1
|
Viering B, Balogh H, Cox CF, Kirpekar OK, Akers AL, Federico VA, Valenzano GZ, Stempel R, Pickett HL, Lundin PM, Blackledge MS, Miller HB. Loratadine Combats Methicillin-Resistant Staphylococcus aureus by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes. ACS Infect Dis 2024; 10:232-250. [PMID: 38153409 PMCID: PMC10788911 DOI: 10.1021/acsinfecdis.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved to become resistant to multiple classes of antibiotics. New antibiotics are costly to develop and deploy, and they have a limited effective lifespan. Antibiotic adjuvants are molecules that potentiate existing antibiotics through nontoxic mechanisms. We previously reported that loratadine, the active ingredient in Claritin, potentiates multiple cell-wall active antibiotics in vitro and disrupts biofilm formation through a hypothesized inhibition of the master regulatory kinase Stk1. Loratadine and oxacillin combined repressed the expression of key antibiotic resistance genes in the bla and mec operons. We hypothesized that additional genes involved in antibiotic resistance, biofilm formation, and other cellular pathways would be modulated when looking transcriptome-wide. To test this, we used RNA-seq to quantify transcript levels and found significant effects in gene expression, including genes controlling virulence, antibiotic resistance, metabolism, transcription (core RNA polymerase subunits and sigma factors), and translation (a plethora of genes encoding ribosomal proteins and elongation factor Tu). We further demonstrated the impacts of these transcriptional effects by investigating loratadine treatment on intracellular ATP levels, persister formation, and biofilm formation and morphology. Loratadine minimized biofilm formation in vitro and enhanced the survival of infected Caenorhabditis elegans. These pleiotropic effects and their demonstrated outcomes on MRSA virulence and survival phenotypes position loratadine as an attractive anti-infective against MRSA.
Collapse
Affiliation(s)
- Brianna
L. Viering
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Halie Balogh
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Chloe F. Cox
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Owee K. Kirpekar
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - A. Luke Akers
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Victoria A. Federico
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Gabriel Z. Valenzano
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Robin Stempel
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Hannah L. Pickett
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Pamela M. Lundin
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Heather B. Miller
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
2
|
Li Y, Cai J, Liu Y, Li C, Chen X, Wong WL, Jiang W, Qin Y, Zhang G, Hou N, Yuan W. CcpA-Knockout Staphylococcus aureus Induces Abnormal Metabolic Phenotype via the Activation of Hepatic STAT5/PDK4 Signaling in Diabetic Mice. Pathogens 2023; 12:1300. [PMID: 38003764 PMCID: PMC10674825 DOI: 10.3390/pathogens12111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.
Collapse
Affiliation(s)
- Yilang Li
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Jiaxuan Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Yinan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Conglin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Xiaoqing Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China;
| | - Wenyue Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China;
| | - Yuan Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Guiping Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Ning Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (J.C.); (Y.L.); (X.C.); (Y.Q.); (G.Z.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China;
| |
Collapse
|
3
|
Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications Modulate the S. pneumoniae Metabolism, Polysaccharide Capsule, and Virulence. Infect Immun 2023; 91:e0029622. [PMID: 36877045 PMCID: PMC10112228 DOI: 10.1128/iai.00296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Youcheng Sun
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
4
|
Niu K, Meng Y, Liu M, Ma Z, Lin H, Zhou H, Fan H. Phosphorylation of GntR reduces Streptococcus suis oxidative stress resistance and virulence by inhibiting NADH oxidase transcription. PLoS Pathog 2023; 19:e1011227. [PMID: 36913374 PMCID: PMC10010549 DOI: 10.1371/journal.ppat.1011227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
GntR transcription factor of Streptococcus suis serotype 2 (SS2) is a potential substrate protein of STK, but the regulation mechanisms of GntR phosphorylation are still unclear. This study confirmed that STK phosphorylated GntR in vivo, and in vitro phosphorylation experiments showed that STK phosphorylated GntR at Ser-41. The phosphomimetic strain (GntR-S41E) had significantly reduced lethality in mice and reduced bacterial load in the blood, lung, liver, spleen, and brain of infected mice compared to wild-type (WT) SS2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments demonstrated that the promoter of nox was bound by GntR. The phosphomimetic protein GntR-S41E cannot bind to the promoter of nox, and the nox transcription levels were significantly reduced in the GntR-S41E mutant compared to WT SS2. The virulence in mice and the ability to resist oxidative stress of the GntR-S41E strain were restored by complementing transcript levels of nox. NOX is an NADH oxidase that catalyzes the oxidation of NADH to NAD+ with the reduction of oxygen to water. We found that NADH is likely accumulated under oxidative stress in the GntR-S41E strain, and higher NADH levels resulted in increased amplified ROS killing. In total, we report GntR phosphorylation could inhibit the transcription of nox, which impaired the ability of SS2 to resist oxidative stress and virulence.
Collapse
Affiliation(s)
- Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxing Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Identification of serine/threonine kinases that regulate metabolism and sporulation in Clostridium beijerinckii. Appl Microbiol Biotechnol 2022; 106:7563-7575. [DOI: 10.1007/s00253-022-12234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
6
|
Zheng M, Zhu K, Peng H, Shang W, Zhao Y, Lu S, Rao X, Li M, Zhou R, Li G. CcpA Regulates Staphylococcus aureus Biofilm Formation through Direct Repression of Staphylokinase Expression. Antibiotics (Basel) 2022; 11:antibiotics11101426. [PMID: 36290085 PMCID: PMC9598941 DOI: 10.3390/antibiotics11101426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus represents a notorious opportunistic pathogen causing various infections in biofilm nature, imposing remarkable therapeutic challenges worldwide. The catabolite control protein A (CcpA), a major regulator of carbon catabolite repression (CCR), has been recognized to modulate S. aureus biofilm formation, while the underlying mechanism remains to be fully elucidated. In this study, the reduced biofilm was firstly determined in the ccpA deletion mutant of S. aureus clinical isolate XN108 using both crystal violet staining and confocal laser scanning microscopy. RNA-seq analysis suggested that sak-encoding staphylokinase (Sak) was significantly upregulated in the mutant ∆ccpA, which was further confirmed by RT-qPCR. Consistently, the induced Sak production correlated the elevated promoter activity of sak and increased secretion in the supernatants, as demonstrated by Psak-lacZ reporter fusion expression and chromogenic detection, respectively. Notably, electrophoretic mobility shift assays showed that purified recombinant protein CcpA binds directly to the promoter region of sak, suggesting the direct negative control of sak expression by CcpA. Double isogenic deletion of ccpA and sak restored biofilm formation for mutant ∆ccpA, which could be diminished by trans-complemented sak. Furthermore, the exogenous addition of recombinant Sak inhibited biofilm formation for XN108 in a dose-dependent manner. Together, this study delineates a novel model of CcpA-controlled S. aureus biofilm through direct inhibition of sak expression, highlighting the multifaceted roles and multiple networks regulated by CcpA.
Collapse
Affiliation(s)
- Mingxia Zheng
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Keting Zhu
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| | - Renjie Zhou
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Correspondence: (M.L.); (R.Z.); (G.L.)
| |
Collapse
|
7
|
Chu LC, Arede P, Li W, Urdaneta EC, Ivanova I, McKellar SW, Wills JC, Fröhlich T, von Kriegsheim A, Beckmann BM, Granneman S. The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins. Nat Commun 2022; 13:2883. [PMID: 35610211 PMCID: PMC9130240 DOI: 10.1038/s41467-022-30553-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.
Collapse
Affiliation(s)
- Liang-Cui Chu
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Pedro Arede
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Wei Li
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Erika C Urdaneta
- IRI Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Ivayla Ivanova
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Stuart W McKellar
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Theresa Fröhlich
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alexander von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | | | - Sander Granneman
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
8
|
Regulation of DNA binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. J Biol Chem 2022; 298:101587. [PMID: 35032550 PMCID: PMC8847796 DOI: 10.1016/j.jbc.2022.101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Catabolite control protein A (CcpA) of the human pathogen Staphylococcus aureus is an essential DNA regulator for carbon catabolite repression and virulence, which facilitates bacterial survival and adaptation to a changing environment. Here, we report that copper (II) signaling mediates the DNA-binding capability of CcpA in vitro and in vivo. Copper (II) catalyzes the oxidation of two cysteine residues (Cys216 and Cys242) in CcpA to form intermolecular disulfide bonds between two CcpA dimers, which results in the formation and dissociation of a CcpA tetramer of CcpA from its cognate DNA promoter. We further demonstrate that the two cysteine residues on CcpA are important for S. aureus to resist host innate immunity, indicating that S. aureus CcpA senses the redox-active copper (II) ions as a natural signal to cope with environmental stress. Together, these findings reveal a novel regulatory mechanism for CcpA activity through copper (II)-mediated oxidation.
Collapse
|
9
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
10
|
Liang C, Rios-Miguel AB, Jarick M, Neurgaonkar P, Girard M, François P, Schrenzel J, Ibrahim ES, Ohlsen K, Dandekar T. Staphylococcusaureus Transcriptome Data and Metabolic Modelling Investigate the Interplay of Ser/Thr Kinase PknB, Its Phosphatase Stp, the glmR/yvcK Regulon and the cdaA Operon for Metabolic Adaptation. Microorganisms 2021; 9:microorganisms9102148. [PMID: 34683468 PMCID: PMC8537086 DOI: 10.3390/microorganisms9102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB−) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.
Collapse
Affiliation(s)
- Chunguang Liang
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Ana B. Rios-Miguel
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Department of Environmental Microbiology, Institute of Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Marcel Jarick
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
| | - Priya Neurgaonkar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Eslam S. Ibrahim
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| |
Collapse
|
11
|
Elhawy MI, Molle V, Becker SL, Bischoff M. The Low-Molecular Weight Protein Arginine Phosphatase PtpB Affects Nuclease Production, Cell Wall Integrity, and Uptake Rates of Staphylococcus aureus by Polymorphonuclear Leukocytes. Int J Mol Sci 2021; 22:ijms22105342. [PMID: 34069497 PMCID: PMC8161221 DOI: 10.3390/ijms22105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
The epidemiological success of Staphylococcus aureus as a versatile pathogen in mammals is largely attributed to its virulence factor repertoire and the sophisticated regulatory network controlling this virulon. Here we demonstrate that the low-molecular-weight protein arginine phosphatase PtpB contributes to this regulatory network by affecting the growth phase-dependent transcription of the virulence factor encoding genes/operons aur, nuc, and psmα, and that of the small regulatory RNA RNAIII. Inactivation of ptpB in S. aureus SA564 also significantly decreased the capacity of the mutant to degrade extracellular DNA, to hydrolyze proteins in the extracellular milieu, and to withstand Triton X-100 induced autolysis. SA564 ΔptpB mutant cells were additionally ingested faster by polymorphonuclear leukocytes in a whole blood phagocytosis assay, suggesting that PtpB contributes by several ways positively to the ability of S. aureus to evade host innate immunity.
Collapse
Affiliation(s)
- Mohamed Ibrahem Elhawy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34095 Montpellier, France;
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (M.I.E.); (S.L.B.)
- Correspondence: ; Tel.: +49-6841-1623963
| |
Collapse
|
12
|
Staphylococcal Infections: Host and Pathogenic Factors. Microorganisms 2021; 9:microorganisms9051080. [PMID: 34069873 PMCID: PMC8157358 DOI: 10.3390/microorganisms9051080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
|
13
|
Pätzold L, Brausch AC, Bielefeld EL, Zimmer L, Somerville GA, Bischoff M, Gaupp R. Impact of the Histidine-Containing Phosphocarrier Protein HPr on Carbon Metabolism and Virulence in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9030466. [PMID: 33668335 PMCID: PMC7996215 DOI: 10.3390/microorganisms9030466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common mechanism pathogenic bacteria use to link central metabolism with virulence factor synthesis. In gram-positive bacteria, catabolite control protein A (CcpA) and the histidine-containing phosphocarrier protein HPr (encoded by ptsH) are the predominant mediators of CCR. In addition to modulating CcpA activity, HPr is essential for glucose import via the phosphotransferase system. While the regulatory functions of CcpA in Staphylococcus aureus are largely known, little is known about the function of HPr in CCR and infectivity. To address this knowledge gap, ptsH mutants were created in S. aureus that either lack the open reading frame or harbor a ptsH variant carrying a thymidine to guanosine mutation at position 136, and the effects of these mutations on growth and metabolism were assessed. Inactivation of ptsH altered bacterial physiology and decreased the ability of S. aureus to form a biofilm and cause infections in mice. These data demonstrate that HPr affects central metabolism and virulence in S. aureus independent of its influence on CcpA regulation.
Collapse
Affiliation(s)
- Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Anne-Christine Brausch
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Evelyn-Laura Bielefeld
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Lisa Zimmer
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68588, USA;
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
- Correspondence: ; Tel.: +49-6841-162-39-63
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| |
Collapse
|
14
|
Prust N, van der Laarse S, van den Toorn HWP, van Sorge NM, Lemeer S. In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1. Mol Cell Proteomics 2021; 20:100034. [PMID: 33444734 PMCID: PMC7950182 DOI: 10.1074/mcp.ra120.002232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus is a major cause of infections worldwide, and infection results in a variety of diseases. As of no surprise, protein phosphorylation is an important game player in signaling cascades and has been shown to be involved in S. aureus virulence. Albeit long neglected, eukaryotic-type serine/threonine kinases in S. aureus have been implicated in this complex signaling cascades. Due to the substoichiometric nature of protein phosphorylation and a lack of suitable analysis tools, the knowledge of these cascades is, however, to date, still limited. Here, were apply an optimized protocol for efficient phosphopeptide enrichment via Fe3+-IMAC followed by LC-MS/MS to get a better understanding of the impact of protein phosphorylation on the complex signaling networks involved in pathogenicity. By profiling a serine/threonine kinase and phosphatase mutant from a methicillin-resistant S. aureus mutant library, we generated the most comprehensive phosphoproteome data set of S. aureus to date, aiding a better understanding of signaling in bacteria. With the identification of 3800 class I p-sites, we were able to increase the number of identifications by more than 21 times compared with recent literature. In addition, we were able to identify 74 downstream targets of the only reported eukaryotic-type Ser/Thr kinase of the S. aureus strain USA300, Stk1. This work allowed an extensive analysis of the bacterial phosphoproteome and indicates that Ser/Thr kinase signaling is far more abundant than previously anticipated in S. aureus.
Collapse
Affiliation(s)
- Nadine Prust
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Saar van der Laarse
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Medical Microbiology and Infection Prevention and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Liu H, Ye C, Fu H, Yue M, Li X, Fang W. Stk and Stp1 participate in Streptococcus suis serotype 2 pathogenesis by regulating capsule thickness and translocation of certain virulence factors. Microb Pathog 2020; 152:104607. [PMID: 33161059 DOI: 10.1016/j.micpath.2020.104607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Eukaryotic-like serine/threonine protein kinase (eSTK) and phosphatase (eSTP) play multiple roles in pathogenesis of many Gram-positive bacteria. eSTK (Stk) and eSTP (Stp1) of Streptococcus suis serotype 2 (S. suis 2) have also been reported to be virulence-associated, but their roles and underlying mechanisms in S. suis 2 pathogenesis require further investigation. We constructed mutants of stk or stp1 deletion using the virulent S. suis 2 isolate 05ZYH33 as the parental strain. Both Δstk and Δstp1 mutants showed abnormal cell division shown as increased chain length. This might be due to regulation by Stk and Stp1 of the phosphorylation status of the bacterial division protein DivIVA. Both mutants showed increased adhesion but reduced invasion to epithelial and endothelial cells. The two mutants were more readily phagocytosed by murine RAW264.7 macrophages. Western blotting revealed that GAPDH (glyceraldehyde-3-phosphate dehydrogenase), an important adhesin of S. suis, was significantly increased in the surface-associated and secreted fractions of the two mutant strains. Because increased adhesion of the mutant strains Δstk and Δstp1 to endothelial cells could be significantly inhibited by anti-GAPDH serum, we suppose that aberrant translocation of GAPDH due to deletion of the stk or stp1 gene contributed to increased interaction with host cells. The Δstk mutant showed reduced survival in macrophages, while the Δstp1 mutant showed increased survival probably as a result of increased capsule thickness. Enhanced hemolytic activity of the Δstk mutant could be due to increased secretion of suilysin. Both mutants exhibited reduced survival in pig whole blood and attenuated virulence to mice. Taken together, these results suggest that Stk and Stp1 can modulate S. suis cell division by post-translational modification of DivIVA, and regulate translocation of certain virulence factors, thereby benefiting its pathogenicity by compromising its interactions with the host.
Collapse
Affiliation(s)
- Hanze Liu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chaofeng Ye
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Hao Fu
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Min Yue
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
16
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response. Proc Natl Acad Sci U S A 2020; 117:17228-17239. [PMID: 32616573 PMCID: PMC7382225 DOI: 10.1073/pnas.2008413117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus infections impose an immense burden on the healthcare system. To establish a successful infection in a hostile host environment, S. aureus must coordinate its gene expression to respond to a wide array of challenges. This balancing act is largely orchestrated by the transcriptional regulatory network. Here, we present a model of 29 independently modulated sets of genes that form the basis for a segment of the transcriptional regulatory network in clinical USA300 strains of S. aureus. Using this model, we demonstrate the concerted role of various cellular systems (e.g., metabolism, virulence, and stress response) underlying key physiological responses, including response during blood infection. The ability of Staphylococcus aureus to infect many different tissue sites is enabled, in part, by its transcriptional regulatory network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying independent component analysis to a compendium of 108 RNA-sequencing expression profiles from two S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the S. aureus transcriptome into 29 independently modulated sets of genes (i-modulons) that revealed: 1) High confidence associations between 21 i-modulons and known regulators; 2) an association between an i-modulon and σS, whose regulatory role was previously undefined; 3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR, and Vim-3; 4) the roles of three key transcription factors (CodY, Fur, and CcpA) in coordinating the metabolic and regulatory networks; and 5) a low-dimensional representation, involving the function of few transcription factors of changes in gene expression between two laboratory media (RPMI, cation adjust Mueller Hinton broth) and two physiological media (blood and serum). This representation of the TRN covers 842 genes representing 76% of the variance in gene expression that provides a quantitative reconstruction of transcriptional modules in S. aureus, and a platform enabling its full elucidation.
Collapse
|
18
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Rudra P, Boyd JM. Metabolic control of virulence factor production in Staphylococcus aureus. Curr Opin Microbiol 2020; 55:81-87. [PMID: 32388086 DOI: 10.1016/j.mib.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
As investigators decipher the underlining mechanisms of Staphylococcus aureus pathogenesis, it is becoming apparent that perturbations in central metabolism alter virulence factor production and infection outcomes. It is also evident that S. aureus has the ability to metabolically adapt to improve colonization and overcome challenges imparted by the immune system. Altered metabolite pools modify virulence factor production suggesting that proper functioning of a core metabolic network is necessary for successful niche colonization and pathogenesis. Herein we discuss four examples of transcriptional regulators that monitor metabolic status. These regulatory systems sense perturbations in the metabolic network and respond by altering the transcription of genes utilized for central metabolism, energy generation and pathogenesis.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
20
|
Gao Y, Wang G, Wang X, Yang Y, Niu X. Structure-Activity relationship of MDSA and its derivatives against Staphylococcus aureus Ser/Thr phosphatase Stp1. Comput Biol Chem 2020; 85:107230. [DOI: 10.1016/j.compbiolchem.2020.107230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/23/2023]
|
21
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
22
|
An integrated computational and experimental study to investigate Staphylococcus aureus metabolism. NPJ Syst Biol Appl 2020; 6:3. [PMID: 32001720 PMCID: PMC6992624 DOI: 10.1038/s41540-019-0122-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide. Integration of in vivo experiment with a newly developed model of Staphylococcus aureus metabolism helps explore its metabolic versatility. A multidisciplinary team led by Rajib Saha at the University of Nebraska developed a new genome-scale metabolic model of the multi-drug resistant pathogen S. aureus by combining genome annotation data, reaction stoichiometry, and condition- and mutant-specific regulations from biochemical databases and previous strain-specific models. Extensive manual curation and incorporation of newly generated experimental data on growth and metabolite production improved the accuracy and predictability of the model and increased its ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data and, therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.
Collapse
|
23
|
Bai Y, Shang M, Xu M, Wu A, Sun L, Zheng L. Transcriptome, Phenotypic, and Virulence Analysis of Streptococcus sanguinis SK36 Wild Type and Its CcpA-Null Derivative (ΔCcpA). Front Cell Infect Microbiol 2019; 9:411. [PMID: 31867286 PMCID: PMC6904348 DOI: 10.3389/fcimb.2019.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Catabolic control protein (CcpA) is linked to complex carbohydrate utilization and virulence factor in many bacteria species, influences the transcription of target genes by many mechanisms. To characterize the activity and regulatory mechanisms of CcpA in Streptococcus sanguinis, here, we analyzed the transcriptome of Streptococcus sanguinis SK36 and its CcpA-null derivative (ΔCcpA) using RNA-seq. Compared to the regulon of CcpA in SK36 in the RegPrecise database, we found that only minority of differentially expressed genes (DEGs) contained putative catabolite response element (cre) in their regulatory regions, indicating that many genes could have been affected indirectly by the loss of CcpA and analyzing the sequence of the promoter region using prediction tools is not a desirable method to recognize potential target genes of global regulator CcpA. Gene ontology and pathway analysis of DEGs revealed that CcpA exerts an influence predominantly involved in carbon catabolite metabolism and some amino acid catabolite pathways, which has been linked to expression of virulence genes in many pathogens and coordinately regulate the disease progression in vivo studies. However, in some scenarios, differences observed at the transcript level could not reflect the real differences at the protein level. Therefore, to confirm the differences in phenotype and virulence of SK36 and ΔCcpA, we characterized the role of CcpA in the regulation of biofilm development, EPS production and the virulence of Streptococcus sanguinis. Results showed CcpA inactivation impaired biofilm and EPS formation, and CcpA also involved in virulence in rabbit infective endocarditis model. These findings will undoubtedly contribute to investigate the mechanistic links between the global regulator CcpA and the virulence of Streptococcus sanguinis, further broaden our understanding of the relationship between basic metabolic processes and virulence.
Collapse
Affiliation(s)
- Yibo Bai
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mengmeng Shang
- Department of Scientific Research, Peking Union Medical College Hospital (East), Beijing, China
| | - Mengya Xu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Anyi Wu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lanyan Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Gudeta DD, Lei MG, Lee CY. Contribution of hla Regulation by SaeR to Staphylococcus aureus USA300 Pathogenesis. Infect Immun 2019; 87:e00231-19. [PMID: 31209148 PMCID: PMC6704604 DOI: 10.1128/iai.00231-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The SaeRS two-component system in Staphylococcus aureus is critical for regulation of many virulence genes, including hla, which encodes alpha-toxin. However, the impact of regulation of alpha-toxin by Sae on S. aureus pathogenesis has not been directly addressed. Here, we mutated the SaeR-binding sequences in the hla regulatory region and determined the contribution of this mutation to hla expression and pathogenesis in strain USA300 JE2. Western blot analyses revealed drastic reduction of alpha-toxin levels in the culture supernatants of SaeR-binding mutant in contrast to the marked alpha-toxin production in the wild type. The SaeR-binding mutation had no significant effect on alpha-toxin regulation by Agr, MgrA, and CcpA. In animal studies, we found that the SaeR-binding mutation did not contribute to USA300 JE2 pathogenesis using a rat infective endocarditis model. However, in a rat skin and soft tissue infection model, the abscesses on rats infected with the mutant were significantly smaller than the abscesses on those infected with the wild type but similar to the abscesses on those infected with a saeR mutant. These studies indicated that there is a direct effect of hla regulation by SaeR on pathogenesis but that the effect depends on the animal model used.
Collapse
Affiliation(s)
- Dereje D Gudeta
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mei G Lei
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
25
|
Abstract
Staphylococcus aureus is clearly the most pathogenic member of the Staphylococcaceae. This is in large part due to the acquisition of an impressive arsenal of virulence factors that are coordinately regulated by a series of dedicated transcription factors. What is becoming more and more appreciated in the field is the influence of the metabolic state of S. aureus on the activity of these virulence regulators and their roles in modulating metabolic gene expression. Here I highlight recent advances in S. aureus metabolism as it pertains to virulence. Specifically, mechanisms of nutrient acquisition are outlined including carbohydrate and non-carbohydrate carbon/energy sources as well as micronutrient (Fe, Mn, Zn and S) acquisition. Additionally, energy producing strategies (respiration versus fermentation) are discussed and put in the context of pathogenesis. Finally, transcriptional regulators that coordinate metabolic gene expression are outlined, particularly those that affect the activities of major virulence factor regulators. This chapter essentially connects many recent observations that link the metabolism of S. aureus to its overall pathogenesis and hints that the mere presence of a plethora of virulence factors may not entirely explain the extraordinary pathogenic potential of S. aureus.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
26
|
Reed JM, Olson S, Brees DF, Griffin CE, Grove RA, Davis PJ, Kachman SD, Adamec J, Somerville GA. Coordinated regulation of transcription by CcpA and the Staphylococcus aureus two-component system HptRS. PLoS One 2018; 13:e0207161. [PMID: 30540769 PMCID: PMC6291074 DOI: 10.1371/journal.pone.0207161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen is due in part to its ability to adapt to changing environmental conditions using signal transduction pathways, such as metabolite- responsive regulators and two-component systems. S. aureus has a two-component system encoded by the gene pair sav0224 (hptS) and sav0223 (hptR) that regulate the hexose phosphate transport (uhpT) system in response to extracellular glucose-6-phosphate. Glycolytic intermediates such as glucose-6-phosphate are important carbon sources that also modulate the activity of the global metabolite-responsive transcriptional regulator CcpA. Because uhpT has a putative CcpA binding site in its promoter and it is regulated by HptR, it was hypothesized the regulons of CcpA and HptR might intersect. To determine if the regulatory domains of CcpA and HptRS overlap, ccpA was deleted in strains SA564 and SA564-ΔhptRS and growth, metabolic, proteomic, and transcriptional differences were assessed. As expected, CcpA represses hptS and hptR in a glucose dependent manner; however, upon CcpA derepression, the HptRS system functions as a transcriptional activator of metabolic genes within the CcpA regulon. Importantly, inactivation of ccpA and hptRS altered sensitivity to fosfomycin and ampicillin in the absence of exogenous glucose-6-phosphate, indicating that both CcpA and HptRS modulate antibiotic susceptibility.
Collapse
Affiliation(s)
- Joseph M. Reed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Sean Olson
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Danielle F. Brees
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Caitlin E. Griffin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ryan A. Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul J. Davis
- Unaffiliated, Honey Creek, Iowa, United States of America
| | - Stephen D. Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gao T, Ding M, Yang CH, Fan H, Chai Y, Li Y. The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Res Microbiol 2018; 170:86-96. [PMID: 30395927 DOI: 10.1016/j.resmic.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
The rhizosphere bacterium Bacillus cereus 905 is capable of promoting plant growth through effective colonization on plant roots. The sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for survival of B. cereus 905 in the wheat rhizosphere. However, the genes involved in regulating sodA2 expression and the mechanisms of rhizosphere colonization of B. cereus 905 are not well elucidated. In this study, we found that the deletion of the ptsH gene, which encodes the histidine-phosphorylatable protein (HPr), a component of the phosphotransferase system (PTS), causes a decrease of about 60% in the MnSOD2 expression. Evidences indicate that the ptsH dramatically influences resistance to oxidative stress, glucose uptake, as well as biofilm formation and swarming motility of B. cereus 905. Root colonization assay demonstrated that ΔptsH is defective in colonizing wheat roots, while complementation of the sodA2 gene could partially restore the ability in utilization of arabinose, a non-PTS sugar, and root colonization caused by the loss of the ptsH gene. In toto, based on the current findings, we propose that PtsH contributes to root colonization of B. cereus 905 through multiple indistinct mechanisms, involving PTS and uptake of PTS-sugars, up-regulation of MnSOD2 production, and promotion of biofilm formation and swarming motility.
Collapse
Affiliation(s)
- Tantan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.
| | - Haiyan Fan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Zhu Q, Wen W, Wang W, Sun B. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Int J Med Microbiol 2018; 309:39-53. [PMID: 30392856 DOI: 10.1016/j.ijmm.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.
Collapse
Affiliation(s)
- Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wen Wen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wanying Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
29
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Ferrer CA, Sauer JD, Striker R. GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect Dis 2018; 4:1508-1518. [PMID: 30059625 PMCID: PMC6779124 DOI: 10.1021/acsinfecdis.8b00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As antibiotic resistance rises, there is a need for strategies such as antibiotic adjuvants to conserve already-established antibiotics. A family of bacterial kinases known as the penicillin-binding-protein and serine/threonine kinase-associated (PASTA) kinases has attracted attention as targets for antibiotic adjuvants for β-lactams. Here, we report that the pyrazolopyridazine GW779439X sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to various β-lactams through inhibition of the PASTA kinase Stk1. GW779439X potentiates β-lactam activity against multiple MRSA and MSSA isolates, including the sensitization of a ceftaroline-resistant isolate to ceftaroline. In silico modeling was used to guide the synthesis of GW779439X derivatives. The presence and orientation of GW779439X's methylpiperazine moiety was crucial for robust biochemical and microbiologic activity. Taken together, our data provide a proof of concept for developing the pyrazolopyridazines as selective Stk1 inhibitors which act across S. aureus isolates.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Nathan Wlodarchak
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - David H. Drewry
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Warren E. Rose
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Carla A. Ferrer
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rob Striker
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Medicine, W. S. Middleton Memorial Veteran’s Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States
| |
Collapse
|
30
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
31
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Striker R, Sauer JD. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA. J Biol Chem 2017; 292:17037-17045. [PMID: 28821610 PMCID: PMC5641865 DOI: 10.1074/jbc.m117.808600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Indexed: 01/17/2023] Open
Abstract
Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial Penicillin-binding-protein And Serine/Threonine kinase-Associated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.
Collapse
Affiliation(s)
- Adam J Schaenzer
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan Wlodarchak
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - David H Drewry
- the Structural Genomics Consortium-University of North Carolina at Chapel Hill (SGC-UNC), University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - William J Zuercher
- the Structural Genomics Consortium-University of North Carolina at Chapel Hill (SGC-UNC), University of North Carolina at Chapel Hill Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Warren E Rose
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, and
| | - Rob Striker
- From the Departments of Medical Microbiology and Immunology and
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Molecular and Cell Biology, W. S. Middleton Memorial Veteran's Hospital, Madison, Wisconsin 53705
| | | |
Collapse
|
32
|
Liao X, Yang F, Wang R, He X, Li H, Kao RYT, Xia W, Sun H. Identification of catabolite control protein A from Staphylococcus aureus as a target of silver ions. Chem Sci 2017; 8:8061-8066. [PMID: 29568454 PMCID: PMC5855135 DOI: 10.1039/c7sc02251d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/23/2017] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogenic bacteria that causes human infectious diseases. The emergence of antibiotic-resistant strains of S. aureus promotes the development of new anti-bacterial strategies. Silver ions (Ag+) have attracted profound attention due to their broad-spectrum antimicrobial activities. Although the antibacterial properties of silver have been well known for many centuries, its mechanism of action remains unclear and its protein targets are rarely reported. Herein, we identify the catabolite control protein A (CcpA) of S. aureus as a putative target for Ag+. CcpA binds 2 molar equivalents of Ag+via its two cysteine residues (Cys216 and Cys242). Importantly, Ag+ binding induces CcpA oligomerization and abolishes its DNA binding capability, which further attenuates S. aureus growth and suppresses α-hemolysin toxicity. This study extends our understanding of the bactericidal effects of silver.
Collapse
Affiliation(s)
- Xiangwen Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , China . .,Hunan Provincial Key Laboratory for Ethnic Dong Medicine Research , Hunan University of Medicine , Huaihua , 418000 , China
| | - Fang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , China .
| | - Runming Wang
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China . .,Department of Microbiology , State Key Laboratory for Emerging Infectious Diseases , The University of Hong Kong , Hong Kong , P. R. China
| | - Xiaojun He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , China .
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Richard Y T Kao
- Department of Microbiology , State Key Laboratory for Emerging Infectious Diseases , The University of Hong Kong , Hong Kong , P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , China .
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , China . .,Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
33
|
Pensinger DA, Schaenzer AJ, Sauer JD. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends Microbiol 2017; 26:56-69. [PMID: 28734616 DOI: 10.1016/j.tim.2017.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
All domains of life utilize protein phosphorylation as a mechanism of signal transduction. In bacteria, protein phosphorylation was classically thought to be mediated exclusively by histidine kinases as part of two-component signaling systems. However, it is now well appreciated that eukaryotic-like serine/threonine kinases (eSTKs) control essential processes in bacteria. A subset of eSTKs are single-pass transmembrane proteins that have extracellular penicillin-binding-protein and serine/threonine kinase-associated (PASTA) domains which bind muropeptides. In a variety of important pathogens, PASTA kinases have been implicated in regulating biofilms, antibiotic resistance, and ultimately virulence. Although there are limited examples of direct regulation of virulence factors, PASTA kinases are critical for virulence due to their roles in regulating bacterial physiology in the context of stress. This review focuses on the role of PASTA kinases in virulence for a variety of important Gram-positive pathogens and concludes with a discussion of current efforts to develop kinase inhibitors as novel antimicrobials.
Collapse
Affiliation(s)
- Daniel A Pensinger
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam J Schaenzer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John-Demian Sauer
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Kant S, Asthana S, Missiakas D, Pancholi V. A novel STK1-targeted small-molecule as an "antibiotic resistance breaker" against multidrug-resistant Staphylococcus aureus. Sci Rep 2017; 7:5067. [PMID: 28698584 PMCID: PMC5505960 DOI: 10.1038/s41598-017-05314-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/15/2017] [Indexed: 01/28/2023] Open
Abstract
Ser/Thr protein kinase (STK1) plays a critical role in cell wall biosynthesis of and drug resistance in methicillin-resistant Staphylococcus aureus (MRSA). MRSA strains lacking STK1 become susceptible to failing cephalosporins, such as Ceftriaxone and Cefotaxime. STK1, despite being nonessential protein for MRSA survival, it can serve as an important therapeutic agent for combination therapy. Here, we report a novel small molecule quinazoline compound, Inh2-B1, which specifically inhibits STK1 activity by directly binding to its ATP-binding catalytic domain. Functional analyses encompassing in vitro growth inhibition of MRSA, and in vivo protection studies in mice against the lethal MRSA challenge indicated that at high concentration neither Inh2-B1 nor Ceftriaxone or Cefotaxime alone was able to inhibit the growth of bacteria or protect the challenged mice. However, the growth of MRSA was inhibited, and a significant protection in mice against the bacterial challenge was observed at a micromolar concentration of Ceftriaxone or Cefotaxime in the presence of Inh2-B1. Cell-dependent minimal to no toxicity of Inh2-B1, and its abilities to down-regulate cell wall hydrolase genes and disrupt the biofilm formation of MRSA clearly indicated that Inh2-B1 serves as a therapeutically important “antibiotic-resistance-breaker,” which enhances the bactericidal activity of Ceftriaxone/Cefotaxime against highly pathogenic MRSA infection.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Shailendra Asthana
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, Haryana, India
| | | | - Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
35
|
Bischoff M, Wonnenberg B, Nippe N, Nyffenegger-Jann NJ, Voss M, Beisswenger C, Sunderkötter C, Molle V, Dinh QT, Lammert F, Bals R, Herrmann M, Somerville GA, Tschernig T, Gaupp R. CcpA Affects Infectivity of Staphylococcus aureus in a Hyperglycemic Environment. Front Cell Infect Microbiol 2017; 7:172. [PMID: 28536677 PMCID: PMC5422431 DOI: 10.3389/fcimb.2017.00172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.
Collapse
Affiliation(s)
- Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Bodo Wonnenberg
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Nadine Nippe
- Institute of Immunology, University of MunsterMunster, Germany
| | - Naja J Nyffenegger-Jann
- Division of Infection Biology, Department of Biomedicine, University Hospital BaselBasel, Switzerland
| | - Meike Voss
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | | | | | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University HospitalHomburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University HospitalHomburg, Germany
| | - Mathias Herrmann
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| | - Greg A Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-LincolnLincoln, NE, USA
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany
| | - Rosmarie Gaupp
- Institute for Medical Microbiology and Hygiene, Saarland UniversityHomburg, Germany
| |
Collapse
|
36
|
Ser/Thr protein kinase PrkC-mediated regulation of GroEL is critical for biofilm formation in Bacillus anthracis. NPJ Biofilms Microbiomes 2017. [PMID: 28649408 PMCID: PMC5460178 DOI: 10.1038/s41522-017-0015-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PrkC is a conserved Ser/Thr protein kinase encoded in Bacillus anthracis genome. PrkC is shown to be important for B. anthracis pathogenesis, but little is known about its other functions and phosphorylated substrates. Systemic analyses indicate the compelling role of PrkC in phosphorylating multiple substrates, including the essential chaperone GroEL. Through mass spectrometry, we identified that PrkC phosphorylates GroEL on six threonine residues that are distributed in three canonical regions. Phosphorylation facilitates the oligomerization of GroEL to the physiologically active tetradecameric state and increases its affinity toward the co-chaperone GroES. Deletion of prkC in B. anthracis abrogates its ability to form biofilm. Overexpression of native GroEL recovers the biofilm-forming ability of prkC deletion strain. Similar overexpression of GroEL phosphorylation site mutants (Thr to Ala) does not augment biofilm formation. Further analyses indicate the phosphorylation of GroEL in diverse bacterial species. Thus, our results suggest that PrkC regulates biofilm formation by modulating the GroEL activity in a phosphorylation-dependent manner. The study deciphers the molecular signaling events that are important for biofilm formation in B. anthracis. An enzyme that adds phosphate groups to other proteins, PrkC, mediates molecular signaling events that allow anthrax bacteria to form biofilms. Bacillus anthracis is widely used as a model to explore the formation of biofilms that allows many bacterial infections to resist immune defenses. An international research team led by Yogendra Singh and Andaleeb Sajid at the CSIR-Institute of Genomics and Integrative Biology in Delhi, India, studied the bacterial protein kinase PrkC. The researchers found that PrkC phosphorylates a “chaperone” protein that assist the assembly and disassembly of other protein-based structures. This signaling protein and the chaperone help in biofilm formation. Establishing this link in the signaling chain leading to biofilms will guide future research to combat the role of biofilms in disease.
Collapse
|
37
|
Galinier A, Deutscher J. Sophisticated Regulation of Transcriptional Factors by the Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. J Mol Biol 2017; 429:773-789. [PMID: 28202392 DOI: 10.1016/j.jmb.2017.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a carbohydrate transport and phosphorylation system present in bacteria of all different phyla and in archaea. It is usually composed of three proteins or protein complexes, enzyme I, HPr, and enzyme II, which are phosphorylated at histidine or cysteine residues. However, in many bacteria, HPr can also be phosphorylated at a serine residue. The PTS not only functions as a carbohydrate transporter but also regulates numerous cellular processes either by phosphorylating its target proteins or by interacting with them in a phosphorylation-dependent manner. The target proteins can be catabolic enzymes, transporters, and signal transduction proteins but are most frequently transcriptional regulators. In this review, we will describe how PTS components interact with or phosphorylate proteins to regulate directly or indirectly the activity of transcriptional repressors, activators, or antiterminators. We will briefly summarize the well-studied mechanism of carbon catabolite repression in firmicutes, where the transcriptional regulator catabolite control protein A needs to interact with seryl-phosphorylated HPr in order to be functional. We will present new results related to transcriptional activators and antiterminators containing specific PTS regulation domains, which are the phosphorylation targets for three different types of PTS components. Moreover, we will discuss how the phosphorylation level of the PTS components precisely regulates the activity of target transcriptional regulators or antiterminators, with or without PTS regulation domain, and how the availability of PTS substrates and thus the metabolic status of the cell are connected with various cellular processes, such as biofilm formation or virulence of certain pathogens.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UPR 9043, CNRS, Aix Marseille Université, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Centre National de la Recherche Scientifique, UMR8261 (affiliated with the Univ. Paris Diderot, Sorbonne, Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
38
|
Hu Q, Peng H, Rao X. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus. Front Microbiol 2016; 7:1601. [PMID: 27790199 PMCID: PMC5062060 DOI: 10.3389/fmicb.2016.01601] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
Vancomycin has been used as the last resort in the clinical treatment of serious Staphylococcus aureus infections. Vancomycin-intermediate S. aureus (VISA) was discovered almost two decades ago. Aside from the vancomycin-intermediate phenotype, VISA strains from the clinic or laboratory exhibited common characteristics, such as thickened cell walls, reduced autolysis, and attenuated virulence. However, the genetic mechanisms responsible for the reduced vancomycin susceptibility in VISA are varied. The comparative genomics of vancomycin-susceptible S. aureus (VSSA)/VISA pairs showed diverse genetic mutations in VISA; only a small number of these mutations have been experimentally verified. To connect the diversified genotypes and common phenotypes in VISA, we reviewed the genetic alterations in the relative determinants, including mutations in the vraTSR, graSR, walKR, stk1/stp1, rpoB, clpP, and cmk genes. Especially, we analyzed the mechanism through which diverse mutations mediate vancomycin resistance. We propose a unified model that integrates diverse gene functions and complex biochemical processes in VISA upon the action of vancomycin.
Collapse
Affiliation(s)
- Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| |
Collapse
|
39
|
Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. J Bacteriol 2016; 198:2043-55. [PMID: 27185828 DOI: 10.1128/jb.00229-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The ability of Staphylococcus aureus to resist host innate immunity augments the severity and pervasiveness of its pathogenesis. Nitric oxide (NO˙) is an innate immune radical that is critical for the efficient clearance of a wide range of microbial pathogens. Exposure of microbes to NO˙ typically results in growth inhibition and induction of stress regulons. S. aureus, however, induces a metabolic state in response to NO˙ that allows for continued replication and precludes stress regulon induction. The regulatory factors mediating this distinctive response remain largely undefined. Here, we employ a targeted transposon screen and transcriptomics to identify and characterize five regulons essential for NO˙ resistance in S. aureus: three virulence regulons not formerly associated with NO˙ resistance, SarA, CodY, and Rot, as well as two regulons with established roles, Fur and SrrAB. We provide new insights into the contributions of Fur and SrrAB during NO˙ stress and show that the S. aureus ΔsarA mutant, the most sensitive of the newly identified mutants, exhibits metabolic dysfunction and widespread transcriptional dysregulation following NO˙ exposure. Altogether, our results broadly characterize the regulatory requirements for NO˙ resistance in S. aureus and suggest an intriguing overlap between the regulation of NO˙ resistance and virulence in this well-adapted human pathogen. IMPORTANCE The prolific human pathogen Staphylococcus aureus is uniquely capable of resisting the antimicrobial radical nitric oxide (NO˙), a crucial component of the innate immune response. However, a complete understanding of how S. aureus regulates an effective response to NO˙ is lacking. Here, we implicate three central virulence regulators, SarA, CodY, and Rot, as major players in the S. aureus NO˙ response. Additionally, we elaborate on the contribution of two regulators, SrrAB and Fur, already known to play a crucial role in S. aureus NO˙ resistance. Our study sheds light on a unique facet of S. aureus pathogenicity and demonstrates that the transcriptional response of S. aureus to NO˙ is highly pleiotropic and intrinsically tied to metabolism and virulence regulation.
Collapse
|
40
|
Stk1-mediated phosphorylation stimulates the DNA-binding properties of the Staphylococcus aureus SpoVG transcriptional factor. Biochem Biophys Res Commun 2016; 473:1223-1228. [DOI: 10.1016/j.bbrc.2016.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/10/2016] [Indexed: 11/17/2022]
|
41
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
42
|
Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA. Biochem Biophys Res Commun 2015; 469:619-25. [PMID: 26679607 DOI: 10.1016/j.bbrc.2015.11.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/22/2022]
Abstract
Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling.
Collapse
|
43
|
Zhu M, Lu Y, Wang J, Li S, Wang X. Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense. PLoS One 2015; 10:e0142121. [PMID: 26540271 PMCID: PMC4634974 DOI: 10.1371/journal.pone.0142121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The strictly anaerobic, Gram-positive bacterium, Thermoanaerobacterium aotearoense SCUT27, is capable of producing ethanol, hydrogen and lactic acid by directly fermenting glucan, xylan and various lignocellulosically derived sugars. By using non-metabolizable and metabolizable sugars as substrates, we found that cellobiose, galactose, arabinose and starch utilization was strongly inhibited by the existence of 2-deoxyglucose (2-DG). However, the xylose and mannose consumptions were not markedly affected by 2-DG at the concentration of one-tenth of the metabolizable sugar. Accordingly, T. aotearoense SCUT27 could consume xylose and mannose in the presence of glucose. The carbon catabolite repression (CCR) related genes, ccpA, ptsH and hprK were confirmed to exist in T. aotearoense SCUT27 through gene cloning and protein characterization. The highly purified Histidine-containing Protein (HPr) could be specifically phosphorylated at Serine 46 by HPr kinase/phosphatase (HPrK/P) with no need to add fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc-6-P) in the reaction mixture. The specific protein-interaction of catabolite control protein A (CcpA) and phosphorylated HPr was proved via affinity chromatography in the absence of formaldehyde. The equilibrium binding constant (KD) of CcpA and HPrSerP was determined as 2.22 ± 0.36 nM by surface plasmon resonance (SPR) analysis, indicating the high affinity between these two proteins.
Collapse
Affiliation(s)
- Muzi Zhu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Yanping Lu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail:
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
45
|
Kalantari A, Derouiche A, Shi L, Mijakovic I. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators. Microbiology (Reading) 2015. [DOI: 10.1099/mic.0.000148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aida Kalantari
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chaire Agro-Biotechnologies Industrielles, AgroParisTech, Reims, France
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
46
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
47
|
Andrey DO, Jousselin A, Villanueva M, Renzoni A, Monod A, Barras C, Rodriguez N, Kelley WL. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus. PLoS One 2015; 10:e0135579. [PMID: 26275216 PMCID: PMC4537247 DOI: 10.1371/journal.pone.0135579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.
Collapse
Affiliation(s)
- Diego O. Andrey
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Ambre Jousselin
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Maite Villanueva
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Antoinette Monod
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Christine Barras
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Natalia Rodriguez
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system. PLoS One 2015; 10:e0119907. [PMID: 25807382 PMCID: PMC4373775 DOI: 10.1371/journal.pone.0119907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.
Collapse
|
49
|
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 2015; 24:47-52. [PMID: 25625314 DOI: 10.1016/j.mib.2015.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/30/2022]
Abstract
This review will discuss some recent work describing the role of Ser/Thr phosphorylation as a post-translational mechanism of regulation in bacteria. I will discuss the interaction between bacterial eukaryotic-like Ser/Thr kinases (eSTKs) and two-component systems as well as hints as to physiological function of eSTKs and their cognate eukaryotic-like phosphatases (eSTPs). In particular, I will highlight the role of eSTKs and eSTPs in the regulation of peptidoglycan metabolism and protein synthesis. In addition, I will discuss how data from phosphoproteomic surveys suggest that Ser/Thr phosphorylation plays a much more significant physiological role than would be predicted simply based on in vivo and in vitro analyses of individual kinases.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
50
|
Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkötter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 2014; 289:29701-11. [PMID: 25193664 DOI: 10.1074/jbc.m114.584979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus.
Collapse
Affiliation(s)
- Torsten Hartmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Grégory Baronian
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Nadine Nippe
- the Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Meike Voss
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Bettina Schulthess
- the Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Christiane Wolz
- the Institute of Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Janina Eisenbeis
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Kerstin Schmidt-Hohagen
- the Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Rosmarie Gaupp
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Cord Sunderkötter
- the Department of Dermatology, University of Münster, 48149 Münster, Germany, and
| | - Christoph Beisswenger
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Robert Bals
- the Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany
| | - Greg A Somerville
- the School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583-0903
| | - Mathias Herrmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France
| | - Markus Bischoff
- From the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany,
| |
Collapse
|