tether formation in these cells, leading to enhancement of migration rate and, at the same time, to suppression of lung metastases formation in vivo, and inhibition of infiltration into fibroblast monolayers ex vivo. These findings suggest that the moderate E-cadherin levels present in wild-type 4T1 cells play a key role in promoting cancer invasion and metastasis.
Collapse
|
23
|
Van Itallie CM, Tietgens AJ, Aponte A, Gucek M, Cartagena-Rivera AX, Chadwick RS, Anderson JM. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci 2018; 131:jcs.210237. [PMID: 29222109 DOI: 10.1242/jcs.210237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Alexander X Cartagena-Rivera
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - Richard S Chadwick
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Cui HS, Hong AR, Kim JB, Yu JH, Cho YS, Joo SY, Seo CH. Extracorporeal Shock Wave Therapy Alters the Expression of Fibrosis-Related Molecules in Fibroblast Derived from Human Hypertrophic Scar. Int J Mol Sci 2018; 19:ijms19010124. [PMID: 29301325 PMCID: PMC5796073 DOI: 10.3390/ijms19010124] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 01/13/2023] Open
Abstract
Extracorporeal shock wave therapy (ESWT) considerably improves the appearance and symptoms of post-burn hypertrophic scars (HTS). However, the mechanism underlying the observed beneficial effects is not well understood. The objective of this study was to elucidate the mechanism underlying changes in cellular and molecular biology that is induced by ESWT of fibroblasts derived from scar tissue (HTSFs). We cultured primary dermal fibroblasts derived from human HTS and exposed these cells to 1000 impulses of 0.03, 0.1, and 0.3 mJ/mm2. At 24 h and 72 h after treatment, real-time PCR and western blotting were used to detect mRNA and protein expression, respectively, and cell viability and mobility were assessed. While HTSF viability was not affected, migration was decreased by ESWT. Transforming growth factor beta 1 (TGF-β1) expression was reduced and alpha smooth muscle actin (α-SMA), collagen-I, fibronectin, and twist-1 were reduced significantly after ESWT. Expression of E-cadherin was increased, while that of N-cadherin was reduced. Expression of inhibitor of DNA binding 1 and 2 was increased. In conclusion, suppressed epithelial-mesenchymal transition might be responsible for the anti-scarring effect of ESWT, and has potential as a therapeutic target in the management of post-burn scars.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| | - A Ram Hong
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| | - June-Bum Kim
- Department of Pediatrics, Hallym University Hangang Sacred Heart Hospital, Seoul 07247, Korea.
| | - Joo Hyang Yu
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Korea.
| |
Collapse
|
25
|
Xia JL, Fan WJ, Zheng FM, Zhang WW, Xie JJ, Yang MY, Kamran M, Wang P, Teng HM, Wang CL, Liu Q. Inhibition of AURKA kinase activity suppresses collective invasion in a microfluidic cell culture platform. Sci Rep 2017; 7:2973. [PMID: 28592839 PMCID: PMC5462816 DOI: 10.1038/s41598-017-02623-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 04/13/2017] [Indexed: 11/14/2022] Open
Abstract
Tumor local invasion is the first step of metastasis cascade which remains the key obstacle for cancer therapy. Collective cell migration plays a critical role in tumor invading into surrounding tissues. In vitro assays fail to assess collective invasion in a real time manner. Herein we aim to develop a three-dimensional (3D) microfluidic cell invasion model to determine the dynamic process. In this model, collective invasion of breast cancer cells is induced by the concentration gradient of fetal bovine serum. We find that breast cancer cells adopt a collective movement rather than a random manner when the cells invade into extracellular matrix. The leading cells in the collective movement exhibit an increased expression of an Aurora kinase family protein - AURKA compared with the follower cells. Inhibition of AURKA kinase activity by VX680 or AKI603 significantly reduces the phosphorylation of ERK1/2 (Thr202/Tyr204) and collective cohort formation. Together, our study illustrates that AURKA acts as a potential therapeutic target for suppressing the process of tumor collective invasion. The 3D microfluidic cell invasion model is a reliable, measurable and dynamic platform for exploring potential drugs to inhibit tumor collective invasion.
Collapse
Affiliation(s)
- Jiang-Long Xia
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wen-Jun Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Department of Hematology, The Third Affiliated Hospital; Institute of Hematology Sun Yat-sen University, Guangzhou, China
| | - Fei-Meng Zheng
- Department of Medical Oncology, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Wen Zhang
- Department of Oncology, The First Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Jia-Jun Xie
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Ying Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Muhammad Kamran
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Peng Wang
- Department of Thoracic Surgery, The First Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Hong-Ming Teng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chun-Li Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China. .,Department of Hematology, The Third Affiliated Hospital; Institute of Hematology Sun Yat-sen University, Guangzhou, China. .,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
26
|
Döring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, Mandl M, Pawig L, Jansen Y, Schröder K, Bidzhekov K, Megens RTA, Theelen W, Klinkhammer BM, Boor P, Schurgers L, van Gorp R, Ries C, Kusters PJH, van der Wal A, Hackeng TM, Gäbel G, Brandes RP, Soehnlein O, Lutgens E, Vestweber D, Teupser D, Holdt LM, Rader DJ, Saleheen D, Weber C. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies. Circulation 2017; 136:388-403. [PMID: 28450349 DOI: 10.1161/circulationaha.117.027646] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2- or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/β-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/β-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis.
Collapse
Affiliation(s)
| | - Heidi Noels
- From Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (Y.D., E.P.C.v.d.V., C.N., V.E., M.D., M.M., Y.J., K.B., R.T.A.M., C.R., O.S., E.T., C.W.); Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany (H.N., L.P., W.T.); Institute for Cardiovascular Physiology, Vascular Research Centre, Goethe University, Frankfurt am Main, Germany (K.S., R.P.B.); Division of Nephrology and Immunology, RWTH Aachen University Hospital, Germany (B.M.K., P.B.); Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, the Netherlands (R.T.A.M., R.v.G., T.M.H., C.W.); Academic Medical Center, Department of Pathology and Department of Medical Biochemistry, Amsterdam University, the Netherlands (P.J.H.K., A.v.D.W., E.T.); Department of Vascular and Endovascular Surgery, LMU Munich, Germany (G.G.); DZHK (German Centre for Cardiovascular Research), partner site Frankfurt am Main, Germany (R.P.B.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Physiology and Pharmacology, Karolinksa Institutet, Stockholm, Sweden (O.S.); Max-Plank-Institute for Molecular Biomedicine, Münster, Germany (D.V.); Institute for Laboratory Medicine, LMU Munich, Germany (D.T., L.M.H.); and Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (D.J.R., D.S.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
28
|
Moriyama M, Moriyama H, Uda J, Kubo H, Nakajima Y, Goto A, Akaki J, Yoshida I, Matsuoka N, Hayakawa T. Beneficial Effects of the Genus Aloe on Wound Healing, Cell Proliferation, and Differentiation of Epidermal Keratinocytes. PLoS One 2016; 11:e0164799. [PMID: 27736988 PMCID: PMC5063354 DOI: 10.1371/journal.pone.0164799] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/02/2016] [Indexed: 11/18/2022] Open
Abstract
Aloe has been used as a folk medicine because it has several important therapeutic properties. These include wound and burn healing, and Aloe is now used in a variety of commercially available topical medications for wound healing and skin care. However, its effects on epidermal keratinocytes remain largely unclear. Our data indicated that both Aloe vera gel (AVG) and Cape aloe extract (CAE) significantly improved wound healing in human primary epidermal keratinocytes (HPEKs) and a human skin equivalent model. In addition, flow cytometry analysis revealed that cell surface expressions of β1-, α6-, β4-integrin, and E-cadherin increased in HPEKs treated with AVG and CAE. These increases may contribute to cell migration and wound healing. Treatment with Aloe also resulted in significant changes in cell-cycle progression and in increases in cell number. Aloe increased gene expression of differentiation markers in HPEKs, suggesting roles for AVG and CAE in the improvement of keratinocyte function. Furthermore, human skin epidermal equivalents developed from HPEKs with medium containing Aloe were thicker than control equivalents, indicating the effectiveness of Aloe on enhancing epidermal development. Based on these results, both AVG and CAE have benefits in wound healing and in treatment of rough skin.
Collapse
Affiliation(s)
- Mariko Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
- * E-mail:
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Junki Uda
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Hirokazu Kubo
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Yuka Nakajima
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Arisa Goto
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Junji Akaki
- Central R&D Laboratory, KOBAYASHI Pharmaceutical Co., Ltd., Ibaraki, Osaka, Japan
| | - Ikuyo Yoshida
- Central R&D Laboratory, KOBAYASHI Pharmaceutical Co., Ltd., Ibaraki, Osaka, Japan
| | - Nobuya Matsuoka
- Central R&D Laboratory, KOBAYASHI Pharmaceutical Co., Ltd., Ibaraki, Osaka, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
29
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
30
|
Gagliano N, Celesti G, Tacchini L, Pluchino S, Sforza C, Rasile M, Valerio V, Laghi L, Conte V, Procacci P. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model. World J Gastroenterol 2016; 22:4466-4483. [PMID: 27182158 PMCID: PMC4858630 DOI: 10.3748/wjg.v22.i18.4466] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells.
METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids.
RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression.
CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids.
Collapse
MESH Headings
- Antigens, CD
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/ultrastructure
- Cell Line, Tumor
- Cell Shape
- Cell Survival
- Epithelial-Mesenchymal Transition
- Gene Expression Regulation, Neoplastic
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/ultrastructure
- Phenotype
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Spheroids, Cellular
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
|
31
|
Chingwaru W, Vidmar J, Kapewangolo PT, Mazimba O, Jackson J. Therapeutic and Prophylactic Potential of Morama (Tylosema esculentum): A Review. Phytother Res 2015. [PMID: 26206567 DOI: 10.1002/ptr.5419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tylosema esculentum (morama) is a highly valued traditional food and source of medicine for the San and other indigenous populations that inhabit the arid to semi-arid parts of Southern Africa. Morama beans are a rich source of phenolic acids, flavonoids, certain fatty acids, non-essential amino acids, certain phytosterols, tannins and minerals. The plant's tuber contains griffonilide, behenic acid and starch. Concoctions of extracts from morama bean, tuber and other local plants are frequently used to treat diarrhoea and digestive disorders by the San and other indigenous populations. Information on composition and bioactivity of phytochemical components of T. esculentum suggests that the polyphenol-rich extracts of the bean testae and cotyledons have great potential as sources of chemicals that inhibit infectious microorganisms (viral, bacterial and fungal, including drug-resistant strains), offer protection against certain non-communicable diseases and promote wound healing and gut health. The potential antinutritional properties of a few morama components are also highlighted. More research is necessary to reveal the full prophylactic and therapeutic potential of the plant against diseases of the current century. Research on domestication and conservation of the plant offers new hope for sustainable utilisation of the plant.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| | - Ofentse Mazimba
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| | - Jose Jackson
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| |
Collapse
|
32
|
Abstract
Advanced mucosal healing (MH) after intestinal mucosal inflammation coincides with sustained clinical remission and reduced rates of hospitalization and surgical resection, explaining why MH is increasingly considered as a full therapeutic goal and as an endpoint for clinical trials. Intestinal MH is a complex phenomenon viewed as a succession of steps necessary to restore tissue structure and function. These steps include epithelial cell migration and proliferation, cell differentiation, restoration of epithelial barrier functions, and modulation of cell apoptosis. Few clinical studies have evaluated the needs for specific macronutrients and micronutrients and their effects on intestinal MH, most data having been obtained from animal and cell studies. These data suggest that supplementation with specific amino acids including arginine, glutamine, glutamate, threonine, methionine, serine, proline, and the amino acid-derived compounds, polyamines can favorably influence MH. Short-chain fatty acids, which are produced by the microbiota from undigested polysaccharides and protein-derived amino acids, also exert beneficial effects on the process of intestinal MH in experimental models. Regarding supplementation with lipids, although the effects of ω-3 and ω-6 fatty acids remain controversial, endogenous prostaglandin synthesis seems to be necessary for MH. Finally, among micronutrients, several vitamin and mineral deficiencies with different frequencies have been observed in patients with inflammatory bowel diseases and supplementation with some of them (vitamin A, vitamin D3, vitamin C, and zinc) are presumed to favor MH. Future work, including clinical studies, should evaluate the efficiency of supplementation with combination of dietary compounds as adjuvant nutritional intervention for MH of the inflamed intestinal mucosa.
Collapse
|
33
|
Gao J, Zhu Y, Nilsson M, Sundfeldt K. TGF-β isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int 2014; 14:72. [PMID: 25278811 PMCID: PMC4180856 DOI: 10.1186/s12935-014-0072-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) plays major roles in tumorigenesis by regulating cell growth, epithelial-to-mesenchymal transition (EMT), migration/invasion and metastasis. The epithelial markers E-cadherin, claudin-3 and claudin-4, commonly decreased in human adenocarcinomas are actually up regulated during ovarian carcinogenesis. In human ovarian cancer TGF-β1 may either suppress or promote tumor progression, but whether other TGF-β isoforms (TGF-β2 and TGF-β3) exert similar effects is not known. Methods In this study we investigated the ability of the TGF-β isoforms (TGF-β1-3) to induce proliferation and migration by BrdU labeling, scratch wound and trans-filter migration assays in the human serous adenocarcinoma cell-line NIH-OVCAR3. Transepithelial resistance was measured and EMT observed by light-microscopy. Expression of adherens-, tight-junction and EMT-related transcription factors was analyzed by qRT-PCR and immunoblotting. Results All TGF-β isoforms dose-dependently inhibited NIH-OVCAR3 cell growth, stimulated tumor cell migration with similar efficiency. The mesenchymal marker N-cadherin and claudin-1 expression was induced and occludin down regulated. However, migrating cells retained an epithelial shape and E-cadherin expression. The E-cadherin repressor SNAIL mRNA levels remained low independently of TGF-β1-3 treatment while ZEB1 expression was enhanced. Conclusions TGF-β1, TGF-β2 and TGF-β3 promote migration of NIH-OVCAR3 ovarian cancer cells independently of cell proliferation and without conversion to a complete EMT phenotype. Epithelial ovarian cancer commonly metastasis to the surrounding tissue or inside the peritoneum rather than invading blood vessels to set distance metastasis. Our result raises the question whether ovarian cancer primarily spread via collective migration than via single cell invasion.
Collapse
Affiliation(s)
- Jingfang Gao
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Goteborg, SE-40530 Sweden
| | - Yihong Zhu
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Goteborg, SE-40530 Sweden
| | - Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Goteborg, SE-40530 Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Goteborg, SE-40530 Sweden
| |
Collapse
|
34
|
Modulation of intestinal epithelial cell proliferation, migration, and differentiation in vitro by Astragalus polysaccharides. PLoS One 2014; 9:e106674. [PMID: 25157577 PMCID: PMC4144960 DOI: 10.1371/journal.pone.0106674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that Astragalus polysaccharides (APS) can be used to treat general gastrointestinal disturbances including intestinal mucosal injury. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS on proliferation, migration, and differentiation of intestinal epithelial cells (IEC-6) were assessed using an in vitro wounding model and colorimetric thiazolyl blue (MTT) assays. The effect of APS on IEC-6 cell differentiation was observed using a light microscope and scanning electron microscope, and the expression of differentiation-specific markers of IEC-6 cells, such as cytokeratin 18 (CK18), alkaline phosphatase (ALP), tight junction protein ZO-2, and sucrase-isomaltase (SI), was determined by immunofluorescence assay (IFA) and real-time PCR. In addition, APS-induced signaling pathways in IEC-6 cells were characterized. Our results indicated that APS significantly enhance migration and proliferation of IEC-6 cells in vitro. APS-treated IEC-6 cells have numerous microvilli on their apical surface and also highly express CK18, ALP, ZO-2, and SI. Moreover, APS-treated IEC-6 cells, in which the activity and expression level of ornithine decarboxylase (ODC) were significantly elevated, also exhibited an increase in cellular putrescine, whereas no significant increase in TGF-β levels was observed. These findings suggest that APS may enhance intestinal epithelial cell proliferation, migration, and differentiation in vitro by stimulating ODC gene expression and activity and putrescine production, independent of TGF-β. Exogenous administration of APS may provide a new approach for modulating intestinal epithelial wound restitution in vivo.
Collapse
|
35
|
A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions. PLoS One 2014; 9:e91875. [PMID: 24632806 PMCID: PMC3954836 DOI: 10.1371/journal.pone.0091875] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
Collective cell migration is involved in many biological and pathological processes. Various factors have been shown to regulate the decision to migrate collectively or individually, but the impact of cell-extracellular matrix (ECM) interactions is still debated. Here, we developed a method for analyzing collective cell migration by precisely tuning the interactions between cells and ECM ligands. Gold nanoparticles are arrayed on a glass substrate with a defined nanometer spacing by block copolymer micellar nanolithography (BCML), and photocleavable poly(ethylene glycol) (Mw = 12 kDa, PEG12K) and a cyclic RGD peptide, as an ECM ligand, are immobilized on this substrate. The remaining glass regions are passivated with PEG2K-silane to make cells interact with the surface via the nanoperiodically presented cyclic RGD ligands upon the photocleavage of PEG12K. On this nanostructured substrate, HeLa cells are first patterned in photo-illuminated regions, and cell migration is induced by a second photocleavage of the surrounding PEG12K. The HeLa cells gradually lose their cell-cell contacts and become disconnected on the nanopatterned substrate with 10-nm particles and 57-nm spacing, in contrast to their behavior on the homogenous substrate. Interestingly, the relationship between the observed migration collectivity and the cell-ECM ligand interactions is the opposite of that expected based on conventional soft matter models. It is likely that the reduced phosphorylation at tyrosine-861 of focal adhesion kinase (FAK) on the nanopatterned surface is responsible for this unique migration behavior. These results demonstrate the usefulness of the presented method in understanding the process of determining collective and non-collective migration features in defined micro- and nano-environments and resolving the crosstalk between cell-cell and cell-ECM adhesions.
Collapse
|
36
|
Roy I, Zimmerman NP, Mackinnon AC, Tsai S, Evans DB, Dwinell MB. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One 2014; 9:e90400. [PMID: 24594697 PMCID: PMC3942415 DOI: 10.1371/journal.pone.0090400] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Noah P. Zimmerman
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - A. Craig Mackinnon
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Douglas B. Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
37
|
Zimmerman NP, Roy I, Hauser AD, Wilson JM, Williams CL, Dwinell MB. Cyclic AMP regulates the migration and invasion potential of human pancreatic cancer cells. Mol Carcinog 2013; 54:203-15. [PMID: 24115212 DOI: 10.1002/mc.22091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022]
Abstract
Aggressive dissemination and metastasis of pancreatic ductal adenocarcinoma (PDAC) results in poor prognosis and marked lethality. Rho monomeric G protein levels are increased in pancreatic cancer tissue. As the mechanisms underlying PDAC malignancy are little understood, we investigated the role for cAMP in regulating monomeric G protein regulated invasion and migration of pancreatic cancer cells. Treatment of PDAC cells with cAMP elevating agents that activate adenylyl cyclases, forskolin, protein kinase A (PKA), 6-Bnz-cAMP, or the cyclic nucleotide phosphodiesterase inhibitor cilostamide significantly decreased migration and Matrigel invasion of PDAC cell lines. Inhibition was dose-dependent and not significantly different between forskolin or cilostamide treatment. cAMP elevating drugs not only blocked basal migration, but similarly abrogated transforming-growth factor-β-directed PDAC cell migration and invasion. The inhibitory effects of cAMP were prevented by the pharmacological blockade of PKA. Drugs that increase cellular cAMP levels decreased levels of active RhoA or RhoC, with a concomitant increase in phosphorylated RhoA. Diminished Rho signaling was correlated with the appearance of thickened cortical actin bands along the perimeter of non-motile forskolin or cilostamide-treated cells. Decreased migration did not reflect alterations in cell growth or programmed cell death. Collectively these data support the notion that increased levels of cAMP specifically hinder PDAC cell motility through F-actin remodeling.
Collapse
Affiliation(s)
- Noah P Zimmerman
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin Cancer Center, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | | | | | | | | | | |
Collapse
|