1
|
de Paz-Lugo P, Lupiáñez JA, Sicilia J, Meléndez-Hevia E. Control analysis of collagen synthesis by glycine, proline and lysine in bovine chondrocytes in vitro - Its relevance for medicine and nutrition. Biosystems 2023; 232:105004. [PMID: 37598999 DOI: 10.1016/j.biosystems.2023.105004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. Collagen synthesis is submitted to a large procollagen cycle where the greater part of the newly synthesized protein is degraded inside the cell producing a huge waste of material and energy. We have applied the Metabolic Control Analysis approach to study the control of collagen synthesis flux by means of the response coefficients of the flux with respect to glycine, proline and lysine. Our results show that the main cause of the procollagen cycle is a protein misfolding mainly due to glycine scarcity, as well as a moderate deficiency of proline and lysine for collagen synthesis. Thus, increasing these amino acids in the diet (especially glycine) may well be a strategy for helping cartilage regeneration by enhancing collagen synthesis and reducing its huge waste in the procollagen cycle; this possibly contributes to the treatment and prevention of osteoarthritis.
Collapse
Affiliation(s)
- Patricia de Paz-Lugo
- Instituto del Metabolismo Celular, Calle Manuel de Falla nº15, La Laguna, 38208, Tenerife, Canary Islands, Spain.
| | - José Antonio Lupiáñez
- Universidad de Granada, Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Avda. Fuentenueva nº 1, 18071, Granada, Spain.
| | - Joaquín Sicilia
- Universidad de La Laguna, Departamento de Matemáticas, Estadística e Investigación Operativa, Avda. Astrofísico Francisco Sánchez, S/n. La Laguna, 38206, Tenerife, Canary Islands, Spain.
| | - Enrique Meléndez-Hevia
- Instituto del Metabolismo Celular, Calle Manuel de Falla nº15, La Laguna, 38208, Tenerife, Canary Islands, Spain.
| |
Collapse
|
2
|
Ambli M, Deracinois B, Jenequin AS, Ravallec R, Cudennec B, Flahaut C. Impact of Bioinformatics Search Parameters for Peptides' Identification and Their Post-Translational Modifications: A Case Study of Proteolysed Gelatines from Beef, Pork, and Fish. Foods 2023; 12:2524. [PMID: 37444262 DOI: 10.3390/foods12132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Bioinformatics software, allowing the identification of peptides by the comparison of peptide fragmentation spectra obtained by mass spectrometry versus targeted databases or directly by de novo sequencing, is now mandatory in peptidomics/proteomics approaches. Programming the identification software requires specifying, among other things, the mass measurement accuracy of the instrument and the digestion enzyme used with the number of missed cleavages allowed. Moreover, these software algorithms are able to identify a large number of post-translational modifications (PTMs). However, peptide and PTM identifications are challenging in the agrofood field due to non-specific cleavage sites of physiological- or food-grade enzymes and the number and location of PTMs. In this study, we show the importance of customized software programming to obtain a better peptide and PTM identification rate in the agrofood field. A gelatine product and one industrial gelatine hydrolysate from three different sources (beef, pork, and fish), each digested by simulated gastrointestinal digestion, MS-grade trypsin, or both, were used to perform the comparisons. Two main points are illustrated: (i) the impact of the set-up of specific enzyme versus no specific enzyme use and (ii) the impact of a maximum of six PTMs allowed per peptide versus the standard of three. Prior knowledge of the composition of the raw proteins is an important asset for better identification of peptide sequences.
Collapse
Affiliation(s)
- Mouna Ambli
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| | - Barbara Deracinois
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| | - Anne-Sophie Jenequin
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| | - Rozenn Ravallec
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| | - Benoit Cudennec
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| | - Christophe Flahaut
- UMR Transfrontalière BioEcoAgro-INRAe N° 1158, Univ. Artois, Univ. Lille, INRAe, Univ. Liège, UPJV, JUNIA, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 62300 Lens, France
| |
Collapse
|
3
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
4
|
Voziyan P, Uppuganti S, Leser M, Rose KL, Nyman JS. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA ADVANCES 2023; 3:100079. [PMID: 37082268 PMCID: PMC10074956 DOI: 10.1016/j.bbadva.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs), particularly in long-lived extracellular matrix proteins, has been implicated in pathogenesis of diabetic complications and in aging. Knowledge about specific locations of AGEs and their precursors within protein primary structure is critical for understanding their physiological and pathophysiological impact. However, the information on specific AGE sites is lacking. Here, we identified sequence positions of four major AGEs, carboxymethyllysine, carboxyethyllysine, 5-hydro-5-methyl imidazolone, and 5-hydro-imidazolone, and an AGE precursor fructosyllysine within the triple helical region of collagen I from cortical bone of human femurs. The presented map provides a basis for site-specific quantitation of AGEs and other non-enzymatic post-translational modifications and identification of those sites affected by aging, diabetes, and other diseases such as osteoporosis; it can also help in guiding future studies of AGE impact on structure and function of collagen I in bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Kristie L. Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
5
|
Kirchner M, Deng H, Xu Y. Heterogeneity in proline hydroxylation of fibrillar collagens observed by mass spectrometry. PLoS One 2021; 16:e0250544. [PMID: 34464391 PMCID: PMC8407550 DOI: 10.1371/journal.pone.0250544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Collagen is the major protein in the extracellular matrix and plays vital roles in tissue development and function. Collagen is also one of the most processed proteins in its biosynthesis. The most prominent post-translational modification (PTM) of collagen is the hydroxylation of Pro residues in the Y-position of the characteristic (Gly-Xaa-Yaa) repeating amino acid sequence of a collagen triple helix. Recent studies using mass spectrometry (MS) and tandem MS sequencing (MS/MS) have revealed unexpected hydroxylation of Pro residues in the X-positions (X-Hyp). The newly identified X-Hyp residues appear to be highly heterogeneous in location and percent occupancy. In order to understand the dynamic nature of the new X-Hyps and their potential impact on applications of MS and MS/MS for collagen research, we sampled four different collagen samples using standard MS and MS/MS techniques. We found considerable variations in the degree of PTMs of the same collagen from different organisms and/or tissues. The rat tail tendon type I collagen is particularly variable in terms of both over-hydroxylation of Pro in the X-position and under-hydroxylation of Pro in the Y-position. In contrast, only a few unexpected PTMs in collagens type I and type III from human placenta were observed. Some observations are not reproducible between different sequencing efforts of the same sample, presumably due to a low population and/or the unpredictable nature of the ionization process. Additionally, despite the heterogeneous preparation and sourcing, collagen samples from commercial sources do not show elevated variations in PTMs compared to samples prepared from a single tissue and/or organism. These findings will contribute to the growing body of information regarding the PTMs of collagen by MS technology, and culminate to a more comprehensive understanding of the extent and the functional roles of the PTMs of collagen.
Collapse
Affiliation(s)
- Michele Kirchner
- Department of Chemistry, Hunter College of CUNY, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Haiteng Deng
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States of America
| | - Yujia Xu
- Department of Chemistry, Hunter College of CUNY, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ishikawa Y, Taga Y, Zientek K, Mizuno N, Salo AM, Semenova O, Tufa SF, Keene DR, Holden P, Mizuno K, Gould DB, Myllyharju J, Bächinger HP. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER. J Biol Chem 2021; 296:100453. [PMID: 33631195 PMCID: PMC7988497 DOI: 10.1016/j.jbc.2021.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Keith Zientek
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Olesya Semenova
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Paul Holden
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Knott SJ, Brown KA, Josyer H, Carr A, Inman D, Jin S, Friedl A, Ponik SM, Ge Y. Photocleavable Surfactant-Enabled Extracellular Matrix Proteomics. Anal Chem 2020; 92:15693-15698. [PMID: 33232116 DOI: 10.1021/acs.analchem.0c03104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.
Collapse
Affiliation(s)
- Samantha J Knott
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Austin Carr
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
van Huizen NA, Ijzermans JNM, Burgers PC, Luider TM. Collagen analysis with mass spectrometry. MASS SPECTROMETRY REVIEWS 2020; 39:309-335. [PMID: 31498911 DOI: 10.1002/mas.21600] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Taga Y, Kusubata M, Mizuno K. Quantitative Analysis of the Positional Distribution of Hydroxyproline in Collagenous Gly-Xaa-Yaa Sequences by LC-MS with Partial Acid Hydrolysis and Precolumn Derivatization. Anal Chem 2020; 92:8427-8434. [PMID: 32437599 DOI: 10.1021/acs.analchem.0c01098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Collagen is extensively modified by various enzymes, including prolyl hydroxylases. Pro residues at the Yaa position of repeating Gly-Xaa-Yaa amino acid sequences are mostly hydroxylated to 4-hydroxyproline (4Hyp), which is essential for the thermal stability of collagen triple helix. In contrast, Pro residues at the Xaa position are rarely modified to 3Hyp and 4Hyp, the biological function of which is poorly understood. Overall estimation of prolyl hydroxylation with discrimination of the position (Xaa or Yaa) and hydroxylation type (4Hyp or 3Hyp) has been difficult to perform using traditional methods. In the present study, we developed a novel position-specific analytical method featuring LC-MS detection of collagenous Gly-containing dipeptides, including Gly-Pro, Pro-Gly, Gly-4Hyp, Gly-3Hyp, and 4Hyp-Gly, after partial acid hydrolysis and precolumn derivatization using 3-aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS). We performed acid hydrolysis at 55 °C with HCl/trifluoroacetic acid/water (2:1:1, v/v) to avoid peptide inversion and imbalanced peptide generation observed for collagenous model peptides. The positional distribution of Pro, 4Hyp, and 3Hyp can be calculated from the relative concentrations of the APDS-derivatized dipeptides, and in combination with amino acid analysis, we can determine their absolute contents at the Xaa and Yaa positions. Bovine type I, III, and V collagens were analyzed by the established method, and the amount of 4Hyp was higher than that of 3Hyp at the Xaa position in type I and III collagens. In addition, we clearly showed that collagen extracted from earthworm cuticles has an extremely high content of Xaa position 4Hyp, reaching over 10% of the total amino acids.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
11
|
|
12
|
Terajima M, Taga Y, Cabral WA, Liu Y, Nagasawa M, Sumida N, Kayashima Y, Chandrasekaran P, Han L, Maeda N, Perdivara I, Hattori S, Marini JC, Yamauchi M. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLoS Genet 2019; 15:e1008196. [PMID: 31173582 PMCID: PMC6602281 DOI: 10.1371/journal.pgen.1008196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin. Deficiency of cyclophilin B (CypB), an endoplasmic reticulum-resident peptidyl-prolyl cis-trans isomerase, causes recessive osteogenesis imperfecta type IX, resulting in defective connective tissues. Recent studies using CypB null mice revealed that CypB modulates lysine hydroxylation of type I collagen impacting collagen cross-linking. However, the extent of modulation, the molecular mechanism and the effect on tissue properties are not well understood. In the present study, we show that CypB deficiency in mouse skin results in the formation of unusual collagen cross-links, aberrant tissue formation, altered levels of lysine modifying enzymes and their chaperones, and impaired mechanical property. These findings highlight an essential role of CypB in collagen post-translational modifications which are critical in maintaining the structure and function of connective tissues.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Liu
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irina Perdivara
- Fujifilm Diosynth Biotechnologies, Morrisville, North Carolina, United States of America
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biol Plus 2019; 1:100005. [PMID: 33543004 PMCID: PMC7852317 DOI: 10.1016/j.mbplus.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Lung fibrosis is characterized by excessive deposition of extracellular matrix (ECM), in particular collagens, by fibroblasts in the interstitium. Transforming growth factor-β1 (TGF-β1) alters the expression of many extracellular matrix (ECM) components produced by fibroblasts, but such changes in ECM composition as well as modulation of collagen post-translational modification (PTM) levels have not been comprehensively investigated. Here, we performed mass spectrometry (MS)-based proteomics analyses to assess changes in the ECM deposited by cultured lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients upon stimulation with transforming growth factor β1 (TGF-β1). In addition to the ECM changes commonly associated with lung fibrosis, MS-based label-free quantification revealed profound effects on enzymes involved in ECM crosslinking and turnover as well as multiple positive and negative feedback mechanisms of TGF-β1 signaling. Notably, the ECM changes observed in this in vitro model correlated significantly with ECM changes observed in patient samples. Because collagens are subject to multiple PTMs with major implications in disease, we implemented a new bioinformatic platform to analyze MS data that allows for the comprehensive mapping and site-specific quantitation of collagen PTMs in crude ECM preparations. These analyses yielded a comprehensive map of prolyl and lysyl hydroxylations as well as lysyl glycosylations for 15 collagen chains. In addition, site-specific PTM analysis revealed novel sites of prolyl-3-hydroxylation and lysyl glycosylation in type I collagen. Interestingly, the results show, for the first time, that TGF-β1 can modulate prolyl-3-hydroxylation and glycosylation in a site-specific manner. Taken together, this proof of concept study not only reveals unanticipated TGF-β1 mediated regulation of collagen PTMs and other ECM components but also lays the foundation for dissecting their key roles in health and disease. The proteomic data has been deposited to the ProteomeXchange Consortium via the MassIVE partner repository with the data set identifier MSV000082958. Quantitative proteomics of TGF-β-induced changes in ECM composition and collagen PTM in pulmonary fibroblasts TGF-β promotes crosslinking and turnover as well as complex feedback mechanisms that alter fibroblast ECM homeostasis. A novel bioinformatic workflow for MS data analysis enabled global mapping and quantitation of known and novel collagen PTMs Quantitative assessment of prolyl-3-hydroxylation site occupancy and lysine-O-glycosylation microheterogeneity TGF-β1 modulates collagen PTMs in a site-specific manner that may favor collagen accumulation in lung fibrosis
Collapse
Key Words
- 3-HyP, 3-hydroxyproline
- 4-HyP, 4-hydroxyproline
- AGC, automatic gain control
- ANXA11, annexin A11
- BGN, biglycan
- COL1A1, collagen-I alpha 1 chain
- Collagen
- Collagen post-translational modifications
- DCN, decorin
- ECM, extracellular matrix
- Extracellular matrix
- FN1, fibronectin 1
- G-HyK, galactosylhydroxylysine
- GG-HyK, glucosylgalactosylhydroxylysine
- HyK, hydroxylysine
- HyP, hydroxyproline
- ILD, interstitial lung disease
- IPF, idiopathic pulmonary fibrosis
- LH, lysyl hydroxylase
- LOX(L), lysyl oxidase(-like)
- LTBP2, latent-transforming growth factor β -binding protein 2
- Lysyl glycosylation
- Lysyl hydroxylation
- P3H, prolyl-3-hydroxylase
- P4H, prolyl-4-hydroxylase
- PAI1, plasminogen activator inhibitor 1
- PCA, principal component analysis
- PLOD (LH), procollagen-lysine,2-oxoglutarate 5-dioxygenases (lysyl hydroxylases)
- PTM, post-translational modification
- Prolyl hydroxylation
- Pulmonary fibrosis
- SEMA7A, semaphorin 7a
- TGF-β, transforming growth factor β
- TGM2, transglutaminase 1
- Transforming growth factor-β
- VCAN, versican
- Xaa, Xaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- Yaa, Yaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- α-SMA, α-smooth muscle actin
Collapse
|
14
|
van Huizen NA, Burgers PC, Saintmont F, Brocorens P, Gerbaux P, Stingl C, Dekker LJM, IJzermans JNM, Luider TM. Identification of 4-Hydroxyproline at the Xaa Position in Collagen by Mass Spectrometry. J Proteome Res 2019; 18:2045-2051. [PMID: 30945869 DOI: 10.1021/acs.jproteome.8b00930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen has a triple helix form, structured by a [-Gly-Xaa-Yaa-] repetition, where Xaa and Yaa are amino acids. This repeating unit can be post-translationally modified by enzymes, where proline is often hydroxylated into hydroxyproline (Hyp). Two Hyp isomers occur in collagen: 4-hydroxyproline (4Hyp, Gly-Xaa-Pro, substrate for 4-prolyl hydroxylase) and 3-hydroxyproline (3Hyp, Gly-Pro-4Hyp, substrate for 3-prolyl hydroxylase). If 4Hyp is lacking at the Yaa position, then Pro at the Xaa position should remain unmodified. Nevertheless, in literature 41 positions have been described where Hyp occurs at the Xaa position (?xHyp) lacking an adjacent 4Hyp. We report four additional positions in liver and colorectal liver metastasis tissue (CRLM). We studied the sequence commonalities between the 45 known positions of ?xHyp. Alanine and glutamine were frequently present adjacent to ?xHyp. We showed that proline, position 584 in COL1A2, had a lower rate of modification in CRLM than in healthy liver. The isomeric identity of ?xHyp, that is, 3- and/or 4Hyp, remains unknown. We present a proof of principle identification of ?xHyp. This identification is based on liquid chromatography retention time differences and mass spectrometry using ETD-HCD fragmentation, complemented by ab initio calculations. Both techniques identify ?xHyp at position 584 in COL1A2 as 4-hydroxyproline (4xHyp).
Collapse
Affiliation(s)
| | | | - Fabrice Saintmont
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP) , University of Mons - UMONS , 23 Place du Parc , 7000 Mons , Belgium.,Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials , University of Mons, UMONS , 23 Place du Parc , 7000 Mons , Belgium
| | - Patrick Brocorens
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials , University of Mons, UMONS , 23 Place du Parc , 7000 Mons , Belgium
| | - Pascal Gerbaux
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP) , University of Mons - UMONS , 23 Place du Parc , 7000 Mons , Belgium
| | | | | | | | | |
Collapse
|
15
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
16
|
Ma F, Sun R, Tremmel D, Sackett S, Odorico J, Li L. Large-Scale Differentiation and Site Specific Discrimination of Hydroxyproline Isomers by Electron Transfer/Higher-Energy Collision Dissociation (EThcD) Mass Spectrometry. Anal Chem 2018; 90:5857-5864. [PMID: 29624053 PMCID: PMC6481173 DOI: 10.1021/acs.analchem.8b00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3- and 4-Hydroxyprolines (HyP) are regioisomers that play different roles in various species and organs. Despite their distinct functions inside cells, they are generally considered indistinguishable using mass spectrometry due to their identical masses. Here, we demonstrate, for the first time, that characteristic w ions can be produced by electron-transfer/higher energy collision dissociation (EThcD) dual fragmentation technique to confidently discriminate 3-HyP/4-HyP isomers. An integrated and high throughput strategy was developed which combined online LC separation with EThcD for large-scale differentiation of 3-HyP/4-HyP in complex samples. An automated algorithm was developed for charge state dependent characterization of 3-HyP/4-HyP isomers. Using this combined discrimination approach, we identified 108 3-HyP sites and 530 4-HyP sites from decellularized pancreas, allowing more than 5-fold increase of both 3-HyP and 4-HyP identifications compared to previous reports. This approach outperformed ETD and HCD in the analysis of HyP-containing peptides with unique capacity to generate w ions for HyP discrimination, improved fragmentation of precursor ions, as well as unambiguous localization of modifications. A high content of 3-HyP was observed in the C-terminal (GPP)n domain of human CO1A1, which was previously only identified in vertebrate fibrillar collagens from tendon. Unexpectedly, some unusual HyP sites at Xaa position in Gly-HyP-Ala, Gly-HyP-Val, Gly-HyP-Gln, Gly-HyP-Ser, and Gly-HyP-Arg were also confirmed to be 3-hydroxylated, whose functions and enzymes are yet to be discovered. Overall, this novel discrimination strategy can be readily implemented into de novo sequencing or other proteomic search engines.
Collapse
Affiliation(s)
- Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ruixiang Sun
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Daniel Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sara Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Taga Y, Tanaka K, Hamada C, Kusubata M, Ogawa-Goto K, Hattori S. Hydroxyhomocitrulline Is a Collagen-Specific Carbamylation Mark that Affects Cross-link Formation. Cell Chem Biol 2017; 24:1276-1284.e3. [DOI: 10.1016/j.chembiol.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
18
|
Kuljanin M, Brown CFC, Raleigh MJ, Lajoie GA, Flynn LE. Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds. Biomaterials 2017; 144:130-143. [PMID: 28829951 DOI: 10.1016/j.biomaterials.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022]
Abstract
There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∼2.2 fold, the DCB by ∼1.3 fold, and the BTC by ∼1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM composition of two human decellularized tissues of interest as cell-instructive platforms for regenerative medicine.
Collapse
Affiliation(s)
- Miljan Kuljanin
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cody F C Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Matthew J Raleigh
- Undergraduate Medical Education, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| |
Collapse
|
19
|
Spahr C, Gunasekaran K, Walker KW, Shi SDH. High-resolution mass spectrometry confirms the presence of a hydroxyproline (Hyp) post-translational modification in the GGGGP linker of an Fc-fusion protein. MAbs 2017; 9:812-819. [PMID: 28506197 DOI: 10.1080/19420862.2017.1325556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Flexible and protease resistant (G4S)n linkers are used extensively in protein engineering to connect various protein domains. Recently, several groups have observed xylose-based O-glycosylation at linker Ser residues that yield unwanted heterogeneity and may affect product quality. Because of this, an engineering effort was implemented to explore different linker sequence constructs. Here, we demonstrate the presence of an unexpected hydroxylation of a prolyl residue in the linker, made possible through the use of high-resolution mass spectrometry (HR-MS) and MSn. The discovery started with the detection of a poorly resolved ∼+17 Da mass addition at the reduced protein chain level of an Fc-fusion construct by liquid chromatography-MS. Upon further investigation at the peptide level using HR-MS, the mass increase was determined to be +15.99 Da and was localized to the linker peptide SLSLSPGGGGGPAR [210-223]. This peptide corresponds to the C-terminus of Fc [210-216], the G4P linker [217-221], and first 2 amino acids of a growth factor [222-223]. The linker peptide was first subjected to MS2 with collision-induced dissociation (CID) activation. The fragmentation profile localized the modification to the GGGPA [218-222] portion of the peptide. Accurate mass measurement indicated that the modification is an addition of an oxygen and cannot be CH4, thus eliminating several possibilities such as Pro→Leu. However, other possibilities cannot be ruled out. Higher-energy collision-induced dissociation (HCD)-MS2 and MS3 using CID/CID were both unable to differentiate between Ala222→ Ser222 or Pro221→ Hyp221. Finally, MS3 using high-resolution CID/HCD confirmed the mass increase to be a Pro221→Hyp221 post-translational modification.
Collapse
Affiliation(s)
- Chris Spahr
- a Discovery Attribute Sciences, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Kannan Gunasekaran
- b Biologics Optimization, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Kenneth W Walker
- b Biologics Optimization, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| | - Stone D-H Shi
- a Discovery Attribute Sciences, Therapeutic Discovery, Amgen Inc. , Thousand Oaks , CA , USA
| |
Collapse
|
20
|
Ishikawa Y, Mizuno K, Bächinger HP. Ziploc-ing the structure 2.0: Endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J Biol Chem 2017; 292:9273-9282. [PMID: 28385890 DOI: 10.1074/jbc.m116.772657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix proteins are biosynthesized in the rough endoplasmic reticulum (rER), and the triple-helical protein collagen is the most abundant extracellular matrix component in the human body. Many enzymes, molecular chaperones, and post-translational modifiers facilitate collagen biosynthesis. Collagen contains a large number of proline residues, so the cis/trans isomerization of proline peptide bonds is the rate-limiting step during triple-helix formation. Accordingly, the rER-resident peptidyl prolyl cis/trans isomerases (PPIases) play an important role in the zipper-like triple-helix formation in collagen. We previously described this process as "Ziploc-ing the structure" and now provide additional information on the activity of individual rER PPIases. We investigated the substrate preferences of these PPIases in vitro using type III collagen, the unhydroxylated quarter fragment of type III collagen, and synthetic peptides as substrates. We observed changes in activity of six rER-resident PPIases, cyclophilin B (encoded by the PPIB gene), FKBP13 (FKBP2), FKBP19 (FKBP11), FKBP22 (FKBP14), FKBP23 (FKBP7), and FKBP65 (FKBP10), due to posttranslational modifications of proline residues in the substrate. Cyclophilin B and FKBP13 exhibited much lower activity toward post-translationally modified substrates. In contrast, FKBP19, FKBP22, and FKBP65 showed increased activity toward hydroxyproline-containing peptide substrates. Moreover, FKBP22 showed a hydroxyproline-dependent effect by increasing the amount of refolded type III collagen in vitro and FKBP19 seems to interact with triple helical type I collagen. Therefore, we propose that hydroxyproline modulates the rate of Ziploc-ing of the triple helix of collagen in the rER.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and.,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Kazunori Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University and .,Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|
21
|
Hudson DM, Weis M, Rai J, Joeng KS, Dimori M, Lee BH, Morello R, Eyre DR. P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA. J Biol Chem 2017; 292:3877-3887. [PMID: 28115524 DOI: 10.1074/jbc.m116.762245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/18/2017] [Indexed: 11/06/2022] Open
Abstract
Tandem mass spectrometry was applied to tissues from targeted mutant mouse models to explore the collagen substrate specificities of individual members of the prolyl 3-hydroxylase (P3H) gene family. Previous studies revealed that P3h1 preferentially 3-hydroxylates proline at a single site in collagen type I chains, whereas P3h2 is responsible for 3-hydroxylating multiple proline sites in collagen types I, II, IV, and V. In screening for collagen substrate sites for the remaining members of the vertebrate P3H family, P3h3 and Sc65 knock-out mice revealed a common lysine under-hydroxylation effect at helical domain cross-linking sites in skin, bone, tendon, aorta, and cornea. No effect on prolyl 3-hydroxylation was evident on screening the spectrum of known 3-hydroxyproline sites from all major tissue collagen types. However, collagen type I extracted from both Sc65-/- and P3h3-/- skin revealed the same abnormal chain pattern on SDS-PAGE with an overabundance of a γ112 cross-linked trimer. The latter proved to be from native molecules that had intramolecular aldol cross-links at each end. The lysine under-hydroxylation was shown to alter the divalent aldimine cross-link chemistry of mutant skin collagen. Furthermore, the ratio of mature HP/LP cross-links in bone of both P3h3-/- and Sc65-/- mice was reversed compared with wild type, consistent with the level of lysine under-hydroxylation seen in individual chains at cross-linking sites. The effect on cross-linking lysines was quantitatively very similar to that previously observed in EDS VIA human and Plod1-/- mouse tissues, suggesting that P3H3 and/or SC65 mutations may cause as yet undefined EDS variants.
Collapse
Affiliation(s)
- David M Hudson
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195,
| | - MaryAnn Weis
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195
| | - Jyoti Rai
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195
| | - Kyu Sang Joeng
- the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Milena Dimori
- the Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Brendan H Lee
- the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Roy Morello
- the Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - David R Eyre
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
22
|
Kumazawa Y, Taga Y, Iwai K, Koyama YI. A Rapid and Simple LC-MS Method Using Collagen Marker Peptides for Identification of the Animal Source of Leather. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6051-6057. [PMID: 27397145 DOI: 10.1021/acs.jafc.6b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification of the animal source of leather is difficult using traditional methods, including microscopic observation and PCR. In the present study, a LC-MS method was developed for detecting interspecies differences in the amino acid sequence of type I collagen, which is a major component of leather, among six animals (cattle, horse, pig, sheep, goat, and deer). After a dechroming procedure and trypsin digestion, six tryptic peptides of type I collagen were monitored by LC-MS in multiple reaction monitoring mode for the animal source identification using the patterns of the presence or absence of the marker peptides. We analyzed commercial leathers from various production areas using this method, and found some leathers in which the commercial label disagreed with the identified animal source. Our method enabled rapid and simple leather certification and could be applied to other animals whether or not their collagen sequences are available in public databases.
Collapse
Affiliation(s)
- Yuki Kumazawa
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kenji Iwai
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Yoh-Ichi Koyama
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
23
|
Buckley M. Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods. Int J Mol Sci 2016; 17:445. [PMID: 27023524 PMCID: PMC4848901 DOI: 10.3390/ijms17040445] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022] Open
Abstract
Collagen is one of the most ubiquitous proteins in the animal kingdom and the dominant protein in extracellular tissues such as bone, skin and other connective tissues in which it acts primarily as a supporting scaffold. It has been widely investigated scientifically, not only as a biomedical material for regenerative medicine, but also for its role as a food source for both humans and livestock. Due to the long-term stability of collagen, as well as its abundance in bone, it has been proposed as a source of biomarkers for species identification not only for heat- and pressure-rendered animal feed but also in ancient archaeological and palaeontological specimens, typically carried out by peptide mass fingerprinting (PMF) as well as in-depth liquid chromatography (LC)-based tandem mass spectrometric methods. Through the analysis of the three most common domesticates species, cow, sheep, and pig, this research investigates the advantages of each approach over the other, investigating sites of sequence variation with known functional properties of the collagen molecule. Results indicate that the previously identified species biomarkers through PMF analysis are not among the most variable type 1 collagen peptides present in these tissues, the latter of which can be detected by LC-based methods. However, it is clear that the highly repetitive sequence motif of collagen throughout the molecule, combined with the variability of the sites and relative abundance levels of hydroxylation, can result in high scoring false positive peptide matches using these LC-based methods. Additionally, the greater alpha 2(I) chain sequence variation, in comparison to the alpha 1(I) chain, did not appear to be specific to any particular functional properties, implying that intra-chain functional constraints on sequence variation are not as great as inter-chain constraints. However, although some of the most variable peptides were only observed in LC-based methods, until the range of publicly available collagen sequences improves, the simplicity of the PMF approach and suitable range of peptide sequence variation observed makes it the ideal method for initial taxonomic identification prior to further analysis by LC-based methods only when required.
Collapse
Affiliation(s)
- Mike Buckley
- Manchester Institute of Biotechnology, the University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
24
|
Shima H, Inagaki A, Imura T, Yamagata Y, Watanabe K, Igarashi K, Goto M, Murayama K. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation. J Diabetes Res 2016; 2016:4396756. [PMID: 27195301 PMCID: PMC4852369 DOI: 10.1155/2016/4396756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023] Open
Abstract
The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Youhei Yamagata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kimiko Watanabe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- *Kazutaka Murayama:
| |
Collapse
|
25
|
Basak T, Vega-Montoto L, Zimmerman LJ, Tabb DL, Hudson BG, Vanacore RM. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. J Proteome Res 2015; 15:245-58. [PMID: 26593852 DOI: 10.1021/acs.jproteome.5b00767] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.
Collapse
Affiliation(s)
- Trayambak Basak
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lorenzo Vega-Montoto
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lisa J Zimmerman
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - David L Tabb
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
26
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Developmental Stage-dependent Regulation of Prolyl 3-Hydroxylation in Tendon Type I Collagen. J Biol Chem 2015; 291:837-47. [PMID: 26567337 DOI: 10.1074/jbc.m115.686105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5-18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro(707) and newly identified sites at Pro(716) and Pro(719), at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon.
Collapse
Affiliation(s)
- Yuki Taga
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
27
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
28
|
Zhao YD, Chu L, Lin K, Granton E, Yin L, Peng J, Hsin M, Wu L, Yu A, Waddell T, Keshavjee S, Granton J, de Perrot M. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. PLoS One 2015; 10:e0134958. [PMID: 26317340 PMCID: PMC4552732 DOI: 10.1371/journal.pone.0134958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.
Collapse
Affiliation(s)
- Yidan D. Zhao
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| | - Lei Chu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Lin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elise Granton
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Li Yin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jenny Peng
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Amy Yu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - John Granton
- Clinical Studies Resource Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| |
Collapse
|
29
|
Kwiecien NW, Bailey DJ, Rush MJP, Cole JS, Ulbrich A, Hebert AS, Westphall MS, Coon JJ. High-resolution filtering for improved small molecule identification via GC/MS. Anal Chem 2015; 87:8328-35. [PMID: 26192401 DOI: 10.1021/acs.analchem.5b01503] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas chromatography/mass spectrometry (GC/MS) has long been considered one of the premiere analytical tools for small molecule analysis. Recently, a number of GC/MS systems equipped with high-resolution mass analyzers have been introduced. These systems provide analysts with a new dimension of information, accurate mass measurement to the third or fourth decimal place; however, existing data processing tools do not capitalize on this information. Beyond that, GC/MS spectral reference libraries, which have been curated over the last several decades, contain almost exclusively unit resolution MS spectra making integration of accurate mass data dubious. Here we present an informatic approach, called high-resolution filtering (HRF), which bridges this gap. During HRF, high-resolution mass spectra are assigned putative identifications through traditional spectral matching at unit resolution. Once candidate identities have been assigned, all unique combinations of atoms from these candidate precursors are generated and matched to m/z peaks using narrow mass tolerances. The total amount of measured signal that is annotated is used as a metric of plausibility for the presumed identification. Here we demonstrate that the HRF approach is both feasible and highly specific toward correct identifications.
Collapse
Affiliation(s)
- Nicholas W Kwiecien
- †Genome Center of Wisconsin, Madison, Wisconsin 53706, United States.,‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Derek J Bailey
- †Genome Center of Wisconsin, Madison, Wisconsin 53706, United States.,‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew J P Rush
- †Genome Center of Wisconsin, Madison, Wisconsin 53706, United States.,‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jason S Cole
- §Thermo Fisher Scientific, Austin, Texas 78728, United States
| | - Arne Ulbrich
- †Genome Center of Wisconsin, Madison, Wisconsin 53706, United States.,‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | - Joshua J Coon
- †Genome Center of Wisconsin, Madison, Wisconsin 53706, United States.,‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Agashe VV, Burlingham WJ. Autoimmune Reactivity in Graft Injury: Player or Bystander? CURRENT TRANSPLANTATION REPORTS 2015; 2:211-221. [PMID: 29057202 DOI: 10.1007/s40472-015-0068-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organ transplantation is the only viable treatment for several end-stage organ failures. However chronic rejection prevents long-term graft survival. Traditionally this rejection was attributed to the development of alloimmunity in transplant patients. However recent evidence suggests that autoimmunity plays a larger role in chronic rejection of certain organ transplants, than alloimmunity. In this review we will focus on the history of autoimmunity in solid-organ transplantation and at look the Collagen Type V, K-α-tubulin, Vimentin, Cardiac myosin and Heat Shock Proteins as classical examples of auto-antigens in organ transplantation. We will also look at some of the recent reports looking at the mechanisms of autoimmunity and try to provide answers to some of the age-old questions in autoimmunity.
Collapse
Affiliation(s)
- Vrushali V Agashe
- Comparative Biomedical Sciences Graduate Program.,Department of Surgery-Transplant division, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53795, USA
| | - William J Burlingham
- Department of Surgery-Transplant division, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53795, USA
| |
Collapse
|
31
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope-labeled collagen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12096-12102. [PMID: 25417748 DOI: 10.1021/jf5039597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Collagen-derived hydroxyproline (Hyp)-containing dipeptides and tripeptides, which are known to possess physiological functions, appear in blood at high concentrations after oral ingestion of gelatin hydrolysate. However, highly accurate and sensitive quantification of the Hyp-containing peptides in blood has been challenging because of the analytical interference from numerous other blood components. We recently developed a stable isotope-labeled collagen named "SI-collagen" that can be used as an internal standard in various types of collagen analyses employing liquid chromatography-mass spectrometry (LC-MS). Here we prepared stable isotope-labeled Hyp-containing peptides from SI-collagen using trypsin/chymotrypsin and plasma proteases by mimicking the protein degradation pathways in the body. With the protease digest of SI-collagen used as an internal standard mixture, we achieved highly accurate simultaneous quantification of Hyp and 13 Hyp-containing peptides in human blood by LC-MS. The area under the plasma concentration-time curve of Hyp-containing peptides ranged from 0.663 ± 0.022 nmol/mL·h for Pro-Hyp-Gly to 163 ± 1 nmol/mL·h for Pro-Hyp after oral ingestion of 25 g of fish gelatin hydrolysate, and the coefficient of variation of three separate measurements was <7% for each peptide except for Glu-Hyp-Gly, which was near the detection limit. Our method is useful for absorption/metabolism studies of the Hyp-containing peptides and development of functionally characterized gelatin hydrolysate.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | | | | | | |
Collapse
|
32
|
Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat Commun 2014; 5:4405. [PMID: 25059763 PMCID: PMC4279252 DOI: 10.1038/ncomms5405] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/16/2014] [Indexed: 12/27/2022] Open
Abstract
Detailed characterization of post-translational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further, Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.
Collapse
|
33
|
Sullivan JA, Jankowska-Gan E, Shi L, Roenneburg D, Hegde S, Greenspan DS, Wilkes DS, Denlinger LC, Burlingham WJ. Differential requirement for P2X7R function in IL-17 dependent vs. IL-17 independent cellular immune responses. Am J Transplant 2014; 14:1512-22. [PMID: 24866539 PMCID: PMC4295495 DOI: 10.1111/ajt.12741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023]
Abstract
IL17-dependent autoimmunity to collagen type V (Col V) has been associated with lung transplant obliterative bronchiolitis. Unlike the T helper 1 (Th1)-dependent immune responses to Tetanus Toxoid (TT), the Th17 response to Col V in lung transplant patients and its Th1/17 variant observed in coronary artery disease patients requires IL-1β, tumor necrosis factor α and CD14(+) cells. Given the involvement of the P2X7 receptor (P2X7R) in monocyte IL-1β responses, we investigated its role in Th17-, Th1/17- and Th1-mediated proinflammatory responses. Transfer of antigen-pulsed peripheral blood mononucleated cells (PBMCs) from Col V-reactive patients into SCID mouse footpads along with P2X7R antagonists revealed a selective inhibition of Col V-, but not TT-specific swelling responses. P2X7R inhibitors blocked IL-1β induction from monocytes, including both Col V-α1 peptide-induced (T-dependent), as well as native Col V-induced (T-independent) responses. Significantly higher P2X7R expression was found on CXCR3(neg) CCR4(+)/6(+) CD4(+) [Th17] versus CXCR3(+)CCR4/6(neg) CD4(+) [Th1] subsets in PBMCs, suggesting that the paradigm of selective dependence on P2X7R might extend beyond Col V autoimmunity. Indeed, P2X7R inhibitors suppressed not only anti-Col V, but also Th1/17-mediated alloimmunity, in a heart transplant patient without affecting anti-viral Epstein-Barr virus responses. These results suggest that agents targeting the P2X7R might effectively treat Th17-related transplant pathologies, while maintaining Th1-immunity to infection.
Collapse
Affiliation(s)
- JA Sullivan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - E Jankowska-Gan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - L Shi
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - D Roenneburg
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | | | - DS Greenspan
- Department of Cell & Regenerative Biology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - DS Wilkes
- Department of Medicine, University of Indiana, 340 W 10th St Suite 6200 Indianapolis, IN 46202
| | - LC Denlinger
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - WJ Burlingham
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792,To whom correspondence should be addressed: 600 Highland Avenue, Room G4/702, Madison, WI 53792. Tel: (608) 263-0119 Fax: (608) 262-6280
| |
Collapse
|
34
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Stable Isotope-Labeled Collagen: A Novel and Versatile Tool for Quantitative Collagen Analyses Using Mass Spectrometry. J Proteome Res 2014; 13:3671-8. [DOI: 10.1021/pr500213a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
35
|
|
36
|
Keller MR, Haynes LD, Jankowska-Gan E, Sullivan JA, Agashe VV, Burlingham SR, Burlingham WJ. Epitope analysis of the collagen type V-specific T cell response in lung transplantation reveals an HLA-DRB1*15 bias in both recipient and donor. PLoS One 2013; 8:e79601. [PMID: 24265781 PMCID: PMC3827168 DOI: 10.1371/journal.pone.0079601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-17-dependent cellular immune responses to the α1 chain of collagen type V are associated with development of bronchiolitis obliterans syndrome after lung transplantation, and with idiopathic pulmonary fibrosis and coronary artery disease, primary indications for lung or heart transplantation, respectively. Methodology/Principal Findings We found that 30% of the patients awaiting lung transplantation exhibited a strong cell-mediated immune response to col(V). Of these, 53% expressed HLA-DR15, compared to a 28% HLA-DR15 frequency in col(V) low-responders (p=0.02). After transplantation, patients with HLA-DR1 and -DR17, not -DR15, developed anti-col(V) responses most frequently (p=0.04 and 0.01 vs. controls, respectively). However, recipients of a lung from an HLA-DR15+donor were at significantly elevated risk of developing anti-col(V) responses (p=0.02) and BOS (p=0.03). To determine the molecular basis of this unusual pattern of DR allele bias, a peptide library comprising the collagenous region of the α1(V) protein was screened for binding to HLA-DR0101, -DR1501, -DR0301 (DR17) or to HLA-DQ2 (DQA1*0501: DQB1*0201; in linkage disequilibrium with -DR17) and -DQ6 (DQA1*0102: DQB1*0602; linked to -DR15). Eight 15-mer peptides, six DR-binding and two DQ-binding, were identified. HLA-DR15 binding to two peptides yielded the highest binding scores: 650 (where 100 = positive control) for p799 (GIRGLKGTKGEKGED), and 193 for p1439 (LRGIPGPVGEQGLPG). These peptides, which also bound weakly to HLA-DR1, elicited responses in both HLA-DR1+ and -DR15+ col(V) reactive hosts, whereas binding and immunoreactivity of p1049 (KDGPPGLRGFPGDRG) was DR15-specific. Remarkably, a col(V)-reactive HLA-DR1+DR15neg lung transplant patient, whose donor was HLA-DR15+, responded not only to p799 and p1439, but also to p1049. Conclusions/Significance HLA-DR15 and IPF disease were independently associated with pre-transplant col(V) autoimmunity. The increased risk of de novo immunity to col(V) and BOS, associated with receiving a lung transplant from an HLA-DR15+ donor, may result from presentation by donor-derived HLA- DR15, of novel self-peptides to recipient T cells.
Collapse
Affiliation(s)
- Melissa R. Keller
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lynn D. Haynes
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ewa Jankowska-Gan
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeremy A. Sullivan
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Vrushali V. Agashe
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott R. Burlingham
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William J. Burlingham
- Department of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int 2013; 93:338-47. [PMID: 23508630 PMCID: PMC3758449 DOI: 10.1007/s00223-013-9723-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/01/2013] [Indexed: 12/12/2022]
Abstract
Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5-10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1, and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode, respectively, lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPINH1, which encodes the collagen chaperone HSP47; SERPINF1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include overmineralization or undermineralization defects as well as abnormal collagen posttranslational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen posttranslational modification, chaperoning of newly synthesized collagen chains into native molecules, or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking, and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on posttranslational features of bone collagen that have evolved to optimize it as a biomineral template.
Collapse
Affiliation(s)
- David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, 1959 NE Pacific St, P.O. Box 356500, Seattle, WA, 98195, USA,
| | | |
Collapse
|
38
|
Song E, Mechref Y. LC-MS/MS identification of the O-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage. J Proteome Res 2013; 12:3599-609. [PMID: 23879958 DOI: 10.1021/pr400101t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
O-Glycosylation of collagen is a unique type of posttranslational modifications (PTMs) involving the attachment of galactose (Gal) or glucose-galactose (Glc-Gal) moieties to hydroxylysine (HyK). Also, hydroxyproline (HyP) result from the posttranslational hydroxylation of some proline residues in collagen. Here, LC-MS/MS was effectively employed to identify 23 O-glycosylation sites and a large number of HyP residues associated with bovine type II collagen α-1 chain (CO2A1). The modifications of the 23 O-glycosylation sites varied qualitatively and quantitatively. Both Gal and Glc-Gal moieties occupied 22 of the identified glycosylation sites, while K773 was observed as unmodified. A large number of HyP residues at Yaa positions of Gly-Xaa-Yaa motif were detected. HyP residues at Xaa positions of Gly-HyP-HyP, Gly-HyP-Ala, and Gly-HyP-Val motifs were also observed. Notably, HyP residue of Gly-HyP-Gln motif was detected, which has not been previously reported. Moreover, the deamidation of 8 Asn residues was identified, of which 2 Asp residues were observed at different retention times because of isomerization (Asp vs isoAsp). Partial macroheterogeneities of some CO2A1 glycosylation sites were revealed by LC-MS/MS analysis. ETD experiments revealed partial macroheterogeneities associated with K299-K308, K452-K464, K464-K470, and K857-K884 glycosylation sites. Semiquantitative data suggest that the glycosylation of hydroxylysine residues is site-specific.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, USA
| | | |
Collapse
|
39
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|
40
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
41
|
Abstract
Prolyl 3-hydroxylation is a rare but conserved post-translational modification in many collagen types and, when defective, may be linked to a number of human diseases with musculoskeletal and potentially ocular and renal pathologies. Prolyl 3-hydroxylase-1 (P3H1), the enzyme responsible for converting proline to 3-hydroxyproline (3Hyp) in type I collagen, requires the coenzyme CRTAP for activity. Mass spectrometric analysis showed that the Crtap-/- mouse was missing 3-hydroxyproline in type I collagen α-chains. This finding led to the discovery of mutations in genes encoding the P3H1 complex as a cause of recessively inherited osteogenesis imperfecta (brittle bone disease). Since then, many additional 3Hyp sites have been identified in various collagen types and classified based on observed substrate and tissue specificity. P3H1 is part of a family of gene products that also includes isoenzymes P3H2 and P3H3 as well as CRTAP and Sc65. It is believed these isoenzymes and coenzyme proteins have evolved different collagen substrate site and tissue specificities in their activities. The post-translational fingerprinting of collagens will be essential in understanding the basic role and extent of regulated variations of prolyl 3-hydroxylation in collagen. We believe that prolyl 3-hydroxylation is a functionally significant collagen post-translational modification and can be a cause of disease when absent.
Collapse
Affiliation(s)
- David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington , Seattle, Washington , USA
| | | |
Collapse
|