1
|
Formstone C, Aldeiri B, Davenport M, Francis-West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2024. [PMID: 39319771 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, UK
| | - Bashar Aldeiri
- Department of Paediatric Surgery, Chelsea and Westminster Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | | |
Collapse
|
2
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Paramore SV, Trenado-Yuste C, Sharan R, Nelson CM, Devenport D. Vangl-dependent mesenchymal thinning shapes the distal lung during murine sacculation. Dev Cell 2024; 59:1302-1316.e5. [PMID: 38569553 PMCID: PMC11111357 DOI: 10.1016/j.devcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/18/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.
Collapse
Affiliation(s)
- Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolina Trenado-Yuste
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
6
|
Kacker S, Parsad V, Singh N, Hordiichuk D, Alvarez S, Gohar M, Kacker A, Rai SK. Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. J Dev Biol 2024; 12:12. [PMID: 38804432 PMCID: PMC11130840 DOI: 10.3390/jdb12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
Collapse
Affiliation(s)
- Sandeep Kacker
- Department of Pharmacology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Varuneshwar Parsad
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Naveen Singh
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Daria Hordiichuk
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Stacy Alvarez
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Mahnoor Gohar
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Anshu Kacker
- Department of Histology and Human Physiology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Sunil Kumar Rai
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| |
Collapse
|
7
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Luo J. Dysregulation of polarity proteins in astrocyte reactivity. Ageing Res Rev 2023; 86:101869. [PMID: 36736704 PMCID: PMC10026364 DOI: 10.1016/j.arr.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Astrocytes are highly polarized neuroglial cells. Polarity is the basis for many of the diverse roles that astrocytes play in the normal and injured brain. Astrocytes are generally dormant and non-migratory under normal physiological conditions, where they perform a wide variety of intricate and essential tasks in preserving CNS homeostasis. In response to pathological insults, astrocytes shift from the normal dormant and homeostatic state to a reactive and migratory state through a process referred to as "reactive astrogliosis". Cell polarity proteins play a key role in the initiation and regulation of migration. Recent evidence suggests that cell polarity proteins are dysregulated during astrogliosis and may modulate astrocyte reactivity and alter the course of disease. Therefore, cell polarity proteins may provide novel therapeutic targets for modulating astrocyte reactivity in brain disorders.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Gill AK, McCormick PJ, Sochart D, Nalesso G. Wnt signalling in the articular cartilage: A matter of balance. Int J Exp Pathol 2023; 104:56-63. [PMID: 36843204 PMCID: PMC10009303 DOI: 10.1111/iep.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/28/2023] Open
Abstract
Degradation of the articular cartilage is a hallmark of osteoarthritis, a progressive and chronic musculoskeletal condition, affecting millions of people worldwide. The activation of several signalling cascades is altered during disease development: among them, the Wnt signalling plays a pivotal role in the maintenance of tissue homeostasis. Increasing evidence is showing that its activation needs to be maintained within a certain range to avoid the triggering of degenerative mechanisms. In this review, we summarise our current knowledge about how a balanced activation of the Wnt signalling is maintained in the articular cartilage, with a particular focus on receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Amandeep Kaur Gill
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - David Sochart
- South West London Elective Orthopaedic Centre, Epsom, UK
| | - Giovanna Nalesso
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Singla A, Reuter S, Taube C, Peters M, Peters K. The molecular mechanisms of remodeling in asthma, COPD and IPF with a special emphasis on the complex role of Wnt5A. Inflamm Res 2023; 72:577-588. [PMID: 36658268 PMCID: PMC10023767 DOI: 10.1007/s00011-023-01692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Chronic inflammatory lung diseases are a common cause of suffering and death. Chronic obstructive pulmonary disease (COPD) is the reason for 6% of all deaths worldwide. A total of 262 million people are affected by asthma and 461,000 people died in 2019. Idiopathic pulmonary fibrosis (IPF) is diagnosed in 3 million people worldwide, with an onset over the age of 50 with a mean survival of only 24-30 months. These three diseases have in common that remodeling of the lung tissue takes place, which is responsible for an irreversible decline of lung function. Pathological lung remodeling is mediated by a complex interaction of different, often misguided, repair processes regulated by a variety of mediators. One group of these, as has recently become known, are the Wnt ligands. In addition to their well-characterized role in embryogenesis, this group of glycoproteins is also involved in immunological and structural repair processes. Depending on the combination of the Wnt ligand with its receptors and co-receptors, canonical and noncanonical signaling cascades can be induced. Wnt5A is a mediator that is described mainly in noncanonical Wnt signaling and has been shown to play an important role in different inflammatory diseases and malignancies. OBJECTIVES In this review, we summarize the literature available regarding the role of Wnt5A as an immune modulator and its role in the development of asthma, COPD and IPF. We will focus specifically on what is known about Wnt5A concerning its role in the remodeling processes involved in the chronification of the diseases. CONCLUSION Wnt5A has been shown to be involved in all three inflammatory lung diseases. Since the ligand affects both structural and immunological processes, it is an interesting target for the treatment of lung diseases whose pathology involves a restructuring of the lung tissue triggered in part by an inflammatory immune response.
Collapse
Affiliation(s)
- Abhinav Singla
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Karin Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
11
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
13
|
The Biological Basis for Surface-dependent Regulation of Osteogenesis and Implant Osseointegration. J Am Acad Orthop Surg 2022; 30:e894-e898. [PMID: 35383608 PMCID: PMC9464448 DOI: 10.5435/jaaos-d-21-00523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Bone marrow stromal cells are regulated by the chemical and physical features of a biomaterial surface. When grown on titanium (Ti) and Ti alloy surfaces, such as titanium-aluminum-vanadium, with specific topographies that mimic the microscale, mesoscale, and nanoscale features of an osteoclast resorption pit, they undergo a rapid change in cell shape to assume a columnar morphology typical of a secretory osteoblast. These cells exhibit markers associated with an osteoblast phenotype, including osteocalcin and osteopontin, and they secrete factors associated with osteogenesis, including bone morphogenetic protein 2, vascular endothelial growth factor, and neurotrophic semaphorins. The pathway involves a shift in integrin expression from α5β1 to α2β1 and signaling by Wnt5a rather than Wnt3a. Conditioned media from these cultures can stimulate vasculogenesis by human endothelial cells and osteoblastic differentiation of marrow stromal cells not grown on the biomimetic substrate, suggesting that the surface could promote osteogenesis in vivo through similar mechanisms. In vivo studies using a variety of animal models confirm that implants with biomimetic surfaces result in improved osseointegration compared with Ti implants with smooth surfaces, as do meta-analyses comparing clinical performance of implant surface topographies.
Collapse
|
14
|
Corgiat EB, List SM, Rounds JC, Yu D, Chen P, Corbett AH, Moberg KH. The Nab2 RNA-binding protein patterns dendritic and axonal projections through a planar cell polarity-sensitive mechanism. G3 (BETHESDA, MD.) 2022; 12:jkac100. [PMID: 35471546 PMCID: PMC9157165 DOI: 10.1093/g3journal/jkac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
RNA-binding proteins support neurodevelopment by modulating numerous steps in post-transcriptional regulation, including splicing, export, translation, and turnover of mRNAs that can traffic into axons and dendrites. One such RNA-binding protein is ZC3H14, which is lost in an inherited intellectual disability. The Drosophila melanogaster ZC3H14 ortholog, Nab2, localizes to neuronal nuclei and cytoplasmic ribonucleoprotein granules and is required for olfactory memory and proper axon projection into brain mushroom bodies. Nab2 can act as a translational repressor in conjunction with the Fragile-X mental retardation protein homolog Fmr1 and shares target RNAs with the Fmr1-interacting RNA-binding protein Ataxin-2. However, neuronal signaling pathways regulated by Nab2 and their potential roles outside of mushroom body axons remain undefined. Here, we present an analysis of a brain proteomic dataset that indicates that multiple planar cell polarity proteins are affected by Nab2 loss, and couple this with genetic data that demonstrate that Nab2 has a previously unappreciated role in restricting the growth and branching of dendrites that elaborate from larval body-wall sensory neurons. Further analysis confirms that Nab2 loss sensitizes sensory dendrites to the genetic dose of planar cell polarity components and that Nab2-planar cell polarity genetic interactions are also observed during Nab2-dependent control of axon projection in the central nervous system mushroom bodies. Collectively, these data identify the conserved Nab2 RNA-binding protein as a likely component of post-transcriptional mechanisms that limit dendrite growth and branching in Drosophila sensory neurons and genetically link this role to the planar cell polarity pathway. Given that mammalian ZC3H14 localizes to dendritic spines and controls spine density in hippocampal neurons, these Nab2-planar cell polarity genetic data may highlight a conserved path through which Nab2/ZC3H14 loss affects morphogenesis of both axons and dendrites in diverse species.
Collapse
Affiliation(s)
- Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Sara M List
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Dehong Yu
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
16
|
Saraswathy VM, Kurup AJ, Sharma P, Polès S, Poulain M, Fürthauer M. The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation. eLife 2022; 11:71928. [PMID: 35142609 PMCID: PMC8937233 DOI: 10.7554/elife.71928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrate Delta/Notch signaling involves multiple ligands, receptors and transcription factors. Delta endocytosis - a critical event for Notch activation - is however essentially controlled by the E3 Ubiquitin ligase Mindbomb1 (Mib1). Mib1 inactivation is therefore often used to inhibit Notch signaling. However, recent findings indicate that Mib1 function extends beyond the Notch pathway. We report a novel Notch-independent role of Mib1 in zebrafish gastrulation. mib1 null mutants and morphants display impaired Convergence Extension (CE) movements. Comparison of different mib1 mutants and functional rescue experiments indicate that Mib1 controls CE independently of Notch. Mib1-dependent CE defects can be rescued using the Planar Cell Polarity (PCP) downstream mediator RhoA, or enhanced through knock-down of the PCP ligand Wnt5b. Mib1 regulates CE through its RING Finger domains that have been implicated in substrate ubiquitination, suggesting that Mib1 may control PCP protein trafficking. Accordingly, we show that Mib1 controls the endocytosis of the PCP component Ryk and that Ryk internalization is required for CE. Numerous morphogenetic processes involve both Notch and PCP signaling. Our observation that during zebrafish gastrulation Mib1 exerts a Notch-independent control of PCP-dependent CE movements suggest that Mib1 loss of function phenotypes should be cautiously interpreted depending on the biological context.
Collapse
Affiliation(s)
| | | | | | - Sophie Polès
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
17
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
18
|
Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne) 2022; 13:1095711. [PMID: 36619549 PMCID: PMC9815800 DOI: 10.3389/fendo.2022.1095711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Wnts are secreted cysteine-rich glycoproteins involved in joint development and skeletal homeostasis and have been implicated in the occurrence of osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has received widespread attention for its strong association with bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. In recent years, further studies have shed light on the role of Wnt16 a positive regulator of bone mass and protective regulator of osteoarthritis progression. Transduction mechanisms and crosstalk involving Wnt16 signaling have also been illustrated. More importantly, local Wnt16 treatment has been shown to ease osteoarthritis, inhibit bone resorption, and promote new bone formation in bone defect models. Thus, Wnt16 is now a potential therapeutic target for skeletal diseases and osteoarthritis. This paper reviews our current understanding of the mechanisms by which Wnt16 signaling regulates bone homeostasis and osteoarthritis.
Collapse
|
19
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
20
|
Rogers S, Scholpp S. Vertebrate Wnt5a - At the crossroads of cellular signalling. Semin Cell Dev Biol 2021; 125:3-10. [PMID: 34686423 DOI: 10.1016/j.semcdb.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Wnt signalling is an essential pathway in embryogenesis, differentiation, cell motility, development, and adult tissue homeostasis in vertebrates. The Wnt signalling network can activate several downstream pathways such as the β-catenin-dependent TCF/LEF transcription, the Wnt/planar cell polarity (PCP) pathway, and the Wnt/Calcium pathway. Wnt5a is a vertebrate Wnt ligand that is most often associated with the Wnt/PCP signalling pathway. Wnt5a/PCP signalling has a well-described role in embryogenesis via binding to a receptor complex of Frizzled and its co-receptors to initiate downstream activation of the c-Jun N-terminal kinase (JNK) signalling cascade and the Rho and Rac GTPases, Rho-Kinase (ROCK). This activation results in the cytoskeletal remodelling required for cell polarity, migration, and subsequently, tissue re-arrangement and organ formation. This review will focus on more recent work that has revealed new roles for Wnt5a ligands and consequently, an emerging broader function. This is partly due to our growing understanding of the crosstalk between the Wnt/PCP pathway with both the Wnt/β-catenin pathway and other signalling pathways, and in part due to the identification of novel atypical receptors for Wnt5a that demonstrate a far broader role for this ligand.
Collapse
Affiliation(s)
- Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
21
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Ka C, Gautam S, Marshall SR, Tice LP, Martinez-Bartolome M, Fenner JL, Range RC. Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos. THE BIOLOGICAL BULLETIN 2021; 241:140-157. [PMID: 34706206 PMCID: PMC11257382 DOI: 10.1086/715237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/β-catenin, Wnt/JNK, and Wnt/Ca2+). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any in vivo model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both ror1/2 and ryk originated as single genes from the metazoan ancestor. Expression analyses indicate that ror1/2 and ryk are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.
Collapse
Affiliation(s)
- C Ka
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - S Gautam
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - SR Marshall
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - LP Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - JL Fenner
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - RC Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
23
|
Feng B, Freitas AE, Gorodetski L, Wang J, Tian R, Lee YR, Grewal AS, Zou Y. Planar cell polarity signaling components are a direct target of β-amyloid-associated degeneration of glutamatergic synapses. SCIENCE ADVANCES 2021; 7:7/34/eabh2307. [PMID: 34407949 PMCID: PMC8373119 DOI: 10.1126/sciadv.abh2307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The signaling pathway directly controlling the maintenance of adult glutamatergic synapses has not been well understood. Planar cell polarity (PCP) signaling components were recently shown to play essential roles in the formation of glutamatergic synapses. Here, we show that they are localized in the adult synapses and are essential for their maintenance. Synapse loss at early stages of Alzheimer's disease is thought to be induced by β-amyloid (Aβ) pathology. We found that oligomeric Aβ binds to Celsr3 and assists Vangl2 in disassembling synapses. Moreover, a Wnt receptor and regulator of PCP signaling, Ryk, is also required for Aβ-induced synapse loss. In the 5XFAD mouse model of Alzheimer's disease, Ryk conditional knockout or a function-blocking monoclonal Ryk antibody protected synapses and preserved cognitive function. We propose that tipping of the fine balance of Wnt/PCP signaling components in glutamatergic synapses may cause synapse degeneration in neurodegenerative disorders with Aβ pathology.
Collapse
Affiliation(s)
- Bo Feng
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andiara E Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lilach Gorodetski
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jingyi Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Runyi Tian
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yeo Rang Lee
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akumbir S Grewal
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Chau TCY, Baek S, Coxam B, Skoczylas R, Rondon-Galeano M, Bower NI, Wainwright EN, Stacker SA, Cooper HM, Koopman PA, Lagendijk AK, Harvey NL, François M, Hogan BM. Pkd1 and Wnt5a genetically interact to control lymphatic vascular morphogenesis in mice. Dev Dyn 2021; 251:336-349. [PMID: 34174014 DOI: 10.1002/dvdy.390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.
Collapse
Affiliation(s)
- Tevin C Y Chau
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Sungmin Baek
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Baptiste Coxam
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Renae Skoczylas
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Elanor N Wainwright
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, St Lucia, Queensland, Australia
| | - Peter A Koopman
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Anne K Lagendijk
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Mathias François
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,David Richmond Laboratory for Cardiovascular Development; Gene Regulation and Editing Program, Centenary Institute, Sydney, New South Wales, Australia
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
26
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
27
|
Ohara S, Suda K, Fujino T, Hamada A, Koga T, Nishino M, Chiba M, Shimoji M, Takemoto T, Soh J, Mitsudomi T. Dose-dependence in acquisition of drug tolerant phenotype and high RYK expression as a mechanism of osimertinib tolerance in lung cancer. Lung Cancer 2021; 154:84-91. [PMID: 33631449 DOI: 10.1016/j.lungcan.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Emergence of acquired resistance is almost inevitable during EGFR-tyrosine kinase inhibitor therapy for non-small-cell lung cancer (NSCLC) harboring EGFR mutations. Drug tolerance, a reversible state of drug insensitivity in the early phases of tyrosine kinase inhibitor therapy, is considered to serve as the basis of recurrent disease. Therefore, it is important to elucidate the molecular mechanisms of drug tolerance. MATERIALS AND METHODS Five EGFR-mutated NSCLC cell lines were used in this study. We established drug-tolerant cells (DTCs) via 72 h treatment with osimertinib (600 nM) or afatinib (60 nM). Acquisition of drug tolerance was evaluated by growth inhibitory assay, and the molecular mechanisms of drug tolerance were analyzed by phospho-RTK array. RESULTS DTCs were successfully induced in PC9, HCC4006, and H1975 cells against osimertinib and in PC9 cells against afatinib. We observed that a high drug concentration was required to induce DTCs, and HCC4006 cells become tolerant when a higher dose of afatinib (>180 nM) was used. In the analysis of HCC4006 DTCs against osimertinib, we observed increased receptor-like tyrosine kinase (RYK) expression, and siRNA-mediated RYK knockdown inhibited the proliferation of DTCs. CONCLUSIONS These results suggest that induction of DTCs is dose-dependent, and increased RYK expression was the mechanism of drug tolerance in HCC4006 cells against osimertinib.
Collapse
Affiliation(s)
- Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaya Nishino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| |
Collapse
|
28
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
29
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
30
|
Voisin J, Farina F, Naphade S, Fontaine M, Tshilenge K, Galicia Aguirre C, Lopez‐Ramirez A, Dancourt J, Ginisty A, Sasidharan Nair S, Lakshika Madushani K, Zhang N, Lejeune F, Verny M, Campisi J, Ellerby LM, Neri C. FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 INK4a increase. Aging Cell 2020; 19:e13226. [PMID: 33156570 PMCID: PMC7681055 DOI: 10.1111/acel.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases (ND) have been linked to the critical process in aging—cellular senescence. However, the temporal dynamics of cellular senescence in ND conditions is unresolved. Here, we show senescence features develop in human Huntington's disease (HD) neural stem cells (NSCs) and medium spiny neurons (MSNs), including the increase of p16INK4a, a key inducer of cellular senescence. We found that HD NSCs reprogram the transcriptional targets of FOXO3, a major cell survival factor able to repress cell senescence, antagonizing p16INK4a expression via the FOXO3 repression of the transcriptional modulator ETS2. Additionally, p16INK4a promotes cellular senescence features in human HD NSCs and MSNs. These findings suggest that cellular senescence may develop during neuronal differentiation in HD and that the FOXO3‐ETS2‐p16INK4a axis may be part of molecular responses aimed at mitigating this phenomenon. Our studies identify neuronal differentiation with accelerated aging of neural progenitors and neurons as an alteration that could be linked to NDs.
Collapse
Affiliation(s)
- Jessica Voisin
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Francesca Farina
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | - Morgane Fontaine
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | | | - Julia Dancourt
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Aurélie Ginisty
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Satish Sasidharan Nair
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | - François‐Xavier Lejeune
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Marc Verny
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Judith Campisi
- Buck Institute for Research on Aging Novato CA USA
- Lawrence Berkeley National Laboratory Berkeley CA USA
| | | | - Christian Neri
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| |
Collapse
|
31
|
Cheong SS, Akram KM, Matellan C, Kim SY, Gaboriau DCA, Hind M, del Río Hernández AE, Griffiths M, Dean CH. The Planar Polarity Component VANGL2 Is a Key Regulator of Mechanosignaling. Front Cell Dev Biol 2020; 8:577201. [PMID: 33195213 PMCID: PMC7658195 DOI: 10.3389/fcell.2020.577201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
VANGL2 is a component of the planar cell polarity (PCP) pathway, which regulates tissue polarity and patterning. The Vangl2 Lp mutation causes lung branching defects due to dysfunctional actomyosin-driven morphogenesis. Since the actomyosin network regulates cell mechanics, we speculated that mechanosignaling could be impaired when VANGL2 is disrupted. Here, we used live-imaging of precision-cut lung slices (PCLS) from Vangl2 Lp/+ mice to determine that alveologenesis is attenuated as a result of impaired epithelial cell migration. Vangl2 Lp/+ tracheal epithelial cells (TECs) and alveolar epithelial cells (AECs) exhibited highly disrupted actomyosin networks and focal adhesions (FAs). Functional assessment of cellular forces confirmed impaired traction force generation in Vangl2 Lp/+ TECs. YAP signaling in Vangl2 Lp airway epithelium was reduced, consistent with a role for VANGL2 in mechanotransduction. Furthermore, activation of RhoA signaling restored actomyosin organization in Vangl2 Lp/+ , confirming RhoA as an effector of VANGL2. This study identifies a pivotal role for VANGL2 in mechanosignaling, which underlies the key role of the PCP pathway in tissue morphogenesis.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Khondoker M. Akram
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Armando E. del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Peri-Operative Medicine Department, St Bartholomew’s Hospital, London, United Kingdom
| | - Charlotte H. Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
32
|
Wang S, Roy JP, Tomlinson AJ, Wang EB, Tsai YH, Cameron L, Underwood J, Spence JR, Walton KD, Stacker SA, Gumucio DL, Lechler T. RYK-mediated filopodial pathfinding facilitates midgut elongation. Development 2020; 147:dev195388. [PMID: 32994164 PMCID: PMC7648600 DOI: 10.1242/dev.195388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Between embryonic days 10.5 and 14.5, active proliferation drives rapid elongation of the murine midgut epithelial tube. Within this pseudostratified epithelium, nuclei synthesize DNA near the basal surface and move apically to divide. After mitosis, the majority of daughter cells extend a long, basally oriented filopodial protrusion, building a de novo path along which their nuclei can return to the basal side. WNT5A, which is secreted by surrounding mesenchymal cells, acts as a guidance cue to orchestrate this epithelial pathfinding behavior, but how this signal is received by epithelial cells is unknown. Here, we have investigated two known WNT5A receptors: ROR2 and RYK. We found that epithelial ROR2 is dispensable for midgut elongation. However, loss of Ryk phenocopies the Wnt5a-/- phenotype, perturbing post-mitotic pathfinding and leading to apoptosis. These studies reveal that the ligand-receptor pair WNT5A-RYK acts as a navigation system to instruct filopodial pathfinding, a process that is crucial for continuous cell cycling to fuel rapid midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Dermatology and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James P Roy
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Abigail J Tomlinson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ellen B Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine - Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lisa Cameron
- Light Microscopy Core Facility, Duke University, Durham, NC 27708, USA
| | - Julie Underwood
- Department of Dermatology and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine - Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3000, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Terry Lechler
- Department of Dermatology and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
33
|
Rodriguez-Trillo A, Mosquera N, Pena C, Rivas-Tobío F, Mera-Varela A, Gonzalez A, Conde C. Non-Canonical WNT5A Signaling Through RYK Contributes to Aggressive Phenotype of the Rheumatoid Fibroblast-Like Synoviocytes. Front Immunol 2020; 11:555245. [PMID: 33178184 PMCID: PMC7593687 DOI: 10.3389/fimmu.2020.555245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that WNT5A could contribute to the enhanced migration and invasiveness of rheumatoid arthritis fibroblast-like synoviocytes (RA FLS), which is one of the incompletely understood aspects of the RA FLS aggressive phenotype. This hypothesis is based on the previous evidence of a WNT5A role in both, RA and cell migration. Migration and invasion of RA FLS were assessed after incubation with recombinant Wnt5a (rWnt5a) or silencing of the endogenous WNT5A expression. The expression of WNT5A, WNT receptors, cytokines, chemokines, and metalloproteinases was quantified with RT-PCR. The WNT pathway was explored with gene silencing, antibody and pharmacological inhibition followed by migration assays and phosphoprotein western blots. Here, we reported that rWnt5a promoted migration and invasion of RA FLS, whereas knockdown of the endogenous WNT5A reduced them. These effects were specific to the RA FLS since they were not observed in FLS from osteoarthritis (OA) patients. Also, rWnt5a induced the expression of IL6, IL8, CCL2, CXCL5, MMP1, MMP3, MMP9, and MMP13 from baseline or potentiating the TNF induction, WNT5A signaling required the RYK receptor and was mediated through the WNT/Ca2+ and the ROCK pathway. These pathways involved the RYK and ROCK dependent activation of the p38, ERK, AKT, and GSK3β kinases, but not the activation of JNK. Together these findings indicate that WNT5A contributes to the enhanced migration and invasiveness of RA FLS through RYK and the specific activation of ROCK and downstream kinases.
Collapse
Affiliation(s)
- Angela Rodriguez-Trillo
- Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Nerea Mosquera
- Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Carmen Pena
- Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Fatima Rivas-Tobío
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Virxe da Xunqueira, A Coruña, Spain
| | - Antonio Mera-Varela
- Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Antonio Gonzalez
- Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clinico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
34
|
Najarro EH, Huang J, Jacobo A, Quiruz LA, Grillet N, Cheng AG. Dual regulation of planar polarization by secreted Wnts and Vangl2 in the developing mouse cochlea. Development 2020; 147:dev.191981. [PMID: 32907846 DOI: 10.1242/dev.191981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins localize asymmetrically to instruct cell polarity within the tissue plane, with defects leading to deformities of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily conserved polarity cues, yet Wnt mutants display variable PCP defects; thus, how Wnts regulate PCP remains unresolved. Here, we have used the developing cochlea as a model system to show that secreted Wnts regulate PCP through polarizing a specific subset of PCP proteins. Conditional deletion of Wntless or porcupine, both of which are essential for secretion of Wnts, caused misrotated sensory cells and shortened cochlea - both hallmarks of PCP defects. Wntless-deficient cochleae lacked the polarized PCP components dishevelled 1/2 and frizzled 3/6, while other PCP proteins (Vangl1/2, Celsr1 and dishevelled 3) remained localized. We identified seven Wnt paralogues, including the major PCP regulator Wnt5a, which was, surprisingly, dispensable for planar polarization in the cochlea. Finally, Vangl2 haploinsufficiency markedly accentuated sensory cell polarization defects in Wntless-deficient cochlea. Together, our study indicates that secreted Wnts and Vangl2 coordinate to ensure proper tissue polarization during development.
Collapse
Affiliation(s)
- Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Huang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrian Jacobo
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lee A Quiruz
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Hing H, Reger N, Snyder J, Fradkin LG. Interplay between axonal Wnt5-Vang and dendritic Wnt5-Drl/Ryk signaling controls glomerular patterning in the Drosophila antennal lobe. PLoS Genet 2020; 16:e1008767. [PMID: 32357156 PMCID: PMC7219789 DOI: 10.1371/journal.pgen.1008767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the importance of dendritic targeting in neural circuit assembly, the mechanisms by which it is controlled still remain incompletely understood. We previously showed that in the developing Drosophila antennal lobe, the Wnt5 protein forms a gradient that directs the ~45˚ rotation of a cluster of projection neuron (PN) dendrites, including the adjacent DA1 and VA1d dendrites. We report here that the Van Gogh (Vang) transmembrane planar cell polarity (PCP) protein is required for the rotation of the DA1/VA1d dendritic pair. Cell type-specific rescue and mosaic analyses showed that Vang functions in the olfactory receptor neurons (ORNs), suggesting a codependence of ORN axonal and PN dendritic targeting. Loss of Vang suppressed the repulsion of the VA1d dendrites by Wnt5, indicating that Wnt5 signals through Vang to direct the rotation of the DA1 and VA1d glomeruli. We observed that the Derailed (Drl)/Ryk atypical receptor tyrosine kinase is also required for the rotation of the DA1/VA1d dendritic pair. Antibody staining showed that Drl/Ryk is much more highly expressed by the DA1 dendrites than the adjacent VA1d dendrites. Mosaic and epistatic analyses showed that Drl/Ryk specifically functions in the DA1 dendrites in which it antagonizes the Wnt5-Vang repulsion and mediates the migration of the DA1 glomerulus towards Wnt5. Thus, the nascent DA1 and VA1d glomeruli appear to exhibit Drl/Ryk-dependent biphasic responses to Wnt5. Our work shows that the final patterning of the fly olfactory map is the result of an interplay between ORN axons and PN dendrites, wherein converging pre- and postsynaptic processes contribute key Wnt5 signaling components, allowing Wnt5 to orient the rotation of nascent synapses through a PCP mechanism. During brain development, the processes of nerve cells, axons and dendrites, grow over long distances to find and connect with each other to form synapses in precise locations. Understanding the mechanisms that control the growth of these neurites is important for understanding normal brain functions like neuronal plasticity and neural diseases like autism. Although much progress has been made by studying the development of axons and dendrites separately, the mechanisms that guide neuronal processes to their final locations are still incompletely understood. In particular, careful observation of converging pre- and postsynaptic processes suggests that their targeting may be coordinated. Whether the final targeting of axons and dendrites are functionally linked and what molecular mechanisms may be involved are unknown. In this paper we show that, in the developing Drosophila olfactory circuit, coalescing axons and dendrites respond to the extracellular Wnt5 signal in a codependent manner. We demonstrate that the converging axons and dendrites contribute different signaling components to the Wnt5 pathway, the Vang Gogh and Derailed transmembrane receptors respectively, which allow Wnt5 to coordinately guide the targeting of the neurites. Our work thus reveals a novel mechanism of neural circuit patterning and the molecular mechanism that controls it.
Collapse
Affiliation(s)
- Huey Hing
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
- * E-mail:
| | - Noah Reger
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
| | - Jennifer Snyder
- Department of Biology, State University of New York at Brockport, Brockport, NY, United States of America
| | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
36
|
Humphries AC, Narang S, Mlodzik M. Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. eLife 2020; 9:e53532. [PMID: 32234212 PMCID: PMC7180057 DOI: 10.7554/elife.53532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbor mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD.
Collapse
Affiliation(s)
- Ashley C Humphries
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Sonali Narang
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| |
Collapse
|
37
|
Cherian JR, Adams KV, Petrella LN. Wnt Signaling Drives Ectopic Gene Expression and Larval Arrest in the Absence of the Caenorhabditis elegans DREAM Repressor Complex. G3 (BETHESDA, MD.) 2020; 10:863-874. [PMID: 31843805 PMCID: PMC7003081 DOI: 10.1534/g3.119.400850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022]
Abstract
Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.
Collapse
Affiliation(s)
- Jerrin R Cherian
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Katherine V Adams
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
38
|
Langford MB, O'Leary CJ, Veeraval L, White A, Lanoue V, Cooper HM. WNT5a Regulates Epithelial Morphogenesis in the Developing Choroid Plexus. Cereb Cortex 2020; 30:3617-3631. [PMID: 31912879 DOI: 10.1093/cercor/bhz330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is the predominant supplier of cerebral spinal fluid (CSF) and the site of the blood-CSF barrier and is thus essential for brain development and central nervous system homeostasis. Despite these crucial roles, our understanding of the molecular and cellular processes giving rise to the CPs within the ventricles of the mammalian brain is very rudimentary. Here, we identify WNT5a as an important regulator of CP development, where it acts as a pivotal factor driving CP epithelial morphogenesis in all ventricles. We show that WNT5a is essential for the establishment of a cohesive epithelium in the developing CP. We find that in its absence all CPs are substantially reduced in size and complexity and fail to expand into the ventricles. Severe defects were observed in the epithelial cytoarchitecture of all Wnt5a-/- CPs, exemplified by loss of apicobasally polarized morphology and detachment from the ventricular surface and/or basement membrane. We also present evidence that the WNT5a receptor, RYK, and the RHOA kinase, ROCK, are required for normal CP epithelial morphogenesis. Our study, therefore, reveals important insights into the molecular and cellular mechanisms governing CP development.
Collapse
Affiliation(s)
- Michael B Langford
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Conor J O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Lenin Veeraval
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Amanda White
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Vanessa Lanoue
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and.,Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| |
Collapse
|
39
|
Kaissi AA, Kenis V, Shboul M, Grill F, Ganger R, Kircher SG. Tomographic Study of the Malformation Complex in Correlation With the Genotype in Patients With Robinow Syndrome: Review Article. J Investig Med High Impact Case Rep 2020; 8:2324709620911771. [PMID: 32172608 PMCID: PMC7074505 DOI: 10.1177/2324709620911771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022] Open
Abstract
We aimed to understand the etiology behind the abnormal craniofacial contour and other clinical presentations in a number of children with Robinow syndrome. Seven children with Robinow syndrome were enrolled in this study (autosomal recessive caused by homozygous mutations in the ROR2 gene on chromosome 9q22, and the autosomal dominant caused by heterozygous mutation in the WNT5A gene on chromosome 3p14). In the autosomal recessive (AR) group, the main clinical presentations were intellectual, disability, poor schooling achievement, episodes of headache/migraine, and poor fine motor coordinative skills, in addition to massive restrictions of the spine biomechanics causing effectively the development of kyposcoliosis and frequent bouts of respiratory infections. Three-dimensional reconstruction computed tomography scan revealed early closure of the metopic and the squamosal sutures of skull bones. Massive spinal malsegmentation and unsegmented spinal bar were noted in the AR group. In addition to severe mesomelia and camptodactyly, in the autosomal dominant (AD) group, no craniosynostosis but few Wormian bones and the spine showed limited malsegemetation, and no mesomelia or camptodactyly have been noted. We wish to stress that little information is available in the literature regarding the exact pathology of the cranial bones, axial, and appendicular malformations in correlation with the variable clinical presentations in patients with the 2 types of Robinow syndrome.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Hanusch Hospital, Vienna, Austria
- Orthopedic Hospital of Speising, Vienna, Austria
| | - Vladimir Kenis
- Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | | | - Franz Grill
- Orthopedic Hospital of Speising, Vienna, Austria
| | | | | |
Collapse
|
40
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
41
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. J Cell Physiol 2019; 235:4135-4145. [PMID: 31637721 DOI: 10.1002/jcp.29327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Wingless-type MMTV integration site (Wnt) signaling pathway is considered as an important pathway regulating a variety of biological processes such as tissue formation and homeostasis, cell proliferation, cell migration, cell differentiation, and embryogenesis. Impairment in the Wnt signaling pathway is associated with pathological conditions, particularly cancer. So, modulation of this pathway can be considered as a promising strategy and several drugs have been developed in line with this strategy. Resveratrol (Res) is a naturally occurring nutraceutical compound exclusively found in different fruits and nuts such as grape, peanut, and pistachio. This compound has favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, cardioprotective, and antidiabetic. At the present review, we demonstrate how Res modulates Wnt signaling pathway to exert its pharmacological effects.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
42
|
Shin WS, Lee HW, Lee ST. Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF. FASEB J 2019; 33:12960-12971. [PMID: 31490704 PMCID: PMC6902674 DOI: 10.1096/fj.201900932r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor protein tyrosine kinase (RPTK), plays an oncogenic role by activating an unidentified TKI-258 (dovitinib)-sensitive RPTK in esophageal squamous cell carcinoma (ESCC) cells. Here, we demonstrate that among TKI-258–sensitive RPTKs, fibroblast growth factor receptor (FGFR) 1 is significantly up-regulated in ESCC tissues and cell lines. We show that PTK7 colocalizes with FGFR1 and binds it via its extracellular domain in human embryonic kidney 293 and ESCC TE-10 cells. PTK7 knockdown not only reduced ligand-free and fibroblast growth factor (FGF)-induced phosphorylation of FGFR1 but also the interaction of signaling adaptor proteins with FGFR1 and activation of downstream signaling proteins in TE-10 cells. In addition, PTK7 knockdown reduced FGF-induced oncogenic phenotypes including proliferation, anchorage-independent colony formation, wound healing, and invasion in ESCC cells. Taken together, our data demonstrate that PTK7 binds and activates FGFR1 independent of FGF and thus increases oncogenicity of PTK7- and FGFR1-positive cancers such as ESCC.—Shin, W.-S., Lee, H. W., Lee, S.-T. Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF.
Collapse
Affiliation(s)
- Won-Sik Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hae Won Lee
- Department of Thoracic Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Becker J, Wilting J. WNT Signaling in Neuroblastoma. Cancers (Basel) 2019; 11:cancers11071013. [PMID: 31331081 PMCID: PMC6679057 DOI: 10.3390/cancers11071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The term WNT (wingless-type MMTV integration site family) signaling comprises a complex molecular pathway consisting of ligands, receptors, coreceptors, signal transducers and transcriptional modulators with crucial functions during embryonic development, including all aspects of proliferation, morphogenesis and differentiation. Its involvement in cancer biology is well documented. Even though WNT signaling has been divided into mainly three distinct branches in the past, increasing evidence shows that some molecular hubs can act in various branches by exchanging interaction partners. Here we discuss developmental and clinical aspects of WNT signaling in neuroblastoma (NB), an embryonic tumor with an extremely broad clinical spectrum, ranging from spontaneous differentiation to fatal outcome. We discuss implications of WNT molecules in NB onset, progression, and relapse due to chemoresistance. In the light of the still too high number of NB deaths, new pathways must be considered.
Collapse
Affiliation(s)
- Juergen Becker
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | - Joerg Wilting
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
44
|
Jessen TN, Jessen JR. VANGL2 protein stability is regulated by integrin αv and the extracellular matrix. Exp Cell Res 2018; 374:128-139. [PMID: 30472097 DOI: 10.1016/j.yexcr.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
Vang-like 2 (VANGL2) is a four-pass transmembrane protein required for a variety of polarized cell behaviors underlying embryonic development. Recent data show human VANGL2 interacts with integrin αv to control cell adhesion to extracellular matrix proteins. The goal of this study was to further define the functional relationship between integrin αv and VANGL2. We demonstrate integrin αv regulates VANGL2 protein levels both in vitro and in the zebrafish embryo. While integrin αv knockdown reduces VANGL2 expression at membrane compartments, it does not affect VANGL2 transcription. Knockdown of integrin β5, but not β1 or β3, also decreases VANGL2 protein levels. Inhibition of protein translation using cycloheximide demonstrates that integrin αv knockdown cells have increased VANGL2 degradation while interference with either proteasome or lysosome function restores VANGL2. We further show integrin activation and stimulation of cell-matrix adhesion using MnCl2 fails to influence VANGL2. However, MnCl2 treatment stabilizes VANGL2 protein expression levels in the presence of cycloheximide. In the converse experiment, blockage of integrin-mediated cell-matrix adhesion using a cyclic RGD peptide causes a reduction in VANGL2 protein levels. Together, our findings support a model where integrin αv and cellular interactions with the extracellular matrix are required to maintain VANGL2 protein levels and thus function at the plasma membrane.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
45
|
Tian Y, Ma Y, Wu S, Zhang T, Li Z, Wang G, Zhang J. Understand the acquired resistance of RTK inhibitors by computational receptor tyrosine kinases network. Comput Biol Chem 2018; 76:275-282. [DOI: 10.1016/j.compbiolchem.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
46
|
Wang S, Cebrian C, Schnell S, Gumucio DL. Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 2018; 46:173-188.e3. [PMID: 30016620 DOI: 10.1016/j.devcel.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
The early midgut undergoes intensive elongation, but the underlying cellular and molecular mechanisms are unknown. The early midgut epithelium is pseudostratified, and its nuclei travel between apical and basal surfaces in concert with cell cycle. Using 3D confocal imaging and 2D live imaging, we profiled behaviors of individual dividing cells. As nuclei migrate apically for mitosis, cells maintain a basal process (BP), which splits but is inherited by only one daughter. After mitosis, some daughters directly use the inherited BP as a "conduit" to transport the nucleus basally, while >50% of daughters generate a new basal filopodium and use it as a path to return the nucleus. Post-mitotic filopodial "pathfinding" is guided by mesenchymal WNT5A. Without WNT5A, some cells fail to tether basally and undergo apoptosis, leading to a shortened midgut. Thus, these studies reveal previously unrecognized strategies for efficient post-mitotic nuclear trafficking, which is critical for early midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | - Cristina Cebrian
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
47
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
48
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
49
|
Sarin S, Zuniga-Sanchez E, Kurmangaliyev YZ, Cousins H, Patel M, Hernandez J, Zhang KX, Samuel MA, Morey M, Sanes JR, Zipursky SL. Role for Wnt Signaling in Retinal Neuropil Development: Analysis via RNA-Seq and In Vivo Somatic CRISPR Mutagenesis. Neuron 2018; 98:109-126.e8. [PMID: 29576390 DOI: 10.1016/j.neuron.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Screens for genes that orchestrate neural circuit formation in mammals have been hindered by practical constraints of germline mutagenesis. To overcome these limitations, we combined RNA-seq with somatic CRISPR mutagenesis to study synapse development in the mouse retina. Here synapses occur between cellular layers, forming two multilayered neuropils. The outer neuropil, the outer plexiform layer (OPL), contains synapses made by rod and cone photoreceptor axons on rod and cone bipolar dendrites, respectively. We used RNA-seq to identify selectively expressed genes encoding cell surface and secreted proteins and CRISPR-Cas9 electroporation with cell-specific promoters to assess their roles in OPL development. Among the genes identified in this way are Wnt5a and Wnt5b. They are produced by rod bipolars and activate a non-canonical signaling pathway in rods to regulate early OPL patterning. The approach we use here can be applied to other parts of the brain.
Collapse
Affiliation(s)
- Sumeet Sarin
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Elizabeth Zuniga-Sanchez
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Henry Cousins
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Mili Patel
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Jeanette Hernandez
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelvin X Zhang
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melanie A Samuel
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Marta Morey
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Orriss IR, Lanham S, Savery D, Greene NDE, Stanier P, Oreffo R, Copp AJ, Galea GL. Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Sci Rep 2018; 8:3325. [PMID: 29463853 PMCID: PMC5820290 DOI: 10.1038/s41598-018-21718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Dawn Savery
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew J Copp
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology of Birth Defects, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|