1
|
Pei L, Li Y, Gu H, Wang S, Wu W, Fan S, Shi X, Si X. Identification of SMC2 and SMC4 as prognostic markers in breast cancer through bioinformatics analysis. Clin Transl Oncol 2024; 26:2952-2965. [PMID: 38773061 DOI: 10.1007/s12094-024-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Breast cancer (BRCA) is one of the most common malignant tumors. The structural maintenance of chromosome (SMC) gene family has been shown to play an important role in human cancers. However, the role of SMC families in BRCA is unclear. This study aimed to explore the role and potential clinical value of whole SMCs in BRCA. METHODS TIMER and UALCAN database were used to analysis the expression level. Genetic variations were analyzed by cBioPortal. Promoter methylation and protein level were analyzed by UCLCAN. GO and KEGG were analyzed by Metascape database. Prognostic value of SMCs was analyzed by Kaplan-Meier and multivariate cox regression analyses. Immune infiltration analysis was conducted by CIBERSORT. Immunotherapy outcome prediction was conducted by Cancer Immunome Atlas. Targeted drug therapy outcome prediction was taken by GDSC and R language. The cell viability was tested by CCK8 and migration was tested by wound healing assay. Xenograft model was used to investigate the in vivo role of SMC2. RESULTS Expression levels of SMC1A, SMC2, SMC4, SMC5 and SMC6 mRNA were increased in BRCA tissues, and negatively correlated with promoter methylation. Overexpression of SMC2 and SMC4 was negatively correlated with survival. Function of SMCs family regulatory genes was mainly related to ATPase activity. Expression of most SMCs was negatively correlated with immunotherapy and drug therapy outcomes. Interfere SMC2 and SMC4 decreased IC50 values of 5-fluorouracil and oxaliplatin and inhibited the migration of MCF7 cells. Tumor growth and weights were significantly decreased in si-SMC2 groups. CONCLUSIONS Combined bioinformatics and clinical specimen analysis verified SMC2 and SMC4 as independent prognostic factors in BRCA, suggesting their significance for the diagnosis and treatment of BRCA.
Collapse
Affiliation(s)
- Lili Pei
- Department of Basic Medical Science, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yu Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hao Gu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Siqi Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenhao Wu
- Department of Basic Medical Science, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Siyi Fan
- Department of Basic Medical Science, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Kobayashi G, Ichikawa T, Okamura T, Matsuyama T, Hamaguchi M, Okamoto H, Okumura N, Fukui M. A Study of Small Intestinal Epigenomic Changes Induced by Royal Jelly. Cells 2024; 13:1419. [PMID: 39272991 PMCID: PMC11393943 DOI: 10.3390/cells13171419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study explores the impact of royal jelly (RJ) on small intestinal epigenomic changes. RJ, produced by honeybees, is known for its effects on metabolic diseases. The hypothesis is that RJ induces epigenomic modifications in small intestinal epithelial cells, affecting gene expression and contributing to metabolic health. Male db/m and db/db mice were used to examine RJ's effects through mRNA sequencing and CUT&Tag methods. This study focused on histone modifications and gene expression changes, with statistical significance set at p < 0.05. RJ administration improved insulin sensitivity and lipid metabolism without affecting body weight. GO and KEGG pathway analyses showed significant enrichment in metabolic processes, cellular components, and molecular functions. RJ altered histone modifications, increasing H3K27me3 and decreasing H3K23Ac in genes associated with the G2M checkpoint. These genes, including Smc2, Mcm3, Ccnd1, Rasal2, Mcm6, and Mad2l1, are linked to cancer progression and metabolic regulation. RJ induces beneficial epigenomic changes in small intestinal epithelial cells, improving metabolic health and reducing cancer-associated gene expression. These findings highlight RJ's potential as a therapeutic agent for metabolic disorders. Further research is needed to fully understand the mechanisms behind these effects and their implications for human health.
Collapse
Affiliation(s)
- Genki Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Tomoyuki Matsuyama
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| | - Hideto Okamoto
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Nobuaki Okumura
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan; (H.O.); (N.O.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (G.K.); (T.I.); (T.M.); (M.H.); (M.F.)
| |
Collapse
|
3
|
Xu K, Qiao JY, Zhao BW, Dong MZ, Lei WL, Li YY, Ju Z, Schatten H, Wang ZB, Liu K, Sun QY. Maternal SMC2 is essential for embryonic development via participating chromosome condensation in mice. J Cell Physiol 2023; 238:2535-2545. [PMID: 37642322 DOI: 10.1002/jcp.31102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
During the oocyte growth, maturation and zygote development, chromatin structure keeps changing to regulate different nuclear activities. Here, we reported the role of SMC2, a core component of condensin complex, in oocyte and embryo development. Oocyte-specific conditional knockout of SMC2 caused female infertility. In the absence of SMC2, oocyte meiotic maturation and ovulation occurred normally, but chromosome condensation showed defects and DNA damages were accumulated in oocytes. The pronuclei were abnormally organized and micronuclei were frequently observed in fertilized eggs, their activity was impaired, and embryo development was arrested at the one-cell stage, suggesting that maternal SMC2 is essential for embryonic development.
Collapse
Affiliation(s)
- Ke Xu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Guangdong, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Guangdong, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
4
|
Stoltze UK, Hildonen M, Hansen TVO, Foss-Skiftesvik J, Byrjalsen A, Lundsgaard M, Pignata L, Grønskov K, Tumer Z, Schmiegelow K, Brok JS, Wadt KAW. Germline (epi)genetics reveals high predisposition in females: a 5-year, nationwide, prospective Wilms tumour cohort. J Med Genet 2023; 60:842-849. [PMID: 37019617 PMCID: PMC10447365 DOI: 10.1136/jmg-2022-108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Studies suggest that Wilms tumours (WT) are caused by underlying genetic (5%-10%) and epigenetic (2%-29%) mechanisms, yet studies covering both aspects are sparse. METHODS We performed prospective whole-genome sequencing of germline DNA in Danish children diagnosed with WT from 2016 to 2021, and linked genotypes to deep phenotypes. RESULTS Of 24 patients (58% female), 3 (13%, all female) harboured pathogenic germline variants in WT risk genes (FBXW7, WT1 and REST). Only one patient had a family history of WT (3 cases), segregating with the REST variant. Epigenetic testing revealed one (4%) additional patient (female) with uniparental disomy of chromosome 11 and Beckwith-Wiedemann syndrome (BWS). We observed a tendency of higher methylation of the BWS-related imprinting centre 1 in patients with WT than in healthy controls. Three patients (13%, all female) with bilateral tumours and/or features of BWS had higher birth weights (4780 g vs 3575 g; p=0.002). We observed more patients with macrosomia (>4250 g, n=5, all female) than expected (OR 9.98 (95% CI 2.56 to 34.66)). Genes involved in early kidney development were enriched in our constrained gene analysis, including both known (WT1, FBXW7) and candidate (CTNND1, FRMD4A) WT predisposition genes. WT predisposing variants, BWS and/or macrosomia (n=8, all female) were more common in female patients than male patients (p=0.01). CONCLUSION We find that most females (57%) and 33% of all patients with WT had either a genetic or another indicator of WT predisposition. This emphasises the need for scrutiny when diagnosing patients with WT, as early detection of underlying predisposition may impact treatment, follow-up and genetic counselling.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | - Mathis Hildonen
- Department of Genetics, Kennedy Center-National Research Center on Rare Genetic Diseases, Glostrup, Denmark
| | | | | | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Laura Pignata
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Zeynep Tumer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Jesper Sune Brok
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Piemonte KM, Webb BM, Bobbitt JR, Majmudar PR, Cuellar-Vite L, Bryson BL, Latina NC, Seachrist DD, Keri RA. Disruption of CDK7 signaling leads to catastrophic chromosomal instability coupled with a loss of condensin-mediated chromatin compaction. J Biol Chem 2023; 299:104834. [PMID: 37201585 PMCID: PMC10300262 DOI: 10.1016/j.jbc.2023.104834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jessica R Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Bryson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas C Latina
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
6
|
Liu Y, Kramer JR, Sandulache VC, Yu R, Li G, Chen L, Yusuf ZI, Shi Y, Pyarajan S, Tsavachidis S, Jiao L, Mierzwa ML, Chiao E, Mowery YM, Shuman A, Shete S, Sikora AG, White DL. Immunogenetic Determinants of Susceptibility to Head and Neck Cancer in the Million Veteran Program Cohort. Cancer Res 2023; 83:386-397. [PMID: 36378845 PMCID: PMC9896026 DOI: 10.1158/0008-5472.can-22-1641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Increasing rates of human papillomavirus (HPV)-driven oropharyngeal cancer (OPC) have largely offset declines in tobacco-associated head and neck squamous cell carcinoma (HNSCC) at non-OPC sites. Host immunity is an important modulator of HPV infection, persistence, and clearance, and also of immune evasion in both virally- and nonvirally-driven cancers. However, the association between collective known cancer-related immune gene variants and HNSCC susceptibility has not been fully characterized. Here, we conducted a genetic association study in the multiethnic Veterans Affairs Million Veteran Program cohort, evaluating 16,050 variants in 1,576 immune genes in 4,012 HNSCC cases (OPC = 1,823; non-OPC = 2,189) and 16,048 matched controls. Significant polymorphisms were further examined in a non-Hispanic white (NHW) validation cohort (OPC = 1,206; non-OPC = 955; controls = 4,507). For overall HNSCC susceptibility in NHWs, we discovered and validated a novel 9q31.1 SMC2 association and replicated the known 6p21.32 HLA-DQ-DR association. Six loci/genes for overall HNSCC susceptibility were selectively enriched in African-Americans (6p21.32 HLA-G, 9q21.33 GAS1, 11q12.2 CD6, 11q23.2 NCAM1/CD56, 17p13.1 CD68, 18q22.2 SOCS6); all 6 genes function in antigen-presenting regulation and T-cell activation. Two additional loci (10q26 DMBT1, 15q22.2 TPM1) were uncovered for non-OPC susceptibility, and three loci (11q24 CRTAM, 16q21 CDH5, 18q12.1 CDH2) were identified for HPV-positive OPC susceptibility. This study underscores the role of immune gene variants in modulating susceptibility for both HPV-driven and non-HPV-driven HNSCC. Additional large studies, particularly in racially diverse populations, are needed to further validate the associations and to help elucidate other potential immune factors and mechanisms that may underlie HNSCC risk. SIGNIFICANCE Several inherited variations in immune system genes are significantly associated with susceptibility to head and neck cancer, which could help improve personalized cancer risk estimates.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Veterans Affairs (VA) Health Services Research & Development Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Jennifer R. Kramer
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Veterans Affairs (VA) Health Services Research & Development Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Vlad C. Sandulache
- ENT Section, Operative Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas
- Bobby R. Alford Department of Otolaryngology‐Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
- Center for Translational Research in Inflammatory Disease (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Robert Yu
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Veterans Affairs (VA) Health Services Research & Development Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Zenab I. Yusuf
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Veterans Affairs (VA) Health Services Research & Development Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Yunling Shi
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, Massachusetts
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, Massachusetts
| | | | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Elizabeth Chiao
- Departments of Epidemiology and General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yvonne M. Mowery
- Departments of Radiation Oncology and Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina
| | - Andrew Shuman
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
- Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan
| | - Sanjay Shete
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna L. White
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Veterans Affairs (VA) Health Services Research & Development Center of Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey VA Medical Center, Houston, Texas
- Center for Translational Research in Inflammatory Disease (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| |
Collapse
|
7
|
Yan W, Wang DD, Zhang HD, Huang J, Hou JC, Yang SJ, Zhang J, Lu L, Zhang Q. Expression profile and prognostic values of SMC family members in HCC. Medicine (Baltimore) 2022; 101:e31336. [PMID: 36281130 PMCID: PMC9592487 DOI: 10.1097/md.0000000000031336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The structural maintenance of chromosome (SMC) gene family, including 6 proteins, is involved in a wide range of biological functions in different human cancers. Nevertheless, there is little research on the expression patterns, potential functions and prognostic value of SMC genes in hepatocellular carcinoma (HCC). Based on publicly available databases and integrative bioinformatics analysis, we tried to determine the value of SMC gene expression in predicting the risk of developing HCC. METHODS The expression and copy number variations data of SMC family members were obtained from TCGA (The Cancer Genome Atlas). We identified the prognostic values of SMC family members and their clinical features. GSEA (Gene Set Enrichment Analysis) was conducted to detect the mechanism underlying the involvement of SMC family members in liver cancer. We used Tumor Immune Estimation Resource database to explore the associations between TIICs (Tumor Immune Infiltrating Cells) and the SMC family members. RESULTS Our analysis proved that downregulation of SMC family members was common modification in HCC patients. In HCC, the expression of SMC1A, SMC2, SMC3, SMC4, SMC6 were upregulated. Upregulation of SMC2, SMC3, and SMC4, along with the clinical stage of HCC, were associated with a poor prognosis according to the results of univariate and multivariate Cox proportional hazards regression analysis. SMC2, SMC3, and SMC4 are also related to tumor purity and immune infiltration levels of HCC. The GSEA results proved that SMC family members take part in numerous biological processes underlying tumorigenesis. CONCLUSION In this study, we comprehensively analyzed the expression of SMC family members in patients with HCC. This can provide insights for further investigation of the SMC members as potential therapeutic targets in HCC and suggest that the use of SMC inhibitor targeting SMC2, SMC3, and SMC4 can be a practical strategy for the therapy of HCC.
Collapse
Affiliation(s)
- Wei Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - He-Da Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinny Huang
- Department of Surgery, the Johns Hopkins University, Baltimore, MD, USA
| | - Jun-Chen Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical, University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qian Zhang, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China (e-mail: )
| |
Collapse
|
8
|
Munro MJ, Wickremesekera SK, Tan ST, Peng L. Proteomic analysis of low- and high-grade human colon adenocarcinoma tissues and tissue-derived primary cell lines reveals unique biological functions of tumours and new protein biomarker candidates. Clin Proteomics 2022; 19:27. [PMID: 35842572 PMCID: PMC9287856 DOI: 10.1186/s12014-022-09364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease. Methods Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting. Results A total of 4767 proteins were identified across all tissues, and 4711 across primary tissue-derived cell lines. Of these, 3302 proteins were detected in both the tissues and the cell lines. On average, primary cell lines shared about 70% of proteins with their parent tissue, and they retained mutations to key colon adenocarcinoma-related genes and did not diverge far genetically from their parent tissues. Colon adenocarcinoma tissues displayed upregulation of RNA processing, steroid biosynthesis and detoxification, and downregulation of cytoskeletal organisation and loss of normal muscle function. Tissue-derived cell lines exhibited increased interferon-gamma signalling and aberrant ferroptosis. Overall, 318 proteins were significantly up-regulated and 362 proteins significantly down-regulated by comparisons of high-grade with low-grade tumours and low-grade tumour with normal colon tissues from both sample types. Conclusions The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers: ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09364-y.
Collapse
Affiliation(s)
- Matthew J Munro
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.,Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand.,Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, 6021, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, PO Box 7184, Wellington, 6242, New Zealand. .,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand. .,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia.
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
9
|
Wang H, Chen Y, Yang D, Ma L. Perspective of Human Condensins Involved in Colorectal Cancer. Front Pharmacol 2021; 12:664982. [PMID: 34557090 PMCID: PMC8453263 DOI: 10.3389/fphar.2021.664982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Although many important roles are played by human condesins in condensation and segregation of mitotic chromosomes, what roles of human condensins play in colorectal cancer are still unclear at present. Recently, abnormal expressions of all eight subunits of human condensins have been found in colorectal cancer and they are expected to become potential biomarkers and therapeutic targets for colorectal cancer in the future. However, there are still no reviews on the significance of abnormal expression of human condensin subunits and colorectal cancer until now. Based on a brief introduction to the discovery and composition of human condensins, the review summarized all abnormally expressed human subunits found in colorectal cancer based on publicly published papers. Moreover, Perspective of application on abnormally expressed human subunits in colorectal cancer is further reviewed.
Collapse
Affiliation(s)
- Hongzhen Wang
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Yao Chen
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Dawei Yang
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| | - Liang Ma
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| |
Collapse
|
10
|
Wang W, Jiang Z, Zhang D, Fu L, Wan R, Hong K. Comparative Transcriptional Analysis of Pulmonary Arterial Hypertension Associated With Three Different Diseases. Front Cell Dev Biol 2021; 9:672159. [PMID: 34336829 PMCID: PMC8319719 DOI: 10.3389/fcell.2021.672159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disorder with high mortality. Multiple clinical diseases can induce PAH, but the underlying molecular mechanisms shared in PAHs associated with different diseases remain unclear. The aim of this study is to explore the key candidate genes and pathways in PAH associated with congenital heart disease (CHD-PAH), PAH associated with connective tissue disease (CTD-PAH), and idiopathic PAH (IPAH). We performed differential expression analysis based on a public microarray dataset GSE113439 and identified 1,442 differentially expressed genes, of which 80.3% were upregulated. Subsequently, both pathway enrichment analysis and protein–protein interaction network analysis revealed that the “Cell cycle” and “DNA damage” processes were significantly enriched in PAH. The expression of seven upregulated candidate genes (EIF2AK2, TOPBP1, CDC5L, DHX15, and CUL1–3) and three downregulated candidate genes (DLL4, EGFL7, and ACE) were validated by qRT-PCR. Furthermore, cell cycle-related genes Cul1 and Cul2 were identified in pulmonary arterial endothelial cells (PAECs) in vitro. The result revealed an increased expression of Cul2 in PAECs after hypoxic treatment. Silencing Cul2 could inhibit overproliferation and migration of PAECs in hypoxia. Taken together, according to bioinformatic analyses, our work revealed that “Cell cycle” and “DNA damage” process-related genes and pathways were significantly dysregulated expressed in PAHs associated with three different diseases. This commonality in molecular discovery might broaden the genetic perspective and understanding of PAH. Besides, silencing Cul2 showed a protective effect in PAECs in hypoxia. The results may provide new treatment targets in multiple diseases induced by PAH.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghua Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Zhang Z, Liang ZC, Liang XY, Zhang QH, Wang YJ, Zhang JH, De Liu S. Physarum polycephalum macroplasmodium exhibits countermeasures against TiO 2 nanoparticle toxicity: A physiological, biochemical, transcriptional, and metabolic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116936. [PMID: 33773179 DOI: 10.1016/j.envpol.2021.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Concerns about the environmental and human health implications of TiO2 nanoparticles (nTiO2) are growing with their increased use in consumer and industrial products. Investigations of the underlying molecular mechanisms of nTiO2 tolerance in organisms will assist in countering nTiO2 toxicity. In this study, the countermeasures exhibited by the slime mold Physarum polycephalum macroplasmodium against nTiO2 toxicity were investigated from a physiological, transcriptional, and metabolic perspective. The results suggested that the countermeasures against nTiO2 exposure include gene-associated metabolic rearrangements in cellular pathways involved in amino acid, carbohydrate, and nucleic acid metabolism. Gene-associated nonmetabolic rearrangements involve processes such as DNA repair, DNA replication, and the cell cycle, and occur mainly when macroplasmodia are exposed to inhibitory doses of nTiO2. Interestingly, the growth of macroplasmodia and mammal cells was significantly restored by supplementation with a combination of responsive metabolites identified by metabolome analysis. Taken together, we report a novel model organism for the study of nTiO2 tolerance and provide insights into countermeasures taken by macroplasmodia in response to nTiO2 toxicity. Furthermore, we also present an approach to mitigate the effects of nTiO2 toxicity in cells by metabolic intervention.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhi Cheng Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiu Yi Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qing Hai Zhang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ya Jie Wang
- School of Food Science/School of Public Health/the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Jian Hua Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shi De Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Identification of novel biomarkers involved in pulmonary arterial hypertension based on multiple-microarray analysis. Biosci Rep 2021; 40:226338. [PMID: 32886110 PMCID: PMC7494994 DOI: 10.1042/bsr20202346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disorder. However, studies providing PAH-related gene expression profiles are scarce. To identify hub genes involved in PAH, we investigate two microarray data sets from gene expression omnibus (GEO). A total of 150 differentially expressed genes (DEGs) were identified by limma package. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included mitotic nuclear division, ATPase activity, and Herpes simplex virus one infection. Ten hub genes from three significant modules were ascertained by Cytoscape (CytoHubba). Gene set enrichment analysis (GSEA) plots showed that transcription elongation factor complex was the most significantly enriched gene set positively correlated with the PAH group. At the same time, solute proton symporter activity was the most significantly enriched gene set positively correlated with the control group. Correlation analysis between hub genes suggested that SMC4, TOP2A, SMC2, KIF11, KIF23, ANLN, ARHGAP11A, SMC3, SMC6 and RAD50 may involve in the pathogenesis of PAH. Then, the miRNA-target genes regulation network was performed to unveil the underlying complex association among them. Finally, RNA extracted from monocrotaline (MCT)-induced Rat-PAH model lung artery tissues were to conduct quantitative real-time PCR (qRT-PCR) to validate these hub genes. In conclusion, our study offers new evidence for the underlying molecular mechanisms of PAH as well as attractive targets for diagnosis and treatment of PAH.
Collapse
|
13
|
Retinal Genomic Fabric Remodeling after Optic Nerve Injury. Genes (Basel) 2021; 12:genes12030403. [PMID: 33799827 PMCID: PMC7999523 DOI: 10.3390/genes12030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and analyzed the data from the genomic fabric paradigm (GFP) to bring additional insights into the molecular mechanisms of the retinal remodeling after induction of RGC degeneration. GFP considers three independent characteristics for the expression of each gene: level, variability, and correlation with each other gene. Thus, the 17,657 quantified genes in our study generated a total of 155,911,310 values to analyze. This represents 8830x more data per condition than a traditional transcriptomic analysis. ONC led to a 57% reduction in RGC numbers as detected by retrograde labeling with 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI). We observed a higher relative expression variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Predicted protein-protein interaction (PPI) analysis with STRING revealed axon and neuron projection as mostly decreased processes, consistent with RGC degeneration. Conversely, immune response PPIs were found among upregulated genes. Enrichment analysis showed that complement cascade and Notch signaling pathway, as well as oxidative stress and kit receptor pathway were affected after ONC. To expand our studies of altered molecular pathways, we examined the pairwise coordination of gene expressions within each pathway and within the entire transcriptome using Pearson correlations. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles mainly in complement cascade and Notch signaling pathway. This deep bioinformatic study provided novel insights beyond the regulation of individual gene expression and disclosed changes in the control of expression of complement cascade and Notch signaling functional pathways that may be relevant for both RGC degeneration and remodeling of the retinal tissue after ONC.
Collapse
|
14
|
Zhou J, Wu G, Tong Z, Sun J, Su J, Cao Z, Luo Y, Wang W. Prognostic relevance of SMC family gene expression in human sarcoma. Aging (Albany NY) 2020; 13:1473-1487. [PMID: 33460400 PMCID: PMC7835044 DOI: 10.18632/aging.202455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
Objective: To explore the prognostic value of the expression of genes encoding structural maintenance of chromosomes (SMCs) in human sarcoma. Results: We found that the levels of SMC1A, SMC2, SMC3, SMC4, SMC5 and SMC6 mRNA were all higher in most tumors compared to normal tissues, and especially in sarcoma. According to the Cancer Cell Line Encyclopedia (CCLE), SMC1A, SMC2, SMC3, SMC4, SMC5 and SMC6 are also highly expressed in sarcoma cell lines. Results of Gene Expression Profiling Interactive Analysis (GEPIA) indicated that high expression of SMC1A was significantly related to poor overall survival (OS) (p<0.05) and disease-free survival (DFS) in sarcoma (p<0.05). Additionally, strong expression of SMC2 was significantly related to poor OS in sarcoma (p<0.05). In contrast, SMC3, SMC4, SMC5, and SMC6 expression had no significant impact on OS or DFS in sarcoma. Conclusions: Expression of SMC family members is significantly different in sarcoma relative to normal tissues, and SMC1A and SMC2 may be useful as prognostic biomarkers. Methods: We performed a detailed comparison of cancer and normal tissues regarding the expression levels of mRNA for SMC family members in various cancers including sarcoma through ONCOMINE and GEPIA (Gene Expression Profile Interactive Analysis) databases.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.,Clinical Medicine Eight-year Program, 02 Class, 2014 Grade, Central South University, Changsha 410013, Hunan Province, China
| | - Zhongyi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jingjing Sun
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Jing Su
- The Center for Medical Genetics, School of Life Science, Central South University, Changsha 410008, China
| | - Ziqin Cao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
15
|
Weyburne E, Bosco G. Cancer-associated mutations in the condensin II subunit CAPH2 cause genomic instability through telomere dysfunction and anaphase chromosome bridges. J Cell Physiol 2020; 236:3579-3598. [PMID: 33078399 PMCID: PMC7983937 DOI: 10.1002/jcp.30113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
Abstract
Genome instability in cancer drives tumor heterogeneity, undermines the success of therapies, and leads to metastasis and recurrence. Condensins are conserved chromatin‐binding proteins that promote genomic stability, mainly by ensuring proper condensation of chromatin and mitotic chromosome segregation. Condensin mutations are found in human tumors, but it is not known how or even if such mutations promote cancer progression. In this study, we focus on condensin II subunit CAPH2 and specific CAPH2 mutations reported to be enriched in human cancer patients, and we test how CAPH2 cancer‐specific mutations may lead to condensin II complex dysfunction and contribute to genome instability. We find that R551P, R551S, and S556F mutations in CAPH2 cause genomic instability by causing DNA damage, anaphase defects, micronuclei, and chromosomal instability. DNA damage and anaphase defects are caused primarily by ataxia telangiectasia and Rad3‐related‐dependent telomere dysfunction, as anaphase bridges are enriched for telomeric repeat sequences. We also show that these mutations decrease the binding of CAPH2 to the ATPase subunit SMC4 as well as the rest of the condensin II complex, and decrease the amount of CAPH2 protein bound to chromatin. Thus, in vivo the R551P, R551S, and S556F cancer‐specific CAPH2 mutant proteins are likely to impair condensin II complex formation, impede condensin II activity during mitosis and interphase, and promote genetic heterogeneity in cell populations that can lead to clonal outgrowth of cancer cells with highly diverse genotypes.
Collapse
Affiliation(s)
- Emily Weyburne
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
16
|
Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, Zhang M, Song L, Chung CC, Zhang T, Xiao W, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt S, Borgida A, Bracci PM, Brais L, Brennan P, Bueno-de-Mesquita B, Buring J, Canzian F, Childs EJ, Cotterchio M, Du M, Duell EJ, Fuchs C, Gallinger S, Gaziano JM, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Haiman C, Hartge P, Hasan M, Helzlsouer KJ, Holly EA, Klein EA, Kogevinas M, Kurtz RJ, LeMarchand L, Malats N, Männistö S, Milne R, Neale RE, Ng K, Obazee O, Oberg AL, Orlow I, Patel AV, Peters U, Porta M, Rothman N, Scelo G, Sesso HD, Severi G, Sieri S, Silverman D, Sund M, Tjønneland A, Thornquist MD, Tobias GS, Trichopoulou A, Van Den Eeden SK, Visvanathan K, Wactawski-Wende J, Wentzensen N, White E, Yu H, Yuan C, Zeleniuch-Jacquotte A, Hoover R, Brown K, Kooperberg C, Risch HA, Jacobs EJ, Li D, Yu K, Shu XO, Chanock SJ, Wolpin BM, Stolzenberg-Solomon RZ, Chatterjee N, Klein AP, Smith JP, Kraft P, Shi J, Petersen GM, Zheng W, Amundadottir LT. A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. J Natl Cancer Inst 2020; 112:1003-1012. [PMID: 31917448 PMCID: PMC7566474 DOI: 10.1093/jnci/djz246] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenming Xiao
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, CA, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain
| | | | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - J Michael Gaziano
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Roger Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer, Lyon, France
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Hellenic Health Foundation, Athens, Greece
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Li Q, Meng L, Liu D. Screening and Identification of Therapeutic Targets for Pulmonary Arterial Hypertension Through Microarray Technology. Front Genet 2020; 11:782. [PMID: 32849793 PMCID: PMC7396553 DOI: 10.3389/fgene.2020.00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by vascular cell proliferation; the pathogenesis of PAH has yet to be fully elucidated. Publicly available genetic data were downloaded from the Gene Expression Omnibus (GEO) database, and gene set enrichment analysis (GSEA) was used to determine significant differences in gene expression between tissues with PAH and healthy lung tissues. Differentially expressed genes (DEGs) were identified using the online tool, GEO2R, and functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Next, the construction and module analysis of the protein–protein interaction (PPI) network and verification of the expression level of hub genes was performed. Finally, prediction and enrichment analysis of microRNAs associated with the hub genes was carried out. A total of 110 DEGs were detected by screening PAH and healthy lung samples. The expression of nine genes [polo-like kinase 4 (PLK4), centromere protein U, kinesin family member 20B, structural maintenance of chromosome 2 (SMC2), abnormal spindle microtubule assembly, Fanconi Anemia complementation group I, kinesin family member 18A, spindle apparatus coiled-coil protein 1, and MIS18 binding protein 1] was elevated in PAH; this was statistically significant compared with their expression in healthy lung tissue, and they were identified as hub genes. GO and KEGG analysis showed that the variations in DEGs were abundant in DNA-templated transcription, sister chromatid cohesion, mitotic nuclear division, cell proliferation, and regulation of the actin cytoskeleton. In conclusion, this study has successfully identified hub genes and key pathways of PAH, with a total of 110 DEGs and nine hub genes related to PAH, especially the PLK4 and SMC2 genes, thus providing important clues for the in-depth understanding of the molecular mechanism of PAH and providing potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - LingBing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Departments of Cardiology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - DePing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Luo J, Li H, Liu Z, Li C, Wang R, Fang J, Lu S, Guo J, Zhu X, Wang X. Integrative analyses of gene expression profile reveal potential crucial roles of mitotic cell cycle and microtubule cytoskeleton in pulmonary artery hypertension. BMC Med Genomics 2020; 13:86. [PMID: 32586319 PMCID: PMC7318763 DOI: 10.1186/s12920-020-00740-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 06/15/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a life-threatening condition. The aim of this study was to explore potential crucial genes and pathways associated with PAH based on integrative analyses of gene expression and to shed light on the identification of biomarker for PAH. METHODS Gene expression profile of pulmonary tissues from 27 PAH patients and 22 normal controls were downloaded from public database (GSE53408 and GSE113439). After the identification of differentially expressed genes (DEGs), hub pathways and genes were identified based on the comprehensive evaluation of protein-protein interaction (PPI) network analysis, modular analysis and cytohubba's analysis, and further validated in another PAH transcriptomic dataset (GSE33463). Potentially associated micro-RNAs (miRNAs) were also predicted. RESULTS A total of 521 DEGs were found between PAH and normal controls, including 432 up-regulated DEGs and 89 down-regulated DEGs. Functional enrichment analysis showed that these DEGs were mainly enriched in mitotic cell cycle process, mitotic cell cycle and microtubule cytoskeleton organization. Moreover, five key genes (CDK1, SMC2, SMC4, KIF23, and CENPE) were identified and then further validated in another transcriptomic dataset associated with special phenotypes of PAH. Furthermore, these hub genes were mainly enriched in promoting mitotic cell cycle process, which may be closely associated with the pathogenesis of PAH. We also found that the predicted miRNAs targeting these hub genes were found to be enriched in TGF-β and Hippo signaling pathway. CONCLUSION These findings are expected to gain a further insight into the development of PAH and provide a promising index for the detection of PAH.
Collapse
Affiliation(s)
- Jing Luo
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Haiyan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenlu Li
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruochen Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinxia Fang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Guo
- College of psychologic medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Yeh SJ, Chen SW, Chen BS. Investigation of the Genome-Wide Genetic and Epigenetic Networks for Drug Discovery Based on Systems Biology Approaches in Colorectal Cancer. Front Genet 2020; 11:117. [PMID: 32211020 PMCID: PMC7068214 DOI: 10.3389/fgene.2020.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. The mechanisms leading to the progression of CRC are involved in both genetic and epigenetic regulations. In this study, we applied systems biology methods to identify potential biomarkers and conduct drug discovery in a computational approach. Using big database mining, we constructed a candidate protein-protein interaction network and a candidate gene regulatory network, combining them into a genome-wide genetic and epigenetic network (GWGEN). With the assistance of system identification and model selection approaches, we obtain real GWGENs for early-stage, mid-stage, and late-stage CRC. Subsequently, we extracted core GWGENs for each stage of CRC from their real GWGENs through a principal network projection method, and projected them to the Kyoto Encyclopedia of Genes and Genomes pathways for further analysis. Finally, we compared these core pathways resulting in different molecular mechanisms in each stage of CRC and identified carcinogenic biomarkers for the design of multiple-molecule drugs to prevent the progression of CRC. Based on the identified gene expression signatures, we suggested potential compounds combined with known CRC drugs to prevent the progression of CRC with querying Connectivity Map (CMap).
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Shuo-Wei Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Intracellular Delivery of Anti-SMC2 Antibodies against Cancer Stem Cells. Pharmaceutics 2020; 12:pharmaceutics12020185. [PMID: 32098204 PMCID: PMC7076674 DOI: 10.3390/pharmaceutics12020185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
Structural maintenance of chromosomes protein 2 (SMC2) is a central component of the condensin complex involved in DNA supercoiling, an essential process for embryonic stem cell survival. SMC2 over-expression has been related with tumorigenesis and cancer malignancy and its inhibition is regarded as a potential therapeutic strategy even though no drugs are currently available. Here, we propose to inhibit SMC2 by intracellular delivery of specific antibodies against the SMC2 protein. This strategy aims to reduce cancer malignancy by targeting cancer stem cells (CSC), the tumoral subpopulation responsible of tumor recurrence and metastasis. In order to prevent degradation and improve cellular internalization, anti-SMC2 antibodies (Ab-SMC2) were delivered by polymeric micelles (PM) based on Pluronic® F127 amphiphilic polymers. Importantly, scaffolding the Ab-SMC2 onto nanoparticles allowed its cellular internalization and highly increased its efficacy in terms of cytotoxicity and inhibition of tumorsphere formation in MDA-MB-231 and HCT116 breast and colon cancer cell lines, respectively. Moreover, in the case of the HCT116 cell line G1, cell-cycle arrest was also observed. In contrast, no effects from free Ab-SMC2 were detected in any case. Further, combination therapy of anti-SMC2 micelles with paclitaxel (PTX) and 5-Fluorouracil (5-FU) was also explored. For this, PTX and 5-FU were respectively loaded into an anti-SMC2 decorated PM. The efficacy of both encapsulated drugs was higher than their free forms in both the HCT116 and MDA-MB-231 cell lines. Remarkably, micelles loaded with Ab-SMC2 and PTX showed the highest efficacy in terms of inhibition of tumorsphere formation in HCT116 cells. Accordingly, our data clearly suggest an effective intracellular release of antibodies targeting SMC2 in these cell models and, further, strong cytotoxicity against CSC, alone and in combined treatments with Standard-of-Care drugs.
Collapse
|
21
|
Kim JH, Youn Y, Kim KT, Jang G, Hwang JH. Non-SMC condensin I complex subunit H mediates mature chromosome condensation and DNA damage in pancreatic cancer cells. Sci Rep 2019; 9:17889. [PMID: 31784646 PMCID: PMC6884527 DOI: 10.1038/s41598-019-54478-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Non-SMC condensin I complex subunit H (NCAPH) is a vital gene associated with chromosome stability and is required for proper chromosome condensation and segregation. However, the mechanisms through which NCAPH affects pancreatic cancer (PC) and its molecular function remain unclear. In this study, we examined the role of NCAPH in PC cells. Our results showed that NCAPH was overexpressed in clinical PC specimens (GEPIA) and cell lines. In addition, in NCAPH-knockdown cells, colony formation and proliferation were inhibited, and the cell cycle was arrested at the S and G2/M phases owing to failure of mature chromosome condensation (MCC) in poorly condensed chromosomes. Increased cell death in NCAPH-knockdown cells was found to help initiate apoptosis through the activation of caspase-3 and PARP cleavage. Furthermore, NCAPH-knockdown cells showed an increase in chromosomal aberrations and DNA damage via activation of the DNA damage response (Chk1/Chk2) signaling pathways. These data demonstrated that NCAPH played an important role in cell cycle progression and DNA damage by maintaining chromosomal stability through progression of MCC from poorly condensed chromosomes. Ultimately, NCAPH knockdown induced apoptotic cell death, which was partially mediated by caspase-dependent pathways. These findings highlight the potential role of NCAPH as a therapeutic target for PC.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Kyung-Tae Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Gyubeom Jang
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Feng Y, Liu H, Duan B, Liu Z, Abbruzzese J, Walsh KM, Zhang X, Wei Q. Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis 2019; 40:521-528. [PMID: 30794721 PMCID: PMC6556704 DOI: 10.1093/carcin/bgz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The AURORA pathway participates in mitosis and cell division, and alterations in mitosis and cell division can lead to carcinogenesis. Therefore, genetic variants in the AURORA pathway genes may be associated with susceptibility to pancreatic cancer. To test this hypothesis, we used three large publically available pancreatic cancer genome-wide association study (GWAS) datasets (PanScan I, II/III and PanC4) to assess the associations of 7168 single nucleotide polymorphisms (SNPs) in a set of 62 genes of this pathway with pancreatic cancer risk in 8477 cases and 6946 controls of European ancestry. We identify 15 significant pancreatic cancer risk-associated SNPs in three genes (SMC2, ARHGEF7 and TP53) after correction for multiple comparisons by a false discovery rate < 0.20. Through further linkage disequilibrium analysis, SNP functional prediction and stepwise logistic regression analysis, we focused on three SNPs: rs3818626 in SMC2, rs79447092 in ARHGEF7 and rs9895829 in TP53. We found that these three SNPs were associated with pancreatic cancer risk [odds ratio (OR) = 1.12, 95% confidence interval (CI) = 1.07-1.17 and P = 2.20E-06 for the rs3818626 C allele; OR = 0.76, CI = 0.66-0.88 and P = 1.46E-04 for the rs79447092 A allele and OR = 0.82, CI = 0.74-0.91 and P = 1.51E-04 for the rs9895829 G allele]. Their joint effect as the number of protective genotypes also showed a significant association with pancreatic cancer risk (trend test P ≤ 0.001). Finally, we performed an expression quantitative trait loci analysis and found that rs3818626 and rs9895829 were significantly associated with SMC2 and TP53 messenger RNA expression levels in 373 lymphoblastoid cell lines, respectively. In conclusion, these three representative SNPs may be potentially susceptibility loci for pancreatic cancer and warrant additional validation.
Collapse
Affiliation(s)
- Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Bensong Duan
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Gastroenterology, Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - James Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Xuefeng Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc Natl Acad Sci U S A 2018; 115:E4236-E4244. [PMID: 29666270 DOI: 10.1073/pnas.1722020115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a major risk factor for colorectal cancer. The p38/MAPKAP Kinase 2 (MK2) kinase axis controls the synthesis of proinflammatory cytokines that mediate both chronic inflammation and tumor progression. Blockade of this pathway has been previously reported to suppress inflammation and to prevent colorectal tumorigenesis in a mouse model of inflammation-driven colorectal cancer, by mechanisms that are still unclear. Here, using whole-animal and tissue-specific MK2 KO mice, we show that MK2 activity in the myeloid compartment promotes tumor progression by supporting tumor neoangiogenesis in vivo. Mechanistically, we demonstrate that MK2 promotes polarization of tumor-associated macrophages into protumorigenic, proangiogenic M2-like macrophages. We further confirmed our results in human cell lines, where MK2 chemical inhibition in macrophages impairs M2 polarization and M2 macrophage-induced angiogenesis. Together, this study provides a molecular and cellular mechanism for the protumorigenic function of MK2.
Collapse
|
24
|
A multi-step transcriptional cascade underlies vascular regeneration in vivo. Sci Rep 2018; 8:5430. [PMID: 29615716 PMCID: PMC5882937 DOI: 10.1038/s41598-018-23653-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
The molecular mechanisms underlying vascular regeneration and repair are largely unknown. To gain insight into this process, we developed a method of intima denudation, characterized the progression of endothelial healing, and performed transcriptome analysis over time. Next-generation RNA sequencing (RNAseq) provided a quantitative and unbiased gene expression profile during in vivo regeneration following denudation injury. Our data indicate that shortly after injury, cells immediately adjacent to the wound mount a robust and rapid response with upregulation of genes like Jun, Fos, Myc, as well as cell adhesion genes. This was quickly followed by a wave of proliferative genes. After completion of endothelial healing a vigorous array of extracellular matrix transcripts were upregulated. Gene ontology enrichment and protein network analysis were used to identify transcriptional profiles over time. Further data mining revealed four distinct stages of regeneration: shock, proliferation, acclimation, and maturation. The transcriptional signature of those stages provides insight into the regenerative machinery responsible for arterial repair under normal physiologic conditions.
Collapse
|
25
|
Wang HZ, Yang SH, Li GY, Cao X. Subunits of human condensins are potential therapeutic targets for cancers. Cell Div 2018; 13:2. [PMID: 29467813 PMCID: PMC5819170 DOI: 10.1186/s13008-018-0035-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
The main role of condensins is to regulate chromosome condensation and segregation during cell cycles. Recently, it has been suggested in the literatures that subunits of condensin I and condensin II are involved in some human cancers. This paper will first briefly discuss discoveries of human condensins, their components and structures, and their multiple cellular functions. This will be followed by reviews of most recent studies on subunits of human condensins and their dysregulations or mutations in human cancers. It can be concluded that many of these subunits have potentials to be novel targets for cancer therapies. However, hCAP-D2, a subunit of human condensin I, has not been directly documented to be associated with any human cancers to date. This review hypothesizes that hCAP-D2 can also be a potential therapeutic target for human cancers, and therefore that all subunits of human condensins are potential therapeutic targets for human cancers.
Collapse
Affiliation(s)
- Hong-Zhen Wang
- 1School of Life Sciences, Jilin Normal University, Siping, 136000 P. R. China.,2Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 P. R. China.,3Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, K1N 6N5 Canada
| | - Si-Han Yang
- 1School of Life Sciences, Jilin Normal University, Siping, 136000 P. R. China
| | - Gui-Ying Li
- 2Key Laboratory for Molecular Enzymology and Engineering of The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012 P. R. China
| | - Xudong Cao
- 3Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, K1N 6N5 Canada
| |
Collapse
|
26
|
Howard-Till R, Loidl J. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila. Mol Biol Cell 2017; 29:466-478. [PMID: 29237819 PMCID: PMC6014175 DOI: 10.1091/mbc.e17-07-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
Condensin is a protein complex with diverse functions in chromatin packaging and chromosome condensation and segregation. We studied condensin in the evolutionarily distant protist model Tetrahymena, which features noncanonical nuclear organization and divisions. In Tetrahymena, the germline and soma are partitioned into two different nuclei within a single cell. Consistent with their functional specializations in sexual reproduction and gene expression, condensins of the germline nucleus and the polyploid somatic nucleus are composed of different subunits. Mitosis and meiosis of the germline nucleus and amitotic division of the somatic nucleus are all dependent on condensins. In condensin-depleted cells, a chromosome condensation defect was most striking at meiotic metaphase, when Tetrahymena chromosomes are normally most densely packaged. Live imaging of meiotic divisions in condensin-depleted cells showed repeated nuclear stretching and contraction as the chromosomes failed to separate. Condensin depletion also fundamentally altered chromosome arrangement in the polyploid somatic nucleus: multiple copies of homologous chromosomes tended to cluster, consistent with a previous model of condensin suppressing default somatic pairing. We propose that failure to form discrete chromosome territories is the common cause of the defects observed in the absence of condensins.
Collapse
Affiliation(s)
- Rachel Howard-Till
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, 1190 Vienna, Austria
| |
Collapse
|
27
|
Xu Y, Zhou T, Shao L, Zhang B, Liu K, Gao C, Gao L, Liu J, Cui Y, Chian RC. Gene expression profiles in mouse cumulus cells derived from in vitro matured oocytes with and without blastocyst formation. Gene Expr Patterns 2017; 25-26:46-58. [DOI: 10.1016/j.gep.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
28
|
Kagami Y, Yoshida K. The functional role for condensin in the regulation of chromosomal organization during the cell cycle. Cell Mol Life Sci 2016; 73:4591-4598. [PMID: 27402120 PMCID: PMC11108269 DOI: 10.1007/s00018-016-2305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.
Collapse
Affiliation(s)
- Yuya Kagami
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
29
|
Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai ZS, Lawrenson K, Lindstrom S, Ramus SJ, Thompson DJ, Kibel AS, Dansonka-Mieszkowska A, Michael A, Dieffenbach AK, Gentry-Maharaj A, Whittemore AS, Wolk A, Monteiro A, Peixoto A, Kierzek A, Cox A, Rudolph A, Gonzalez-Neira A, Wu AH, Lindblom A, Swerdlow A, Ziogas A, Ekici AB, Burwinkel B, Karlan BY, Nordestgaard BG, Blomqvist C, Phelan C, McLean C, Pearce CL, Vachon C, Cybulski C, Slavov C, Stegmaier C, Maier C, Ambrosone CB, Høgdall CK, Teerlink CC, Kang D, Tessier DC, Schaid DJ, Stram DO, Cramer DW, Neal DE, Eccles D, Flesch-Janys D, Edwards DRV, Wokozorczyk D, Levine DA, Yannoukakos D, Sawyer EJ, Bandera EV, Poole EM, Goode EL, Khusnutdinova E, Høgdall E, Song F, Bruinsma F, Heitz F, Modugno F, Hamdy FC, Wiklund F, Giles GG, Olsson H, Wildiers H, Ulmer HU, Pandha H, Risch HA, Darabi H, Salvesen HB, Nevanlinna H, Gronberg H, Brenner H, Brauch H, Anton-Culver H, Song H, Lim HY, McNeish I, Campbell I, Vergote I, Gronwald J, Lubiński J, Stanford JL, Benítez J, Doherty JA, Permuth JB, Chang-Claude J, Donovan JL, Dennis J, Schildkraut JM, Schleutker J, Hopper JL, Kupryjanczyk J, Park JY, Figueroa J, Clements JA, Knight JA, Peto J, Cunningham JM, Pow-Sang J, Batra J, Czene K, Lu KH, Herkommer K, Khaw KT, Matsuo K, Muir K, Offitt K, Chen K, Moysich KB, Aittomäki K, Odunsi K, Kiemeney LA, Massuger LFAG, Fitzgerald LM, Cook LS, Cannon-Albright L, Hooning MJ, Pike MC, Bolla MK, Luedeke M, Teixeira MR, Goodman MT, Schmidt MK, Riggan M, Aly M, Rossing MA, Beckmann MW, Moisse M, Sanderson M, Southey MC, Jones M, Lush M, Hildebrandt MAT, Hou MF, Schoemaker MJ, Garcia-Closas M, Bogdanova N, Rahman N, Le ND, Orr N, Wentzensen N, Pashayan N, Peterlongo P, Guénel P, Brennan P, Paulo P, Webb PM, Broberg P, Fasching PA, Devilee P, Wang Q, Cai Q, Li Q, Kaneva R, Butzow R, Kopperud RK, Schmutzler RK, Stephenson RA, MacInnis RJ, Hoover RN, Winqvist R, Ness R, Milne RL, Travis RC, Benlloch S, Olson SH, McDonnell SK, Tworoger SS, Maia S, Berndt S, Lee SC, Teo SH, Thibodeau SN, Bojesen SE, Gapstur SM, Kjær SK, Pejovic T, Tammela TLJ, Dörk T, Brüning T, Wahlfors T, Key TJ, Edwards TL, Menon U, Hamann U, Mitev V, Kosma VM, Setiawan VW, Kristensen V, Arndt V, Vogel W, Zheng W, Sieh W, Blot WJ, Kluzniak W, Shu XO, Gao YT, Schumacher F, Freedman ML, Berchuck A, Dunning AM, Simard J, Haiman CA, Spurdle A, Sellers TA, Hunter DJ, Henderson BE, Kraft P, Chanock SJ, Couch FJ, Hall P, Gayther SA, Easton DF, Chenevix-Trench G, Eeles R, Pharoah PDP, Lambrechts D. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov 2016; 6:1052-67. [PMID: 27432226 PMCID: PMC5010513 DOI: 10.1158/2159-8290.cd-15-1227] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.
Collapse
Affiliation(s)
- Siddhartha P Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Jonathan Beesley
- Department of Genetics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Susan J Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Diagnostics, the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | - Aida K Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Alicja Wolk
- Karolinska Institutet, Department of Environmental Medicine, Division of Nutritional Epidemiology, Stockholm, Sweden
| | - Alvaro Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Gonzalez-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Spanish National Genotyping Center (CEGEN), Madrid, Spain
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Argyrios Ziogas
- Department of Epidemiology, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, University of California, Irvine, Irvine, California
| | - Arif B Ekici
- University Hospital Erlangen, Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Catherine Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Celine Vachon
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Chavdar Slavov
- Department of Urology, Alexandrovska University Hospital, Medical University, Sofia, Bulgaria
| | | | | | | | - Claus K Høgdall
- The Juliane Marie Centre, Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Craig C Teerlink
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Daehee Kang
- Cancer Research Institute, Seoul National University, Seoul, Korea. Departments of Preventive Medicine and Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Daniel C Tessier
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | | | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, Massachusetts
| | - David E Neal
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Dieter Flesch-Janys
- University Medical Center Hamburg-Eppendorf, Institute of Occupational Medicine and Maritime Medicine and Institute for Medical Biometrics and Epidemiology, Hamburg, Germany
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dominika Wokozorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, New Jersey
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
| | - Elza Khusnutdinova
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia. Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte/Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania. Women's Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK. Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia. Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Håkan Olsson
- Departments of Cancer Epidemiology and Oncology, University Hospital, Lund, Sweden
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | | | | | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Helga B Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hiltrud Brauch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany. University of Tübingen, Tübingen, Germany
| | - Hoda Anton-Culver
- Department of Epidemiology, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, University of California, Irvine, Irvine, California
| | - Honglin Song
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hui-Yi Lim
- Biostatistics Program, Moffitt Cancer Center, Tampa, Florida
| | - Iain McNeish
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow, UK
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ignace Vergote
- Department of Gynaecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Janet L Stanford
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| | - Javier Benítez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Spanish National Genotyping Center (CEGEN), Madrid, Spain
| | - Jennifer A Doherty
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny L Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Control and Population Sciences, Duke Cancer Institute, Durham, North Carolina
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics Institute of Biomedicine, University of Turku, Turku, Finland. BioMediTech, University of Tampere and FimLab Laboratories, Tampere, Finland
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Judith A Clements
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada. Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julio Pow-Sang
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Karen H Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen Herkommer
- Department of Urology, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Science, Nagoya, Aichi, Japan
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, UK. Warwick Medical School, University of Warwick, Coventry, UK
| | - Kenneth Offitt
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York. Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kunle Odunsi
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Lambertus A Kiemeney
- Radboud University Medical Centre, Radbond Institute for Health Sciences, Nijmegen, the Netherlands
| | - Leon F A G Massuger
- Department of Gynaecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Linda S Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Lisa Cannon-Albright
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manuel Luedeke
- Department of Urology, University Hospital Ulm, Ulm, Germany
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal. Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, and Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Marjorie Riggan
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. Department of Clinical Sciences, Danderyds Hospital, Stockholm, Sweden
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, Tennessee
| | - Melissa C Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Bogdanova
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nazneen Rahman
- Section of Cancer Genetics, The Institute of Cancer Research, London, UK
| | - Nhu D Le
- Cancer Control Research, British Columbia Cancer Agency, Vancouver, Canada
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK. Department of Applied Health Research, University College London, London, UK
| | | | - Pascal Guénel
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France. University Paris-Sud, Villejuif, France
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Paula Paulo
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Per Broberg
- Department of Cancer Epidemiology, University Hospital, Lund, Sweden
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Peter Devilee
- Departments of Human Genetics and of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qiyuan Li
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts. Medical College of Xiamen University, Xiamen, China
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, Bulgaria
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland. Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Reidun Kristin Kopperud
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rita K Schmutzler
- Center for Integrated Oncology (CIO) and Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany. Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Robert A Stephenson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Robert J MacInnis
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer Research and Translational Medicine, Biocenter Oulu, University of Oulu, and Northern Finland Laboratory Centre, Oulu, Finland
| | - Roberta Ness
- The University of Texas School of Public Health, Houston, Texas
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sara Benlloch
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Shelley S Tworoger
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Sofia Maia
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soo Chin Lee
- Department of Hematology-Oncology, National University Health System, Singapore. Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia. University of Malaya Cancer Research Institute, University Malaya Medical Centre, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Susanne Krüger Kjær
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Tiina Wahlfors
- Department of Medical Biochemistry and Genetics Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tim J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Todd L Edwards
- Vanderbilt Epidemiology Center, Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
| | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Ute Hamann
- Frauenklinik der Stadtklinik Baden-Baden, Baden-Baden, Germany
| | - Vanio Mitev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, Bulgaria
| | - Veli-Matti Kosma
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland. Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway. K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walther Vogel
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Weiva Sieh
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - William J Blot
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wojciech Kluzniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Shanghai, P.R. China
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Amanda Spurdle
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Georgia Chenevix-Trench
- Department of Genetics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rosalind Eeles
- The Institute of Cancer Research, Sutton, UK. Royal Marsden National Health Service (NHS) Foundation Trust, London and Sutton, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
30
|
Palaniappan A, Ramar K, Ramalingam S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS One 2016; 11:e0156665. [PMID: 27243824 PMCID: PMC4887059 DOI: 10.1371/journal.pone.0156665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
- * E-mail:
| | - Karthick Ramar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
31
|
Pryzhkova MV, Jordan PW. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J Cell Sci 2016; 129:1619-34. [PMID: 26919979 PMCID: PMC4852767 DOI: 10.1242/jcs.179036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Nishide K, Hirano T. Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLoS Genet 2014; 10:e1004847. [PMID: 25474630 PMCID: PMC4256295 DOI: 10.1371/journal.pgen.1004847] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022] Open
Abstract
During development of the cerebral cortex, neural stem cells (NSCs) divide symmetrically to proliferate and asymmetrically to generate neurons. Although faithful segregation of mitotic chromosomes is critical for NSC divisions, its fundamental mechanism remains unclear. A class of evolutionarily conserved protein complexes, known as condensins, is thought to be central to chromosome assembly and segregation among eukaryotes. Here we report the first comprehensive genetic study of mammalian condensins, demonstrating that two different types of condensin complexes (condensins I and II) are both essential for NSC divisions and survival in mice. Simultaneous depletion of both condensins leads to severe defects in chromosome assembly and segregation, which in turn cause DNA damage and trigger p53-induced apoptosis. Individual depletions of condensins I and II lead to slower loss of NSCs compared to simultaneous depletion, but they display distinct mitotic defects: chromosome missegregation was observed more prominently in NSCs depleted of condensin II, whereas mitotic delays were detectable only in condensin I-depleted NSCs. Remarkably, NSCs depleted of condensin II display hyperclustering of pericentric heterochromatin and nucleoli, indicating that condensin II, but not condensin I, plays a critical role in establishing interphase nuclear architecture. Intriguingly, these defects are taken over to postmitotic neurons. Our results demonstrate that condensins I and II have overlapping and non-overlapping functions in NSCs, and also provide evolutionary insight into intricate balancing acts of the two condensin complexes.
Collapse
Affiliation(s)
- Kenji Nishide
- Chromosome Dynamics Laboratory, RIKEN, Hirosawa, Wako, Saitama, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Hirosawa, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
33
|
George CM, Bozler J, Nguyen HQ, Bosco G. Condensins are Required for Maintenance of Nuclear Architecture. Cells 2014; 3:865-82. [PMID: 25153163 PMCID: PMC4197639 DOI: 10.3390/cells3030865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/20/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
The 3-dimensional spatial organization of eukaryotic genomes is important for regulation of gene expression as well as DNA damage repair. It has been proposed that one basic biophysical property of all nuclei is that interphase chromatin must be kept in a condensed prestressed state in order to prevent entropic pressure of the DNA polymer from expanding and disrupting the nuclear envelope. Although many factors can contribute to specific organizational states to compact chromatin, the mechanisms through which such interphase chromatin compaction is maintained are not clearly understood. Condensin proteins are known to exert compaction forces on chromosomes in anticipation of mitosis, but it is not known whether condensins also function to maintain interphase prestressed chromatin states. Here we show that RNAi depletion of the N-CAP-H2, N-CAP-D3 and SMC2 subunits of human condensin II leads to dramatic disruption of nuclear architecture and nuclear size. This is consistent with the idea that condensin mediated chromatin compaction contributes significantly to the prestressed condensed state of the interphase nucleus, and when such compaction forces are disrupted nuclear size and shape change due to chromatin expansion.
Collapse
Affiliation(s)
- Carolyn M George
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Julianna Bozler
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Huy Q Nguyen
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Giovanni Bosco
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
34
|
Maslon MM, Heras SR, Bellora N, Eyras E, Cáceres JF. The translational landscape of the splicing factor SRSF1 and its role in mitosis. eLife 2014; 3:e02028. [PMID: 24842991 PMCID: PMC4027812 DOI: 10.7554/elife.02028] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
The shuttling Serine/Arginine rich (SR) protein SRSF1 (previously known as SF2/ASF) is a splicing regulator that also activates translation in the cytoplasm. In order to dissect the gene network that is translationally regulated by SRSF1, we performed a high-throughput deep sequencing analysis of polysomal fractions in cells overexpressing SRSF1. We identified approximately 1,500 mRNAs that are translational targets of SRSF1. These include mRNAs encoding proteins involved in cell cycle regulation, such as spindle, kinetochore and M phase proteins, which are essential for accurate chromosome segregation. Indeed, we show that translational activity of SRSF1 is required for normal mitotic progression. Furthermore, we found that mRNAs that display alternative splicing changes upon SRSF1 overexpression are also its translational targets; strongly suggesting that SRSF1 couples pre-mRNA splicing and translation. These data provide insights on the complex role of SRSF1 in the control of gene expression at multiple levels and its implications in cancer.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara R Heras
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Nicolas Bellora
- Computational Genomics Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduardo Eyras
- Computational Genomics Group, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Dowen JM, Young RA. SMC complexes link gene expression and genome architecture. Curr Opin Genet Dev 2014; 25:131-7. [PMID: 24794701 PMCID: PMC4045092 DOI: 10.1016/j.gde.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/15/2022]
Abstract
The structural maintenance of chromosomes (SMC) complexes are associated with transcriptional enhancers, promoters and insulators, where they contribute to the control of gene expression and genome structure. We review here recent insights into the interlinked roles of SMC complexes in gene expression and genome architecture. Among these, we note evidence that SMC complexes play important roles in the regulation of genes that control cell identity. We conclude by reviewing diseases associated with SMC mutations.
Collapse
Affiliation(s)
- Jill M Dowen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, United States
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
36
|
Murakami-Tonami Y, Kishida S, Takeuchi I, Katou Y, Maris JM, Ichikawa H, Kondo Y, Sekido Y, Shirahige K, Murakami H, Kadomatsu K. Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells. Cell Cycle 2014; 13:1115-31. [PMID: 24553121 PMCID: PMC4013162 DOI: 10.4161/cc.27983] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The condensin complex is required for chromosome condensation during mitosis; however, the role of this complex during interphase is unclear. Neuroblastoma is the most common extracranial solid tumor of childhood, and it is often lethal. In human neuroblastoma, MYCN gene amplification is correlated with poor prognosis. This study demonstrates that the gene encoding the condensin complex subunit SMC2 is transcriptionally regulated by MYCN. SMC2 also transcriptionally regulates DNA damage response genes in cooperation with MYCN. Downregulation of SMC2 induced DNA damage and showed a synergistic lethal response in MYCN-amplified/overexpression cells, leading to apoptosis in human neuroblastoma cells. Finally, this study found that patients bearing MYCN-amplified tumors showed improved survival when SMC2 expression was low. These results identify novel functions of SMC2 in DNA damage response, and we propose that SMC2 (or the condensin complex) is a novel molecular target for the treatment of MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Yuko Murakami-Tonami
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| | - Satoshi Kishida
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| | - Ichiro Takeuchi
- Department of Computer Science/Scientific and Engineering Simulation; Nagoya Institute of Technology; Nagoya, Japan
| | - Yuki Katou
- Laboratory of Genome Structure & Function; Institute of Molecular and Cellular Biosciences; The University of Tokyo; Tokyo, Japan
| | - John M Maris
- Department of Pediatrics and Center for Childhood Cancer Research; Children's Hospital of Philadelphia; University of Pennsylvania; Philadelphia, PA USA
| | | | - Yutaka Kondo
- Division of Molecular Oncology; Aichi Cancer Center Research Institute; Nagoya, Japan; Division of Epigenomics; Aichi Cancer Center Research Institute; Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology; Aichi Cancer Center Research Institute; Nagoya, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure & Function; Institute of Molecular and Cellular Biosciences; The University of Tokyo; Tokyo, Japan
| | - Hiroshi Murakami
- Department of Biological Science; Faculty of Science and Engineering; Chuo University; Tokyo, Japan
| | - Kenji Kadomatsu
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
37
|
Je EM, Yoo NJ, Lee SH. Mutational and expressional analysis of SMC2 gene in gastric and colorectal cancers with microsatellite instability. APMIS 2014; 122:499-504. [PMID: 24483990 DOI: 10.1111/apm.12193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
Structural maintenance of chromosomes 2 (SMC2) gene encodes condensin complexes that are required for proper chromosome segregation and maintenance of chromosomal stability. Although cells with defective chromosome segregation become aneuploid and are prone to harbor chromosome instability, pathologic implications of SMC2 gene alterations are largely unknown. In a public database, we found that SMC2 gene had mononucleotide repeats that could be mutated in cancers with microsatellite instability (MSI). In this study, we analyzed these repeats in 32 gastric cancers (GC) with high MSI (MSI-H), 59 GC with low MSI (MSI-L)/stable MSI (MSS), 43 colorectal cancers (CRC) with MSI-H and 60 CRC with MSI-L/MSS by single-strand conformation polymorphism (SSCP) and DNA sequencing. We also analyzed SMC2 protein expression in GC and CRC tissues using immunohistochemistry. We found SMC2 frameshift mutations in two GC and two CRC that would result in truncation of SMC2. The mutations were detected exclusively in MSI-H cancers, but not in MSI-L/MSS cancers. Loss of SMC2 expression was observed in 22% of GC and 25% of CRC. Of note, all of the cancers with SMC2 frameshift mutations displayed loss of SMC2 expression. Also, both GC and CRC with MSI-H had significantly higher incidences in SMC2 frameshift mutations and loss of SMC2 expression than those with MSI-L/MSS. Our data indicate that SMC2 gene is altered by both frameshift mutation and loss of expression in GC and CRC with MSI-H, and suggest that SMC2 gene alterations might be involved in pathogenesis of these cancers.
Collapse
Affiliation(s)
- Eun Mi Je
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
38
|
Cohen-Zinder M, Zinder-Cohen M, Karasik D, Onn I. Structural maintenance of chromosome complexes and bone development: the beginning of a wonderful relationship? BONEKEY REPORTS 2013; 2:388. [PMID: 24422108 DOI: 10.1038/bonekey.2013.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Abstract
Bone development depends on environmental, nutritional and hormonal factors. Yet, an ordered and timed activation of genes and their associated molecular pathways are central for the growth and development of healthy bones. The correct expression of genes depends on both cis- and trans-regulatory elements. Of these, the elusive role of chromatin ultrastructure is just beginning to become appreciated. Changes in the higher-order structure of chromatin are affecting the expression of genes in response to intrinsic and environmental signals. Cohesin and condensin are members of the structural maintenance of chromosome (SMC) family of protein complexes, which mediate higher-order chromatin structure by tethering distinct regions of chromatin either inter- or intra-molecularly. In recent years, SMCs had been identified for their function in the regulation of gene expression and developmental processes, whereas malfunction of cohesin or condensin has an impact on human health. However, little is known about the specific roles of SMC complexes in bone development and their possible effect on bone health. Here, we review studies that suggest an intimate link between SMCs and bone development, as well as a plausible effect, direct or indirect, on the bone health. We describe genetic syndromes associated with SMCs with distinctive bone phenotypes and identify links between SMCs and bone-related molecular pathways. Future studies of the relationship between SMCs and bone development will reveal new understandings of both the cellular and molecular roles of SMC complexes and provide new insights into the growth and developmental processes in the bone.
Collapse
Affiliation(s)
| | - Miri Zinder-Cohen
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel ; Hebrew SeniorLife, Harvard Medical School , Boston, MA, USA
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| |
Collapse
|
39
|
Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front Oncol 2013; 3:164. [PMID: 23825799 PMCID: PMC3695391 DOI: 10.3389/fonc.2013.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN.
Collapse
Affiliation(s)
- Bernardo Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , Hanover, NH , USA ; The Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth , Hanover, NH , USA
| | | |
Collapse
|