1
|
Song H, Yang Y, Li B. Tripeptide Hyp-Asp-Gly from collagen peptides inhibited platelet activation via regulation of PI3K/Akt-MAPK/ERK1/2 signaling pathway. J Food Sci 2022; 87:3279-3293. [PMID: 35703476 DOI: 10.1111/1750-3841.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Platelet activation is involved in cardiovascular thrombosis. Our previous study demonstrated that oral administration of collagen peptides (CPs) inhibited platelet activation, but the mechanism of action of CPs remained to be elucidated. As a continued effort, the objective of this study was to identify the active ingredient of CPs and clarify its molecular mechanism. Simulated absorbate of CPs was prepared by simulated gastrointestinal digestion and intestinal absorption system, and then separated by C18 column. The fraction with the highest antiplatelet activity was subjected to NanoUPLC-ESI-MS/MS for peptide sequencing. Novel tripeptide Hyp-Asp-Gly (ODG) was identified. It had a broad-spectrum inhibition of platelet activation induced by collagen, thrombin, and adenosine diphosphate (ADP). ODG could survive simulated gastrointestinal digestion and be absorbed intact. Furthermore, it showed good stability in plasma. ODG had no significant effect on the PLC-PKC-Ca2+ pathway, but it inhibited the PI3K/Akt-MAPK/ERK1/2 signaling. At a dosage of 200 µmol/kg body weight, ODG had an in vivo anti-thrombosis activity without bleeding risk. The present study provides one of the mechanisms of action of CPs and highlights its potential use as a functional component to combat cardiovascular thrombosis. PRACTICAL APPLICATION: This study has suggested that tripeptide Hyp-Asp-Gly(ODG) derived from collagen have potent activities. This novel collagen peptide had a greatpotential to be applied to combat cardiovascular thrombosis in the foodindustry. Meanwhile, this work is expected to provide a theoretical basis forthe development of safe and effective anti-platelet and anti-thrombosis peptides.
Collapse
Affiliation(s)
- Hongdong Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,School of Health Science and Engineering, National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Severe Trauma and Hemorrhage Leads to Platelet Dysfunction and Changes in Cyclic Nucleotides in The Rat. Shock 2021; 53:468-475. [PMID: 31090681 DOI: 10.1097/shk.0000000000001379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Rats subjected to polytrauma and hemorrhage develop a coagulopathy that is similar to acute coagulopathy of trauma in humans, and is associated with a rise in prothrombin time and a fall in clot strength. Because platelet aggregation accounts for a major proportion of clot strength, we set out to characterize the effects of polytrauma on platelet function. METHODS Sprague-Dawley rats were anesthetized with isoflurane. Polytrauma included laparotomy and damage to 10 cm of the small intestines, right and medial liver lobes, right leg skeletal muscle, femur fracture, and hemorrhage (40% of blood volume). No resuscitation was given. Blood samples were taken before and after trauma for the measurement of impedance electrode aggregometry, and intracellular levels of cyclic adenosine and guanosine monophosphate (cAMP, cGMP), inositol trisphosphate (IP3), and adenosine and guanosine triphosphates (ATP, GTP). RESULTS Polytrauma significantly increased the response of collagen (24%) and thrombin (12%) to stimulate platelet aggregation. However, aggregation to adenosine diphosphate (ADP) or arachidonic acid (AA) was significantly decreased at 2 (52% and 46%, respectively) and 4 h (45% and 39%). Polytrauma and hemorrhage also led to a significant early rise in cAMP (101 ± 11 to 202 ± 29 pg/mL per 1,000 platelets), mirrored by a decrease in cGMP (7.8 ± 0.9 to 0.6 ± 0.5). In addition, there was a late fall in ATP (8.1 ± 0.7 to 2.2 ± 0.6 ng/mL per 1,000 platelets) and GTP (1.5 ± 0.2 to 0.3 ± 0.1). IP3 rose initially, and then fell back to baseline. CONCLUSIONS Polytrauma and hemorrhage led to a deficit in the platelet aggregation response to ADP and AA after trauma, likely due to the early rise in cAMP, and a later fall in energy substrates, and may explain the decrease in clot strength and impaired hemostasis observed after severe trauma.
Collapse
|
3
|
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, Huang F, Chen Z, Xu W, Xia D, Gao C. mTOR regulates GPVI-mediated platelet activation. J Transl Med 2021; 19:201. [PMID: 33971888 PMCID: PMC8111939 DOI: 10.1186/s12967-021-02756-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to mTOR (mammalian/mechanistic target of rapamycin) gene-loss mice die during embryonic development, the role of mTOR in platelets has not been evaluated using gene knockout technology. Methods A mouse model with megakaryocyte/platelet-specific deletion of mTOR was established, and be used to evaluate the role of mTOR in platelet activation and thrombus formation. Results mTOR−/− platelets were deficient in thrombus formation when grown on low-concentration collagen-coated surfaces; however, no deficiency in thrombus formation was observed when mTOR−/− platelets were perfused on higher concentration collagen-coated surfaces. In FeCl3-induced mouse mesenteric arteriole thrombosis models, wild-type (WT) and mTOR−/− mice displayed significantly different responses to low-extent injury with respect to the ratio of occluded mice, especially within the first 40 min. Additionally, mTOR−/− platelets displayed reduced aggregation and dense granule secretion (ATP release) in response to low doses of the glycoprotein VI (GPVI) agonist collagen related peptide (CRP) and the protease-activated receptor-4 (PAR4) agonist GYPGKF-NH2; these deficiencies were overcame by stimulation with higher concentration agonists, suggesting dose dependence of the response. At low doses of GPVI or PAR agonist, the activation of αIIbβ3 in mTOR−/− platelets was reduced. Moreover, stimulation of mTOR−/− platelets with low-dose CRP attenuated the phosphorylation of S6K1, S6 and Akt Ser473, and increased the phosphorylation of PKCδ Thr505 and PKCε Ser729. Using isoform-specific inhibitors of PKCs (δ, ɛ, and α/β), we established that PKCδ/ɛ, and especially PKCδ but not PKCα/β or PKCθ, may be involved in low-dose GPVI-mediated/mTOR-dependent signaling. Conclusion These observations indicate that mTOR plays an important role in GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Longsheng Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Gang Liu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.,Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Nannan Wu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Baiyun Dai
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuang Han
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zhihua Chen
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Weihong Xu
- Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China. .,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
4
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
5
|
Inamdar VV, Kostyak JC, Badolia R, Dangelmaier CA, Manne BK, Patel A, Kim S, Kunapuli SP. Impaired Glycoprotein VI-Mediated Signaling and Platelet Functional Responses in CD45 Knockout Mice. Thromb Haemost 2019; 119:1321-1331. [PMID: 31226719 DOI: 10.1055/s-0039-1692422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE CD45 is a receptor protein tyrosine phosphatase present on the surface of all hematopoietic cells except for erythrocytes and platelets. Proteomics studies, however, have demonstrated the presence of a CD45 c-terminal catalytic peptide in platelets. Therefore, we investigated the functional role of this truncated isoform of CD45 in platelets, which contains the c-terminal catalytic domain but lacks the extracellular region. METHODS AND RESULTS We used an antibody specific to the c-terminus of CD45 to confirm the presence of a truncated CD45 isoform in platelets. We also examined ex vivo and in vivo platelet function using CD45 knockout (KO) mice. Aggregation and secretion mediated by the glycoprotein VI (GPVI) receptor was impaired in CD45 KO platelets. Consequently, CD45 KO mice had impaired hemostasis indicated by increased tail bleeding times. Also, using a model of pulmonary embolism we showed that CD45 KO mice had defective in vivo thrombus formation. Next, we investigated whether or not the truncated isoform of CD45 had a role in GPVI signaling. The full-length isoform of CD45 is known to regulate Src family kinase (SFK) activation in lymphocytes. We find a similar role for the truncated isoform of CD45 in platelets. SFK activation was impaired downstream of the GPVI receptor in the CD45 KO murine platelets. Consequently, Syk, PLCγ2, and pleckstrin phosphorylations were also impaired in CD45 KO murine platelets. CONCLUSION We conclude that the truncated CD45 isoform regulates GPVI-mediated signaling and platelet functional responses by regulating SFK activation.
Collapse
Affiliation(s)
- Vaishali V Inamdar
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - John C Kostyak
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Carol A Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Bhanu Kanth Manne
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Soochong Kim
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
6
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
7
|
Kim K, Do HJ, Oh TW, Kim KY, Kim TH, Ma JY, Park KI. Antiplatelet and Antithrombotic Activity of a Traditional Medicine, Hwangryunhaedok-Tang. Front Pharmacol 2019; 9:1502. [PMID: 30687085 PMCID: PMC6333754 DOI: 10.3389/fphar.2018.01502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet activation and accumulation at the site of vascular injury are central to thrombus formation resulted in thrombotic disorders. Medicinal herbs could be one of the most important pharmaceutical agents that ameliorate thrombotic disorders, such as unstable angina, myocardial infarction, stroke, and peripheral vascular diseases. Hwangryunhaedok-tang (HRT) is a traditional herbal medicine that displays multiple biological properties including anti-inflammatory abilities. However, its role in platelet activation has not been fully studied. Hence, we examined whether HRT has a potent inhibitory effect on platelet aggregation and thrombus formation. We demonstrated that HRT (30, 50, and 100 μg/ml) significantly impaired thrombin- and collagen-related peptide-induced platelet aggregation, granule secretion, thromboxane B2 generation, and intracellular Ca2+ mobilization. Biochemical studies revealed that HRT is involved in inhibiting the phosphorylation of phospholipase C and protein kinase B. The oral administration of HRT (30, 50, and 100 mg/kg once daily for 1 and/or 7 days) efficiently ameliorates ferric chloride induced arterial thrombus formation in vivo. Tail bleeding time was not significantly increased. The qualitative phytochemical constituents of the HRT extract were investigated using high-performance liquid chromatography. Our results demonstrated that HRT shows potential antiplatelet and antithrombotic effects without affecting hemostasis. Hence, HRT could be an effective therapeutic agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Hyun Ju Do
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Tae Woo Oh
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Kwang-Youn Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Jin Yel Ma
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Kwang-Il Park
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| |
Collapse
|
8
|
Minuz P, Meneguzzi A, Fumagalli L, Degan M, Calabria S, Ferraro R, Ricci M, Veneri D, Berton G. Calcium-Dependent Src Phosphorylation and Reactive Oxygen Species Generation Are Implicated in the Activation of Human Platelet Induced by Thromboxane A2 Analogs. Front Pharmacol 2018; 9:1081. [PMID: 30319416 PMCID: PMC6169403 DOI: 10.3389/fphar.2018.01081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022] Open
Abstract
The thromboxane (TX) A2 elicits TP-dependent different platelet responses. Low amounts activate Src kinases and the Rho–Rho kinase pathway independently of integrin αIIbβ3 and ADP secretion and synergize with epinephrine to induce aggregation. Aim of the present study was to investigate the role Src kinases and the interplay with calcium signals in reactive oxygen species (ROS) generation in the activatory pathways engaged by TXA2 in human platelets. All the experiments were performed in vitro or ex vivo. Washed platelets were stimulated with 50–1000 nM U46619 and/or 10 μM epinephrine in the presence of acetylsalicylic acid and the ADP scavenger apyrase. The effects of the ROS scavenger EUK-134, NADPH oxidase (NOX) inhibitor apocynin, Src kinase inhibitor PP2 and calcium chelator BAPTA were tested. Intracellular calcium and ROS generation were measured. Platelet rich plasma from patients treated with dasatinib was used to confirm the data obtained in vitro. We observed that 50 nM U46619 plus epinephrine increase intracellular calcium similarly to 1000 nM U46619. ROS generation was blunted by the NOX inhibitor apocynin. BAPTA inhibited ROS generation in resting and activated platelets. Phosphorylation of Src and MLC proteins were not significantly affected by antioxidants agents. BAPTA and antioxidants reduced P-Selectin expression, activation of integrin αIIbβ3and platelet aggregation. TXA2-induced increase in intracellular calcium is required for Src phosphorylation and ROS generation. NADPH oxidase is the source of ROS in TX stimulated platelets. The proposed model helps explain why an incomplete inhibition of TP receptor results in residual platelet activation, and define new targets for antiplatelet treatment.
Collapse
Affiliation(s)
- Pietro Minuz
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandra Meneguzzi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Laura Fumagalli
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Degan
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Calabria
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Ferraro
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Ricci
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Dino Veneri
- Section of Haematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giorgio Berton
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Huang LY, Li PP, Li YJ, Zhao WQ, Shang WK, Wang YL, Gao DS, Li HC, Ma P. Decreased intracellular chloride promotes ADP induced platelet activation through inhibition of cAMP/PKA instead of activation of Lyn/PI3K/Akt pathway. Biochem Biophys Res Commun 2018; 503:1740-1746. [PMID: 30122318 DOI: 10.1016/j.bbrc.2018.07.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 11/27/2022]
Abstract
Decrease of chloride concentration contributes to cardiovascular diseases, however, whether decrease of chloride concentration is involved in platelet activation remains elusive. In the present study, we found that ACI patients had lower serum chloride which would be rescued after Aspirin administration. ADP induced chloride concentration reduction in platelets. Blockade of chloride channel prevented ADP-induced platelet adhesion, activation and aggregation, however, decreasing the extracellular chloride concentration promoted ADP-induced platelet adhesion and activation. Decrease of the extracellular chloride concentration facilitated the inactivation of Src family kinase Lyn, which was not involved in PI3K/Akt phosphorylation. Nevertheless, low chloride concentration promoted the production of platelet cytosol Gαi2 subunit. This subunit prevents AC from converting ATP into cAMP, which therefore, inhibited the phosphorylation of PKA to promote platelet activation. In conclusion, decreased intracellular chloride promotes ADP induced platelet activation through the Gαi2/cAMP/PKA pathway instead of the Lyn/PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, PR China
| | - Peng-Peng Li
- Department of Medical Laboratory, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, 221000, PR China
| | - Yu-Jie Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, PR China
| | - Wen-Qian Zhao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Wen-Kang Shang
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yan-Ling Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, PR China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Hong-Chun Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, PR China.
| | - Ping Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, PR China; Department of Medical Laboratory, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, 221000, PR China.
| |
Collapse
|
10
|
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood 2018; 131:1122-1144. [PMID: 29301754 DOI: 10.1182/blood-2017-02-768077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.
Collapse
|
11
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion 2017; 57:2845-2857. [PMID: 28905392 DOI: 10.1111/trf.14310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Room temperature-stored (20-24°C) platelets (PLTs) have a shelf life of 5 days, making it logistically challenging to supply remote medical centers with PLT products. Cryopreservation of PLTs in dimethyl sulfoxide (DMSO) and storage at -80°C enables an extended shelf life up to 2 years. Although cryopreserved PLTs have been widely characterized under resting conditions, their ability to undergo agonist-induced activation is yet to be fully explored. STUDY DESIGN AND METHODS Buffy coat PLTs were cryopreserved at -80°C with 5% to 6% DMSO and sampled before freezing and after thawing. PLTs were analyzed under resting conditions and after agonist stimulation with adenosine diphosphate, collagen, or thrombin receptor-activating peptide-6. The expression of activation markers, microparticle formation, and calcium mobilization were analyzed by flow cytometry. Soluble PLT proteins present in the PLT supernatant were examined by enzyme-linked immunosorbent assay. Protein phosphorylation was investigated with Western blotting. RESULTS After cryopreservation, PLTs displayed increased surface activation markers and higher basal calcium levels. Cryopreserved PLTs demonstrated diminished aggregation responses. Additionally, cryopreserved PLTs showed a limited ability to become activated (as measured by CD62P and phosphatidylserine exposure and cytokine release) after agonist stimulation. A reduction in the abundance and phosphorylation of key signaling proteins (Akt, Src, Lyn, ERK, and p38) was seen in cryopreserved PLTs. CONCLUSIONS Cryopreservation of PLTs induces dramatic changes to the basal PLT phenotype and renders them largely nonresponsive to agonist stimulation, likely due to the alterations in signal transduction. Therefore, further efforts are required to understand how cryopreserved PLTs achieve their hemostatic effect once transfused.
Collapse
Affiliation(s)
- Lauren Waters
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
13
|
Badolia R, Inamdar V, Manne BK, Dangelmaier C, Eble JA, Kunapuli SP. G q pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. J Biol Chem 2017; 292:14516-14531. [PMID: 28705934 DOI: 10.1074/jbc.m117.791012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/09/2017] [Indexed: 11/06/2022] Open
Abstract
Platelets play a key role in the physiological hemostasis or pathological process of thrombosis. Rhodocytin, an agonist of the C-type lectin-like receptor-2 (CLEC-2), elicits powerful platelet activation signals in conjunction with Src family kinases (SFKs), spleen tyrosine kinase (Syk), and phospholipase γ2 (PLCγ2). Previous reports have shown that rhodocytin-induced platelet aggregation depends on secondary mediators such as thromboxane A2 (TxA2) and ADP, which are agonists for G-protein-coupled receptors (GPCRs) on platelets. How the secondary mediators regulate CLEC-2-mediated platelet activation in terms of signaling is not clearly defined. In this study, we report that CLEC-2-induced Syk and PLCγ2 phosphorylation is potentiated by TxA2 and that TxA2 plays a critical role in the most proximal event of CLEC-2 signaling, i.e. the CLEC-2 receptor tyrosine phosphorylation. We show that the activation of other GPCRs, such as the ADP receptors and protease-activated receptors, can also potentiate CLEC-2 signaling. By using the specific Gq inhibitor, UBO-QIC, or Gq knock-out murine platelets, we demonstrate that Gq signaling, but not other G-proteins, is essential for GPCR-induced potentiation of Syk phosphorylation downstream of CLEC-2. We further elucidated the signaling downstream of Gq and identified an important role for the PLCβ-PKCα pathway, possibly regulating activation of SFKs, which are crucial for initiation of CLEC-2 signaling. Together, these results provide evidence for novel Gq-PLCβ-PKCα-mediated regulation of proximal CLEC-2 signaling by Gq-coupled receptors.
Collapse
Affiliation(s)
- Rachit Badolia
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Vaishali Inamdar
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Bhanu Kanth Manne
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Carol Dangelmaier
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Johannes A Eble
- the Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Satya P Kunapuli
- From the Department of Physiology, .,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
14
|
DREAM plays an important role in platelet activation and thrombogenesis. Blood 2016; 129:209-225. [PMID: 27903531 DOI: 10.1182/blood-2016-07-724419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/23/2016] [Indexed: 01/18/2023] Open
Abstract
Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5'-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iβ (PI3K-Iβ). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iβ activation. These results suggest that platelet DREAM regulates PI3K-Iβ activity and plays an important role during thrombus formation.
Collapse
|
15
|
Kawata J, Yamaguchi R, Yamamoto T, Ishimaru Y, Sakamoto A, Aoki M, Kitano M, Umehashi M, Hirose E, Yamaguchi Y. Human Neutrophil Elastase Induce Interleukin-10 Expression in Peripheral Blood Mononuclear Cells through Protein Kinase C Theta/Delta and Phospholipase Pathways. CELL JOURNAL 2016; 17:692-700. [PMID: 26862528 PMCID: PMC4746419 DOI: 10.22074/cellj.2016.3841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/15/2015] [Indexed: 01/30/2023]
Abstract
Objective Neutrophils have an important role in the rapid innate immune response,
and the release or active secretion of elastase from neutrophils is linked to various
inflammatory responses. Purpose of this study was to determine how the human
neutrophil elastase affects the interleukin-10 (IL-10) response in peripheral blood
mononuclear cells (PBMC).
Materials and Methods In this prospective study, changes in IL-10 messenger RNA
(mRNA) and protein expression levels in monocytes derived from human PBMCs
were investigated after stimulation with human neutrophil elastase (HNE). A set of
inhibitors was used for examining the pathways for IL-10 production induced by HNE.
Results Reverse transcription polymerase chain reaction (RT-PCR) showed that
stimulation with HNE upregulated IL-10 mRNA expression by monocytes, while the
enzyme-linked immunosorbent assay (ELISA) revealed an increase of IL-10 protein
level in the culture medium. A phospholipase C inhibitor (U73122) partially blunt-
ed the induction of IL-10 mRNA expression by HNE, while IL-10 mRNA expression
was significantly reduced by a protein kinase C (PKC) inhibitor (Rottlerin). A calcium
chelator (3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester: TMB-8) inhibited
the response of IL-10 mRNA to stimulation by HNE. In addition, pretreatment with
a broad-spectrum PKC inhibitor (Ro-318425) partly blocked the response to HNE.
Finally, an inhibitor of PKC theta/delta abolished the increased level of IL-10 mRNA
expression.
Conclusion These results indicate that HNE mainly upregulates IL-10 mRNA ex-
pression and protein production in moncytes via a novel PKC theta/delta, although
partially via the conventional PKC pathway.
Collapse
Affiliation(s)
- Jin Kawata
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Takatoshi Yamamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuji Ishimaru
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Manabu Aoki
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Masafumi Kitano
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Misako Umehashi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Eiji Hirose
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
16
|
NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood 2015; 126:1952-64. [PMID: 26333777 DOI: 10.1182/blood-2014-10-605261] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Platelet-leukocyte interactions on activated endothelial cells play an important role during microvascular occlusion under oxidative stress conditions. However, it remains poorly understood how neutrophil-platelet interactions are regulated during vascular inflammation. By using intravital microscopy with mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and their bone marrow chimera, we demonstrated that NOX2 from both hematopoietic and endothelial cells is crucial for neutrophil-platelet interactions during tumor necrosis factor alpha-induced venular inflammation. Platelet NOX2-produced reactive oxygen species (ROS) regulated P-selectin exposure upon agonist stimulation and the ligand-binding function of glycoprotein Ibα. Furthermore, neutrophil NOX2-generated ROS enhanced the activation and ligand-binding activity of αMβ2 integrin following N-formyl-methionyl-leucyl phenylalanine stimulation. Studies with isolated cells and a mouse model of hepatic ischemia/reperfusion injury revealed that NOX2 from both platelets and neutrophils is required for cell-cell interactions, which contribute to the pathology of hepatic ischemia/reperfusion injury. Platelet NOX2 modulated intracellular Ca(2+) release but not store-operated Ca(2+) entry (SOCE), whereas neutrophil NOX2 was crucial for SOCE but not intracellular Ca(2+) release. Different regulation of Ca(2+) signaling by platelet and neutrophil NOX2 correlated with differences in the phosphorylation of AKT, ERK, and p38MAPK. Our results indicate that platelet and neutrophil NOX2-produced ROS are critical for the function of surface receptors essential for neutrophil-platelet interactions during vascular inflammation.
Collapse
|
17
|
The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 2015; 469:199-210. [DOI: 10.1042/bj20150048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
We address the mechanism for Src family kinases activation downstream of G-protein-coupled receptors (GPCRs) in thrombin-stimulated blood platelets and we describe a novel interplay between Pyk2 and the Src kinases Fyn and Lyn in the regulation of Ca2+-dependent protein-tyrosine phosphorylation.
Collapse
|
18
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Kawata J, Aoki M, Ishimaru Y, Ono T, Sagara K, Narahara S, Matsmoto T, Hirose E, Yamaguchi Y. Mechanism of tissue factor production by monocytes stimulated with neutrophil elastase. Blood Cells Mol Dis 2015; 54:206-9. [DOI: 10.1016/j.bcmd.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022]
|
20
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
21
|
Onselaer MB, Oury C, Hunter RW, Eeckhoudt S, Barile N, Lecut C, Morel N, Viollet B, Jacquet LM, Bertrand L, Sakamoto K, Vanoverschelde JL, Beauloye C, Horman S. The Ca(2+) /calmodulin-dependent kinase kinase β-AMP-activated protein kinase-α1 pathway regulates phosphorylation of cytoskeletal targets in thrombin-stimulated human platelets. J Thromb Haemost 2014; 12:973-86. [PMID: 24655923 DOI: 10.1111/jth.12568] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Platelet activation requires sweeping morphologic changes, supported by contraction and remodeling of the platelet actin cytoskeleton. In various other cell types, AMP-activated protein kinase (AMPK) controls the phosphorylation state of cytoskeletal targets. OBJECTIVE To determine whether AMPK is activated during platelet aggregation and contributes to the control of cytoskeletal targets. RESULTS We found that AMPK-α1 was mainly activated by thrombin, and not by other platelet agonists, in purified human platelets. Thrombin activated AMPK-α1 ex vivo via a Ca(2+) /calmodulin-dependent kinase kinase β (CaMKKβ)-dependent pathway. Pharmacologic inhibition of CaMKKβ blocked thrombin-induced platelet aggregation and counteracted thrombin-induced phosphorylation of several cytoskeletal proteins, namely, regulatory myosin light chains (MLCs), cofilin, and vasodilator-stimulated phosphoprotein (VASP), three key elements involved in actin cytoskeletal contraction and polymerization. Platelets isolated from mice lacking AMPK-α1 showed reduced aggregation in response to thrombin, and this was associated with defects in MLC, cofilin and VASP phosphorylation and actin polymerization. More importantly, we show, for the first time, that the AMPK pathway is activated in platelets of patients undergoing major cardiac surgery, in a heparin-sensitive manner. CONCLUSION AMPK-α1 is activated by thrombin in human platelets. It controls the phosphorylation of key cytoskeletal targets and actin cytoskeletal remodeling during platelet aggregation.
Collapse
Affiliation(s)
- M-B Onselaer
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Recherche Cardiovasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moore SF, Hunter RW, Hers I. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets. J Thromb Haemost 2014; 12:748-60. [PMID: 24612393 PMCID: PMC4238809 DOI: 10.1111/jth.12552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/25/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. METHODS Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). RESULTS Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. CONCLUSION These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3 kinase/Akt pathway.
Collapse
Affiliation(s)
- S F Moore
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
23
|
Boulaftali Y, Hess PR, Kahn ML, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 2014; 114:1174-84. [PMID: 24677237 PMCID: PMC4000726 DOI: 10.1161/circresaha.114.301611] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/18/2014] [Indexed: 01/27/2023]
Abstract
Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.
Collapse
Affiliation(s)
- Yacine Boulaftali
- From the McAllister Heart Institute (Y.B., W.B.) and Department of Biochemistry and Biophysics (W.B.), University of North Carolina, Chapel Hill; and Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia (P.R.H., M.L.K.)
| | | | | | | |
Collapse
|
24
|
Abstract
The Src family kinases (SFKs) c-Src and Yes mediate vascular leakage in response to various stimuli including lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF). Here, we define an opposing function of another SFK, Lyn, which in contrast to other SFKs, strengthens endothelial junctions and thereby restrains the increase in vascular permeability. Mice lacking Lyn displayed increased mortality in LPS-induced endotoxemia and increased vascular permeability in response to LPS or VEGF challenge compared with wild-type littermates. Lyn knockout mice repopulated with wild-type bone marrow-derived cells have higher vascular permeability than wild-type mice, suggesting a role of endothelial Lyn in the maintenance of the vascular barrier. Small interfering RNA-mediated down-regulation of Lyn disrupted endothelial barrier integrity, whereas expression of a constitutively active mutant of Lyn enhanced the barrier. However, down-regulation of Lyn did not affect LPS-induced endothelial permeability. We demonstrate that Lyn association with focal adhesion kinase (FAK) and phosphorylation of FAK at tyrosine residues 576/577 and 925 were required for Lyn-dependent stabilization of endothelial adherens junctions. Thus, in contrast to c-Src and Yes, which increase vascular permeability in response to stimuli, Lyn stabilizes endothelial junctions through phosphorylation of FAK. Therefore, therapeutics activating Lyn kinase may strengthen the endothelial barrier junction and hence have anti-inflammatory potential.
Collapse
|
25
|
Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates. Thromb Res 2013; 132:202-10. [PMID: 23773522 DOI: 10.1016/j.thromres.2013.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/08/2013] [Accepted: 05/21/2013] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neferine, a kind of isoquinoline alkaloid, extracted from the seed embryo of Nelumbo nucifera Gaertn, has long been recognized in traditional medicine as a medicinal plant with various usages. Neferine has many biological activities, including anti-hypertensive, anti-arrhythmic, negative inotropic effect and relaxation on vascular smooth muscle. Although previous studies have reported its antithrombotic effect, the mechanisms by which it exerts antithrombotic effect have not been thoroughly studied. METHOD Washed mice platelets and mice platelet-rich-plasma (PRP) were used to investigate the effects of neferine on platelet aggregation, secretion induced by various agonists and dissociation of agonist-formed platelet aggregates. Bioflux plates coated with collagen were used to investigate the effect of neferine on platelet adhesion and thrombosis in vitro. With collagen-epinephrine-induced acute pulmonary thrombus formation mouse model, the effect of neferine on thrombosis in vivo was also examined. RESULTS Neferine, significantly and dose-dependently, inhibited collagen-, thrombin-, U46619-induced platelet aggregation in mice washed platelets, or ADP-induced platelet aggregation in PRP. Neferine treatment decreased platelet dense granule secretion initiated by collagen, thrombin and U46619. Also, Neferine dramatically and dose-dependently promoted the dissociation of platelet aggregates pre-formed by various agonists including collagen, thrombin, U46619 or ADP. Neferine can significantly reduce the area of mice platelets adhesion to the collagen and inhibit thrombosis in vitro. In collagen-epinephrine-induced acute pulmonary thrombus mouse model, neferine, at 6 mg/kg, significantly attenuated thrombus formation. CONCLUSIONS Neferine remarkably prevents thrombus formation by inhibiting platelet activation, adhesion and aggregation, as well as promoting disassembly of pre-formed platelet aggregates. The inhibitory effects of neferine on platelet activation might be relevant in cases involving aberrant platelet activation where neferine could be used as an anti-platelet and antithrombotic agent.
Collapse
|