1
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Ollerton MT, Folkvord JM, Peachman KK, Shashikumar S, Morrison EB, Jagodzinski LL, Peel SA, Khreiss M, D’Aquila RT, Casares S, Rao M, Connick E. HIV-1 infected humanized DRAGA mice develop HIV-specific antibodies despite lack of canonical germinal centers in secondary lymphoid tissues. Front Immunol 2022; 13:1047277. [PMID: 36505432 PMCID: PMC9732419 DOI: 10.3389/fimmu.2022.1047277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.
Collapse
Affiliation(s)
| | - Joy M. Folkvord
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kristina K. Peachman
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Elaine B. Morrison
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mohammad Khreiss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Richard T. D’Aquila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth Connick
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Novel Engineered SARS-CoV-2 HR1 Trimer Exhibits Improved Potency and Broad-Spectrum Activity against SARS-CoV-2 and Its Variants. J Virol 2022; 96:e0068122. [PMID: 35735997 PMCID: PMC9278106 DOI: 10.1128/jvi.00681-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has substantially increased the risk to global public health. Multiple vaccines and neutralizing antibodies (nAbs) have been authorized for preventing and treating SARS-CoV-2 infection. However, the emergence and spread of the viral variants may limit the effectiveness of these vaccines and antibodies. Fusion inhibitors targeting the HR1 domain of the viral S protein have been shown to broadly inhibit SARS-CoV-2 and its variants. In theory, peptide inhibitors targeting the HR2 domain of the S protein should also be able to inhibit viral infection. However, previously reported HR1-derived peptide inhibitors targeting the HR2 domain exhibit poor inhibitory activities. Here, we engineered a novel HR1 trimer (HR1MFd) by conjugating the trimerization motif foldon to the C terminus of the HR1-derived peptide. HR1MFd showed significantly improved inhibitory activity against SARS-CoV-2, SARS-CoV-2 variants of concern (VOCs), SARS-CoV, and MERS-CoV. Mechanistically, HR1MFd possesses markedly increased α-helicity, thermostability, higher HR2 domain binding affinity, and better inhibition of S protein-mediated cell-cell fusion compared to the HR1 peptide. Therefore, HR1MFd lays the foundation to develop HR1-based fusion inhibitors against SARS-CoV-2. IMPORTANCE Peptides derived from the SARS-CoV-2 HR1 region are generally poor inhibitors. Here, we constructed a trimeric peptide HR1MFd by fusing the trimerization motif foldon to the C terminus of the HR1 peptide. HR1MFd was highly effective in blocking transductions by SARS-CoV-2, SARS-CoV-2 variants, SARS-CoV, and MERS-CoV pseudoviruses. In comparison with HR1M, HR1MFd adopted a much higher helical conformation, better thermostability, increased affinity to the viral HR2 domain, and better inhibition of S protein-mediated cell-cell fusion. Overall, HR1MFd provides the information to develop effective HR1-derived peptides as fusion inhibitors against SARS-CoV-2 and its variants.
Collapse
|
4
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
5
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
6
|
Joshi VR, Newman RM, Pack ML, Power KA, Munro JB, Okawa K, Madani N, Sodroski JG, Schmidt AG, Allen TM. Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathog 2020; 16:e1008577. [PMID: 32392227 PMCID: PMC7241850 DOI: 10.1371/journal.ppat.1008577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect.
Collapse
Affiliation(s)
- Vinita R. Joshi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruchi M. Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Melissa L. Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ken Okawa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 2019; 145:57-72. [PMID: 29981801 DOI: 10.1016/j.addr.2018.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Subunit vaccines containing one or more target antigens from pathogenic organisms represent safer alternatives to whole pathogen vaccines. However, the antigens by themselves are not sufficiently immunogenic and require additives known as adjuvants to enhance immunogenicity and protective efficacy. Assembly of the antigens into virus-like nanoparticles (VLPs) is a better approach as it allows presentation of the epitopes in a more native context. The repetitive, symmetrical, and high density display of antigens on the VLPs mimic pathogen-associated molecular patterns seen on bacteria and viruses. The antigens, thus, might be better presented to stimulate host's innate as well as adaptive immune systems thereby eliciting both humoral and cellular immune responses. Bacteriophages such as phage T4 provide excellent platforms to generate the nanoparticle vaccines. The T4 capsid containing two non-essential outer proteins Soc and Hoc allow high density array of antigen epitopes in the form of peptides, domains, full-length proteins, or even multi-subunit complexes. Co-delivery of DNAs, targeting molecules, and/or molecular adjuvants provides additional advantages. Recent studies demonstrate that the phage T4 VLPs are highly immunogenic, do not need an adjuvant, and provide complete protection against bacterial and viral pathogens. Thus, phage T4 could potentially be developed as a "universal" VLP platform to design future multivalent vaccines against complex and emerging pathogens.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
8
|
Molecular and Physicochemical Factors Governing Solubility of the HIV gp41 Ectodomain. Biophys J 2017; 111:700-709. [PMID: 27558714 DOI: 10.1016/j.bpj.2016.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/01/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
The HIV gp41 ectodomain (e-gp41) is an attractive target for the development of vaccines and drugs against HIV because of its crucial role in viral fusion to the host cell. However, because of the high insolubility of e-gp41, most biophysical and structural analyses have relied on the production of truncated versions removing the loop region of gp41 or the utilization of nonphysiological solubilizing conditions. The loop region of gp41 is also known as principal immunodominant domain (PID) because of its high immunogenicity, and it is essential for gp41-mediated HIV fusion. In this study we identify the aggregation-prone regions of the amino acid sequence of the PID and engineer a highly soluble mutant that preserves the trimeric structure of the wild-type e-gp41 under physiological pH. Furthermore, using a reverse mutagenesis approach, we analyze the role of mutated amino acids upon the physicochemical factors that govern solubility of e-gp41. On this basis, we propose a molecular model for e-gp41 self-association, which can guide the production of soluble e-gp41 mutants for future biophysical analyses and biotechnological applications.
Collapse
|
9
|
A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity. AIDS 2017; 31:885-894. [PMID: 28121713 DOI: 10.1097/qad.0000000000001415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES During HIV-1 fusion process, the N-terminal heptad repeat (NHR) of the HIV-1 glycoprotein 41 (gp41) interacts with the C-terminal heptad repeat (CHR) to form the fusion active six-helix bundle, thus being an effective target for the design of CHR peptide-based HIV-1 fusion inhibitors. To overcome the limitations of the simplified helix wheel model of six-helix bundle, we herein developed a novel HIV-1 gp41 NHR-CHR-NHR tripartite model for the rational design of HIV-1 fusion inhibitors with improved antiviral activities. DESIGN Based on the crystal structure of six-helix bundle, we evaluated the NHR-binding properties of each residue in CHR. In this new tripartite model, CHR residues were divided into three groups: major binding, nonbinding, and assistant binding sites. METHODS Eight CHR peptides were designed and synthesized to confirm the validity of the tripartite model. Their affinities to NHR and inhibitory activities were analyzed. RESULTS In this tripartite model, replacements in assistant binding sites either increased or decreased the inhibition of HIV-1 infection. We identified three peptides with mutations of the residues in CHR at the assistant binding sites in our tripartite model but nonbinding sites in the helical wheel model. These mutant peptides had anti-HIV-1 activity up to 26-fold more potent than that of C34, a CHR peptide designed on the basis of the helix wheel model. CONCLUSION These data verified the superiority and validity of our new tripartite model for the rational design of HIV-1 fusion inhibitors. This approach can be adapted for designing viral fusion inhibitors against other enveloped viruses with class I membrane fusion protein.
Collapse
|
10
|
Webb S, Nagy T, Moseley H, Fried M, Dutch R. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability. J Biol Chem 2017; 292:5685-5694. [PMID: 28213515 DOI: 10.1074/jbc.m117.777235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Indexed: 12/29/2022] Open
Abstract
Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.
Collapse
Affiliation(s)
- Stacy Webb
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Tamas Nagy
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Hunter Moseley
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Michael Fried
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| | - Rebecca Dutch
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
11
|
A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology 2016; 499:375-382. [PMID: 27750111 PMCID: PMC5167628 DOI: 10.1016/j.virol.2016.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022]
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was first identified in 2012, and it continues to threaten human health worldwide. No MERS vaccines are licensed for human use, reinforcing the urgency to develop safe and efficacious vaccines to prevent MERS. MERS-CoV spike protein forms a trimer, and its receptor-binding domain (RBD) serves as a vaccine target. Nevertheless, the protective efficacy of RBD in its native trimeric form has never been evaluated. In this study, a trimeric protein, RBD-Fd, was generated by fusing RBD with foldon trimerization motif. It bound strongly to the receptor of MERS-CoV, dipeptidyl peptidase 4 (DPP4), and elicited robust RBD-specific neutralizing antibodies in mice, maintaining long-term neutralizing activity against MERS-CoV infection. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge. These results suggest that MERS-CoV RBD in its trimeric form maintains native conformation and induces protective neutralizing antibodies, making it a candidate for further therapeutic development. A trimeric MERS-CoV protein (RBD-Fd) was constructed by fusing viral RBD with foldon trimerization motif. RBD-Fd bound strongly to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and RBD-specific neutralizing antibodies. RBD-Fd induced robust and long-term neutralizing antibodies, cross-neutralizing MERS pseudovirus of divergent strains. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge.
Collapse
|
12
|
Ratnayake PU, Prabodha Ekanayaka EA, Komanduru SS, Weliky DP. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles. Protein Expr Purif 2015; 117:6-16. [PMID: 26297995 DOI: 10.1016/j.pep.2015.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM.
Collapse
Affiliation(s)
- Punsisi U Ratnayake
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - E A Prabodha Ekanayaka
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Sweta S Komanduru
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
13
|
AlSalmi W, Mahalingam M, Ananthaswamy N, Hamlin C, Flores D, Gao G, Rao VB. A New Approach to Produce HIV-1 Envelope Trimers: BOTH CLEAVAGE AND PROPER GLYCOSYLATION ARE ESSENTIAL TO GENERATE AUTHENTIC TRIMERS. J Biol Chem 2015; 290:19780-95. [PMID: 26088135 PMCID: PMC4528139 DOI: 10.1074/jbc.m115.656611] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 12/22/2022] Open
Abstract
The trimeric envelope spike of HIV-1 mediates virus entry into human cells. The exposed part of the trimer, gp140, consists of two noncovalently associated subunits, gp120 and gp41 ectodomain. A recombinant vaccine that mimics the native trimer might elicit entry-blocking antibodies and prevent virus infection. However, preparation of authentic HIV-1 trimers has been challenging. Recently, an affinity column containing the broadly neutralizing antibody 2G12 has been used to capture recombinant gp140 and prepare trimers from clade A BG505 that naturally produces stable trimers. However, this antibody-based approach may not be as effective for the diverse HIV-1 strains with different epitope signatures. Here, we report a new and simple approach to produce HIV-1 envelope trimers. The C terminus of gp140 was attached to Strep-tag II with a long linker separating the tag from the massive trimer base and glycan shield. This allowed capture of nearly homogeneous gp140 directly from the culture medium. Cleaved, uncleaved, and fully or partially glycosylated trimers from different clade viruses were produced. Extensive biochemical characterizations showed that cleavage of gp140 was not essential for trimerization, but it triggered a conformational change that channels trimers into correct glycosylation pathways, generating compact three-blade propeller-shaped trimers. Uncleaved trimers entered aberrant pathways, resulting in hyperglycosylation, nonspecific cross-linking, and conformational heterogeneity. Even the cleaved trimers showed microheterogeneity in gp41 glycosylation. These studies established a broadly applicable HIV-1 trimer production system as well as generating new insights into their assembly and maturation that collectively bear on the HIV-1 vaccine design.
Collapse
Affiliation(s)
- Wadad AlSalmi
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Marthandan Mahalingam
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Neeti Ananthaswamy
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Christopher Hamlin
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Dalia Flores
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Guofen Gao
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| | - Venigalla B Rao
- From the Department of Biology, The Catholic University of America, Washington, D. C. 20064
| |
Collapse
|
14
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Ratnayake PU, Sackett K, Nethercott MJ, Weliky DP. pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:289-98. [PMID: 25078440 PMCID: PMC4258546 DOI: 10.1016/j.bbamem.2014.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022]
Abstract
The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region hypothesized to bind to the host cell membrane followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The present study focuses on the large gp41 ectodomain constructs "Hairpin" (HP) containing NHR+loop+CHR and "FP-Hairpin" (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH4 where the protein is positively-charged but do not induce fusion at pH7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. There are two kinetically distinct fusion processes at pH4: (1) a faster ~100 ms⁻¹ process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms⁻¹ process with extent strongly inversely correlated with this charge. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region between the two membranes. Previous solid-state NMR (SSNMR) of membrane-associated FP-HP has supported protein oligomers with FP's in an intermolecular antiparallel sheet. There was an additional population of molecules with α helical FPs and the samples likely contained a mixture of membrane-bound and -unbound proteins. For the present study, samples were prepared with fully membrane-bound FP-HP and subsequent SSNMR showed dominant β FP conformation at both low and neutral pH. SSNMR also showed close contact of the FP with the lipid headgroups at both low and neutral pH whereas the NHR+CHR regions had contact at low pH and were more distant at neutral pH, consistent with the protein/membrane electrostatics.
Collapse
Affiliation(s)
- Punsisi U Ratnayake
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - Kelly Sackett
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - Matthew J Nethercott
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, 578S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
16
|
Banerjee K, Weliky DP. Folded monomers and hexamers of the ectodomain of the HIV gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region. Biochemistry 2014; 53:7184-98. [PMID: 25372604 PMCID: PMC4245979 DOI: 10.1021/bi501159w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
HIV
is an enveloped virus and fusion between the HIV and host cell
membranes is catalyzed by the ectodomain of the HIV gp41 membrane
protein. Both the N-terminal fusion peptide (FP)
and C-terminal membrane-proximal external region
(MPER) are critical for fusion and are postulated to bind to the host
cell and HIV membranes, respectively. Prior to fusion, the gp41 on
the virion is a trimer in noncovalent complex with larger gp120 subunits.
The gp120 bind host cell receptors and move away or dissociate from
gp41 which subsequently catalyzes fusion. In the present work, large
gp41 ectodomain constructs were produced and biophysically and structurally
characterized. One significant finding is observation of synergy between
the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced
fusion can be very efficient with only ∼15 gp41 per vesicle,
which is comparable to the number of gp41 on a virion. Conditions
are found with predominant monomer or hexamer but not trimer and these
may be oligomeric states during fusion. Monomer gp41 ectodomain is
hyperthermostable and has helical hairpin structure. A new HIV fusion
model is presented where (1) hemifusion is catalyzed by folding of
gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps
are catalyzed by assembly into a hexamer with FPs in an antiparallel
β sheet. There is also significant interest in the gp41 MPER
because it is the epitope of several broadly neutralizing antibodies.
Two of these antibodies bind our gp41 ectodomain constructs and support
investigation of the gp41 ectodomain as an immunogen in HIV vaccine
development.
Collapse
Affiliation(s)
- Koyeli Banerjee
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | |
Collapse
|
17
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Younai FS. Thirty years of the human immunodeficiency virus epidemic and beyond. Int J Oral Sci 2013; 5:191-9. [PMID: 24136672 PMCID: PMC3967318 DOI: 10.1038/ijos.2013.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
After more than 30 years of battling a global epidemic, the prospect of eliminating human immunodeficiency virus (HIV) as the most challenging infectious disease of the modern era is within our reach. Major scientific discoveries about the virus responsible for this immunodeficiency disease state, including its pathogenesis, transmission patterns and clinical course, have led to the development of potent antiretroviral drugs that offer great hopes in HIV treatment and prevention. Although these agents and many others still in development and testing are capable of effectively suppressing viral replication and survival, the medical management of HIV infection at the individual and the population levels remains challenging. Timely initiation of antiretroviral drugs, adherence to the appropriate therapeutic regimens, effective use of these agents in the pre and post-exposure prophylaxis contexts, treatment of comorbid conditions and addressing social and psychological factors involved in the care of individuals continue to be important considerations.
Collapse
|