1
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front Mol Biosci 2023; 10:1208059. [PMID: 37377863 PMCID: PMC10291066 DOI: 10.3389/fmolb.2023.1208059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The most obvious manifestation of amyloidoses is the accumulation of amyloid fibrils as plaques in tissues and organs, which always leads to a noticeable deterioration in the patients' condition and is the main marker of the disease. For this reason, early diagnosis of amyloidosis is difficult, and inhibition of fibrillogenesis, when mature amyloids are already accumulated in large quantities, is ineffective. A new direction for amyloidosis treatment is the development of approaches aimed at the degradation of mature amyloid fibrils. In the present work, we investigated possible consequences of amyloid's degradation. Methods: We analyzed the size and morphology of amyloid degradation products by transmission and confocal laser scanning microscopy, their secondary structure and spectral properties of aromatic amino acids, intrinsic chromophore sfGFP, and fibril-bound amyloid-specific probe thioflavin T (ThT) by the absorption, fluorescence and circular dichroism spectroscopy, as well as the cytotoxicity of the formed protein aggregates by MTT-test and their resistance to ionic detergents and boiling by SDS-PAGE. Results: On the example of sfGFP fibrils (model fibrils, structural rearrangements of which can be detected by a specific change in the spectral properties of their chromophore), and pathological Aβ-peptide (Aβ42) fibrils, leading to neuronal death in Alzheimer's disease, the possible mechanisms of amyloids degradation after exposure to factors of different nature (proteins with chaperone and protease activity, denaturant, and ultrasound) was demonstrated. Our study shows that, regardless of the method of fibril degradation, the resulting species retain some amyloid's properties, including cytotoxicity, which may even be higher than that of intact amyloids. Conclusion: The results of our work indicate that the degradation of amyloid fibrils in vivo should be treated with caution since such an approach can lead not to recovery, but to aggravation of the disease.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Laboratory of cell morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Hunashal Y, Percipalle M, Molnár T, Kardos J, Percipalle P, Esposito G. Approaching Protein Aggregation and Structural Dynamics by Equilibrium and Nonequilibrium Paramagnetic Perturbation. Anal Chem 2022; 94:10949-10958. [PMID: 35877130 DOI: 10.1021/acs.analchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a μs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Dipartimento di Area Medica, Universita' di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Mathias Percipalle
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Chemistry and Magnetic Resonance Center, University of Florence, 50019 Florence, Italy
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Jòzsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Molecular Bioscience, The Wenner Gren Institute Stockholm University, Stockholm SE-106 91, Sweden
| | - Gennaro Esposito
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,INBB, Viale Medaglie d'Oro 305, Roma 00136, Italy
| |
Collapse
|
3
|
Xu Z, Gong Y, Wan J, Tang J, Zhang Q. Trends in HSPB5 research: a 36-year bibliometric analysis. Cell Stress Chaperones 2021; 26:799-810. [PMID: 34235603 PMCID: PMC8492881 DOI: 10.1007/s12192-021-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
HSPB5 (heat shock protein B5), also known as αB-crystallin, is one of the most widespread and populous of the ten human small heat shock proteins (sHsps). Over the past decades, extensive research has been conducted on HSPB5. However, few studies have statistically analyzed these publications. Herein, we conducted a bibliometric analysis to track the global research trend and current development status of HSPB5 research from the Web of Science Core Collection (WoSCC) database between 1985 and 2020. Our results demonstrate that 1220 original articles cited 54,778 times in 391 scholarly journals were published. Visualization analyses reveal that the Journal of Biological Chemistry was the most influential journal with 85 articles. The USA dominated this field with 520 publications (42.62%), followed by Japan with 149 publications (12.21%), and Kato contributed the largest number of publications. Most related publications were published in journals focusing on biochemistry molecular biology, cell biology, neurosciences neurology, and ophthalmology. In addition, keyword co-occurrence analyses identify three predominant research topics: expression of HSPB5, chaperone studies for HSPB5, and pathological studies of HSPB5. This study provides valuable guidance for researchers and leads to collaborative opportunities between diverse research interests to be integrated for HSPB5 research.
Collapse
Affiliation(s)
- Zhengdong Xu
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaqian Wan
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
4
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer’s disease [Tau, Amyloid β (Aβ)], Parkinson’s disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered “fuzzy coat” around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
- Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Insights into a Protein-Nanoparticle System by Paramagnetic Perturbation NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215187. [PMID: 33171781 PMCID: PMC7664681 DOI: 10.3390/molecules25215187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Background: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, β2-microglobulin (β2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit β2m fibril formation in vitro. Methods: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on β2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. Results: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of β2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. Conclusions: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.
Collapse
|
6
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. Int J Mol Sci 2020; 21:ijms21207659. [PMID: 33081200 PMCID: PMC7589196 DOI: 10.3390/ijms21207659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Given the ability of molecular chaperones and chaperone-like proteins to inhibit the formation of pathological amyloid fibrils, the chaperone-based therapy of amyloidosis has recently been proposed. However, since these diseases are often diagnosed at the stages when a large amount of amyloids is already accumulated in the patient’s body, in this work we pay attention to the undeservedly poorly studied problem of chaperone and chaperone-like proteins’ effect on mature amyloid fibrils. We showed that a heat shock protein alpha-B-crystallin, which is capable of inhibiting fibrillogenesis and is found in large quantities as a part of amyloid plaques, can induce degradation of mature amyloids by two different mechanisms. Under physiological conditions, alpha-B-crystallin induces fluffing and unweaving of amyloid fibrils, which leads to a partial decrease in their structural ordering without lowering their stability and can increase their cytotoxicity. We found a higher correlation between the rate and effectiveness of amyloids degradation with the size of fibrils clusters rather than with amino acid sequence of amyloidogenic protein. Some external effects (such as an increase in medium acidity) can lead to a change in the mechanism of fibrils degradation induced by alpha-B-crystallin: amyloid fibers are fragmented without changing their secondary structure and properties. According to recent data, fibrils cutting can lead to the generation of seeds for new bona fide amyloid fibrils and accelerate the accumulation of amyloids, as well as enhance the ability of fibrils to disrupt membranes and to reduce cell viability. Our results emphasize the need to test the chaperone effect not only on fibrillogenesis, but also on the mature amyloid fibrils, including stress conditions, in order to avoid undesirable disease progression during chaperone-based therapy.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia;
| | - E. V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - O. I. Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| | - A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| |
Collapse
|
7
|
The molecular chaperone β-casein prevents amorphous and fibrillar aggregation of α-lactalbumin by stabilisation of dynamic disorder. Biochem J 2020; 477:629-643. [PMID: 31939601 PMCID: PMC7015860 DOI: 10.1042/bcj20190638] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Deficits in protein homeostasis (proteostasis) are typified by the partial unfolding or misfolding of native proteins leading to amorphous or fibrillar aggregation, events that have been closely associated with diseases including Alzheimer's and Parkinson's diseases. Molecular chaperones are intimately involved in maintaining proteostasis, and their mechanisms of action are in part dependent on the morphology of aggregation-prone proteins. This study utilised native ion mobility–mass spectrometry to provide molecular insights into the conformational properties and dynamics of a model protein, α-lactalbumin (α-LA), which aggregates in an amorphous or amyloid fibrillar manner controlled by appropriate selection of experimental conditions. The molecular chaperone β-casein (β-CN) is effective at inhibiting amorphous and fibrillar aggregation of α-LA at sub-stoichiometric ratios, with greater efficiency against fibril formation. Analytical size-exclusion chromatography demonstrates the interaction between β-CN and amorphously aggregating α-LA is stable, forming a soluble high molecular weight complex, whilst with fibril-forming α-LA the interaction is transient. Moreover, ion mobility–mass spectrometry (IM-MS) coupled with collision-induced unfolding (CIU) revealed that α-LA monomers undergo distinct conformational transitions during the initial stages of amorphous (order to disorder) and fibrillar (disorder to order) aggregation. The structural heterogeneity of monomeric α-LA during fibrillation is reduced in the presence of β-CN along with an enhancement in stability, which provides a potential means for preventing fibril formation. Together, this study demonstrates how IM-MS and CIU can investigate the unfolding of proteins as well as examine transient and dynamic protein–chaperone interactions, and thereby provides detailed insight into the mechanism of chaperone action and proteostasis mechanisms.
Collapse
|
8
|
Abstract
In vivo, small heat-shock proteins (sHsps) are key players in maintaining a healthy proteome. αB-crystallin (αB-c) or HspB5 is one of the most widespread and populous of the ten human sHsps. Intracellularly, αB-c acts via its molecular chaperone action as the first line of defence in preventing target protein unfolding and aggregation under conditions of cellular stress. In this review, we explore how the structure of αB-c confers its function and interactions within its oligomeric self, with other sHsps, and with aggregation-prone target proteins. Firstly, the interaction between the two highly conserved regions of αB-c, the central α-crystallin domain and the C-terminal IXI motif and how this regulates αB-c chaperone activity are explored. Secondly, subunit exchange is rationalised as an integral structural and functional feature of αB-c. Thirdly, it is argued that monomeric αB-c may be its most chaperone-species active, but at the cost of increased hydrophobicity and instability. Fourthly, the reasons why hetero-oligomerisation of αB-c with other sHsps is important in regulating cellular proteostasis are examined. Finally, the interaction of αB-c with aggregation-prone, partially folded target proteins is discussed. Overall, this paper highlights the remarkably diverse capabilities of αB-c as a caretaker of the cell.
Collapse
Affiliation(s)
- Junna Hayashi
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
9
|
Hunashal Y, Cantarutti C, Giorgetti S, Marchese L, Molinari H, Niccolai N, Fogolari F, Esposito G. Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra. Phys Chem Chem Phys 2020; 22:6247-6259. [PMID: 32129386 DOI: 10.1039/c9cp06950j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and DAME, Università di Udine, 33100 Udine, Italy
| | - Cristina Cantarutti
- Institute of Chemistry, UMR CNRS 7272, Université Côte d'Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108, Nice Cedex 2, France
| | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Loredana Marchese
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), CNR, Via A. Corti, 12, 20133, Milano, Italy
| | - Neri Niccolai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Moro 2, 53100 Siena, Italy
| | - Federico Fogolari
- DMIF, Università di Udine, 33100 Udine, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
10
|
Examination of Adsorption Orientation of Amyloidogenic Peptides Over Nano-Gold Colloidal Particle Surfaces. Int J Mol Sci 2019; 20:ijms20215354. [PMID: 31661810 PMCID: PMC6862242 DOI: 10.3390/ijms20215354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/12/2023] Open
Abstract
The adsorption of amyloidogenic peptides, amyloid beta 1–40 (Aβ1–40), alpha-synuclein (α-syn), and beta 2 microglobulin (β2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (d). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pHo) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpHo, which is the difference in pHo between bare gold colloids and peptide coated gold colloids. The coverage ratio (Θ) for all amyloidogenic peptides over gold colloid of different sizes was extracted by assuming Θ = 0 at ΔpHo = 0. Remarkably, Θ was found to have a nano-gold colloidal size dependence, however, this nano-size dependence was not simply correlated with d. The geometric analysis and simulation of reproducing Θ was conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted Θ. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. An extracted average distance of networking between adjacent gold colloids supports the binding of peptides as if they are “entangled” and enclosed in an interfacial distance that was found to be approximately 2 nm. The complex nano-size dependence of Θ was explained by available spacing between adjacent prolates. When the secondary layer was formed, Aβ1–40 and α-syn possessed a higher affinity to a partially negative nano-gold colloidal surface. However, β2m peptides tend to interact with each other. This difference was explained by the difference in partial charge distribution over a monomer. Both Aβ1–40 and α-syn are considered to have a partial charge (especially δ+) distribution centering around the prolate axis. The β2m, however, possesses a distorted charge distribution. For a lower Θ (i.e., Θ <0.5), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation to fill in the unoccupied space with a tilting angle ranging between 5° and 58° depending on the nano-scale and peptide coated to the gold colloid.
Collapse
|
11
|
Benseny-Cases N, Karamanos TK, Hoop CL, Baum J, Radford SE. Extracellular matrix components modulate different stages in β 2-microglobulin amyloid formation. J Biol Chem 2019; 294:9392-9401. [PMID: 30996004 PMCID: PMC6579475 DOI: 10.1074/jbc.ra119.008300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid deposition of WT human β2-microglobulin (WT-hβ2m) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis. In vitro, WT-hβ2m does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hβ2m aggregation and dialysis-related amyloidosis onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hβ2m in physiologically relevant conditions. Using thioflavin T fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hβ2m assembly. Our results revealed that LMW-heparin strongly promotes WT-hβ2m fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hβ2m amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hβ2m amyloid fibrils attenuates surface-mediated growth of WT-hβ2m fibrils, demonstrating a key role of secondary nucleation in WT-hβ2m amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hβ2m monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hβ2m. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hβ2m into amyloid, which lead to dramatic effects on the time course of assembly.
Collapse
Affiliation(s)
- Núria Benseny-Cases
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Theodoros K Karamanos
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Cody L Hoop
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Jean Baum
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
12
|
Sulatskaya AI, Rodina NP, Polyakov DS, Sulatsky MI, Artamonova TO, Khodorkovskii MA, Shavlovsky MM, Kuznetsova IM, Turoverov KK. Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. Int J Mol Sci 2018; 19:E2762. [PMID: 30223436 PMCID: PMC6164334 DOI: 10.3390/ijms19092762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
The persistence of high concentrations of beta-2-microglobulin (β2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of β2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length β2M (β2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6β2m and ΔN10β2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT). For this aim, the tested solutions were prepared via the equilibrium microdialysis approach. Spectroscopic analysis of the obtained samples allowed us to detect one binding mode (type) of ThT interaction with all the studied variants of β2M amyloid fibrils with affinity ~10⁴ M-1. This interaction can be explained by the dye molecules incorporation into the grooves that were formed by the amino acids side chains of amyloid protofibrils along the long axis of the fibrils. The decrease in the affinity and stoichiometry of the dye interaction with β2M fibrils, as well as in the fluorescence quantum yield and lifetime of the bound dye upon the shortening of the protein amino acid sequence were shown. The observed differences in the ThT-β2M fibrils binding parameters and characteristics of the bound dye allowed to prove not only the difference of the ΔN10β2m fibrils from other β2M fibrils (that can be detected visually, for example, by transmission electron microscopy (TEM), but also the differences between β2m and ΔN6β2m fibrils (that can not be unequivocally confirmed by other approaches). These results prove an essential role of N-terminal amino acids of the protein in the formation of the β2M amyloid fibrils. Information about amyloidogenic protein sequences can be claimed in the development of ways to inhibit β2M fibrillogenesis for the treatment of dialysis-related amyloidosis.
Collapse
Affiliation(s)
- Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Natalia P Rodina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Dmitry S Polyakov
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str. 12, St. Petersburg 197376, Russia.
- Chair of Medical Genetics, North-Western State Medical University named after I.I. Mechnikov, Piskarevskij prospect 47, St. Petersburg 195067, Russia.
| | - Maksim I Sulatsky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Tatyana O Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| | - Mikhail A Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| | - Mikhail M Shavlovsky
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str. 12, St. Petersburg 197376, Russia.
- Chair of Medical Genetics, North-Western State Medical University named after I.I. Mechnikov, Piskarevskij prospect 47, St. Petersburg 195067, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| |
Collapse
|
13
|
Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, Corni S, Esposito G. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. NANOSCALE 2018; 10:4793-4806. [PMID: 29469914 DOI: 10.1039/c7nr06808e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation including the formation of dimers and multimers in solution, underlies an array of human diseases such as systemic amyloidosis which is a fatal disease caused by misfolding of native globular proteins damaging the structure and function of affected organs. Different kind of interactors can interfere with the formation of protein dimers and multimers in solution. A very special class of interactors are nanoparticles thanks to the extremely efficient extension of their interaction surface. In particular citrate-coated gold nanoparticles (cit-AuNPs) were recently investigated with amyloidogenic protein β2-microglobulin (β2m). Here we present the computational studies on two challenging models known for their enhanced amyloidogenic propensity, namely ΔN6 and D76N β2m naturally occurring variants, and disclose the role of cit-AuNPs on their fibrillogenesis. The proposed interaction mechanism lies in the interference of the cit-AuNPs with the protein dimers at the early stages of aggregation, that induces dimer disassembling. As a consequence, natural fibril formation can be inhibited. Relying on the comparison between atomistic simulations at multiple levels (enhanced sampling molecular dynamics and Brownian dynamics) and protein structural characterisation by NMR, we demonstrate that the cit-AuNPs interactors are able to inhibit protein dimer assembling. As a consequence, the natural fibril formation is also inhibited, as found in experiment.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | | | - Cristina Cantarutti
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy
| | - Alessandra Corazza
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Federico Fogolari
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- Department of Chemical Science, University of Padova, via VIII Febbraio 2, 35122 Padova and Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy. and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Cantarutti C, Raj G, Fogolari F, Giorgetti S, Corazza A, Bellotti V, Naumov P, Esposito G. Interference of citrate-stabilized gold nanoparticles with β2-microglobulin oligomeric association. Chem Commun (Camb) 2018; 54:5422-5425. [DOI: 10.1039/c8cc01053f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Citrate-coated gold nanoparticles interfere with the association equilibria of β2-microglobulin and thus inhibit the early events of fibrillogenesis.
Collapse
Affiliation(s)
| | - Gijo Raj
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
| | | | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
- Division of Medicine
| | - Panče Naumov
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - Gennaro Esposito
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
- INBB
- 00136 Roma
| |
Collapse
|
15
|
Carver JA, Grosas AB, Ecroyd H, Quinlan RA. The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress Chaperones 2017; 22:627-638. [PMID: 28391594 PMCID: PMC5465038 DOI: 10.1007/s12192-017-0789-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023] Open
Abstract
Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.
Collapse
Affiliation(s)
- John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Heath Ecroyd
- School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Roy A Quinlan
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
16
|
Raimondi S, Porcari R, Mangione PP, Verona G, Marcoux J, Giorgetti S, Taylor GW, Ellmerich S, Ballico M, Zanini S, Pardon E, Al-Shawi R, Simons JP, Corazza A, Fogolari F, Leri M, Stefani M, Bucciantini M, Gillmore JD, Hawkins PN, Valli M, Stoppini M, Robinson CV, Steyaert J, Esposito G, Bellotti V. A specific nanobody prevents amyloidogenesis of D76N β 2-microglobulin in vitro and modifies its tissue distribution in vivo. Sci Rep 2017; 7:46711. [PMID: 28429761 PMCID: PMC5399440 DOI: 10.1038/srep46711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of β2-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type β2-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The β2-microglobulin -binding nanobody, Nb24, more potently inhibits D76N β2-microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In β2-microglobulin knock out mice, the D76N β2-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type β2-microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis.
Collapse
Affiliation(s)
- Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Maurizio Ballico
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| | - Stefano Zanini
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| | - Els Pardon
- Structural Biology Research Centre, VIB, Pleinlaan 2, 1050, Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Raya Al-Shawi
- Centre for Biomedical Science, Division of Medicine, University College London, London NW3 2PF, UK
| | - J Paul Simons
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Alessandra Corazza
- Department of Medical and Biological Sciences (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Federico Fogolari
- Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy.,Department of Mathematics, Computer Science and Physics, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy.,Research Centre for Molecular Basis of Neurodegeneration, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy.,Research Centre for Molecular Basis of Neurodegeneration, 50134 Florence, Italy
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London, London NW3 2PF, UK
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London, London NW3 2PF, UK
| | - Maurizia Valli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Monica Stoppini
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Jan Steyaert
- Structural Biology Research Centre, VIB, Pleinlaan 2, 1050, Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Gennaro Esposito
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE.,Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy.,Department of Mathematics, Computer Science and Physics, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| |
Collapse
|
17
|
Cantarutti C, Raimondi S, Brancolini G, Corazza A, Giorgetti S, Ballico M, Zanini S, Palmisano G, Bertoncin P, Marchese L, Patrizia Mangione P, Bellotti V, Corni S, Fogolari F, Esposito G. Citrate-stabilized gold nanoparticles hinder fibrillogenesis of a pathological variant of β 2-microglobulin. NANOSCALE 2017; 9:3941-3951. [PMID: 28265615 DOI: 10.1039/c6nr09362k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticles have repeatedly been shown to enhance fibril formation when assayed with amyloidogenic proteins. Recently, however, evidence casting some doubt about the generality of this conclusion started to emerge. Therefore, to investigate further the influence of nanoparticles on the fibrillation process, we used a naturally occurring variant of the paradigmatic amyloidogenic protein β2-microglobulin (β2m), namely D76N β2m where asparagine replaces aspartate at position 76. This variant is responsible for aggressive systemic amyloidosis. After characterizing the interaction of the variant with citrate-stabilized gold nanoparticles (Cit-AuNPs) by NMR and modeling, we analyzed the fibril formation by three different methods: thioflavin T fluorescence, native agarose gel electrophoresis and transmission electron microscopy. The NMR evidence indicated a fast-exchange interaction involving preferentially specific regions of the protein that proved, by subsequent modeling, to be consistent with a dimeric adduct interacting with Cit-AuNPs. The fibril detection assays showed that AuNPs are able to hamper D76N β2m fibrillogenesis through an effective interaction that competes with protofibril formation or recruitment. These findings open promising perspectives for the optimization of the nanoparticle surface to design tunable interactions with proteins.
Collapse
Affiliation(s)
| | - Sara Raimondi
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | | | - Alessandra Corazza
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Sofia Giorgetti
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Maurizio Ballico
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefano Zanini
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates
| | - Paolo Bertoncin
- Dipartimento Scienze della Vita, Università di Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Loredana Marchese
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - P Patrizia Mangione
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Vittorio Bellotti
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- CNR Istituto Nanoscienze, Via Campi 213/A, 41125 Modena, Italy.
| | - Federico Fogolari
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Gakamsky A, Duncan RR, Howarth NM, Dhillon B, Buttenschön KK, Daly DJ, Gakamsky D. Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level. Sci Rep 2017; 7:40375. [PMID: 28071717 PMCID: PMC5223181 DOI: 10.1038/srep40375] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of "free" Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their "free" counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age.
Collapse
Affiliation(s)
- Anna Gakamsky
- Edinburgh Instruments, 2 Bain Square, Livingston, EH54 7DQ, UK
| | - Rory R. Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| | - Nicola M. Howarth
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| | - Baljean Dhillon
- Princess Alexandra Eye Pavilion, Edinburgh and Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, UK
| | - Kim K. Buttenschön
- Lein Applied Diagnostics, Reading Enterprise Centre, Whiteknights Rd, Reading RG6 6BU, UK
| | - Daniel J. Daly
- Lein Applied Diagnostics, Reading Enterprise Centre, Whiteknights Rd, Reading RG6 6BU, UK
| | - Dmitry Gakamsky
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| |
Collapse
|
19
|
Cox D, Selig E, Griffin MDW, Carver JA, Ecroyd H. Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. J Biol Chem 2016; 291:22618-22629. [PMID: 27587396 DOI: 10.1074/jbc.m116.739250] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils is associated with neurodegenerative diseases, collectively referred to as the α-synucleinopathies. In vivo, molecular chaperones, such as the small heat-shock proteins (sHsps), normally act to prevent protein aggregation; however, it remains to be determined how aggregation-prone α-syn evades sHsp chaperone action leading to its disease-associated deposition. This work examines the molecular mechanism by which two canonical sHsps, αB-crystallin (αB-c) and Hsp27, interact with aggregation-prone α-syn to prevent its aggregation in vitro Both sHsps are very effective inhibitors of α-syn aggregation, but no stable complex between the sHsps and α-syn was detected, indicating that the sHsps inhibit α-syn aggregation via transient interactions. Moreover, the ability of these sHsps to prevent α-syn aggregation was dependent on the kinetics of aggregation; the faster the rate of aggregation (shorter the lag phase), the less effective the sHsps were at inhibiting fibril formation of α-syn. Thus, these findings indicate that the rate at which α-syn aggregates in cells may be a significant factor in how it evades sHsp chaperone action in the α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- From the Illawarra Health and Medical Research Institute and.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522
| | - Emily Selig
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, and
| | - Michael D W Griffin
- the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, and
| | - John A Carver
- the Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Heath Ecroyd
- From the Illawarra Health and Medical Research Institute and .,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522
| |
Collapse
|
20
|
Lavatelli F, Imperlini E, Orrù S, Rognoni P, Sarnataro D, Palladini G, Malpasso G, Soriano ME, Di Fonzo A, Valentini V, Gnecchi M, Perlini S, Salvatore F, Merlini G. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J 2015. [PMID: 26220173 DOI: 10.1096/fj.15-272179] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In immunoglobulin (Ig) light-chain (LC) (AL) amyloidosis, AL deposition translates into life-threatening cardiomyopathy. Clinical and experimental evidence indicates that soluble cardiotoxic LCs are themselves harmful for cells, by which they are internalized. Hypothesizing that interaction of soluble cardiotoxic LCs with cellular proteins contributes to damage, we characterized their interactome in cardiac cells. LCs were purified from patients with AL amyloidosis cardiomyopathy or multiple myeloma without amyloidosis (the nonamyloidogenic/noncardiotoxic LCs served as controls) and employed at concentrations in the range observed in AL patients' sera. A functional proteomic approach, based on direct and inverse coimmunoprecipitation and mass spectrometry, allowed identifying LC-protein complexes. Findings were validated by colocalization, fluorescence lifetime imaging microscopy (FLIM)-fluorescence resonance energy transfer (FRET), and ultrastructural studies, using human primary cardiac fibroblasts (hCFs) and stem cell-derived cardiomyocytes. Amyloidogenic cardiotoxic LCs interact in vitro with specific intracellular proteins involved in viability and metabolism. Imaging confirmed that, especially in hCFs, cardiotoxic LCs (not controls) colocalize with mitochondria and spatially associate with selected interactors: mitochondrial optic atrophy 1-like protein and peroxisomal acyl-coenzyme A oxidase 1 (FLIM-FRET efficiencies 11 and 6%, respectively). Cardiotoxic LC-treated hCFs display mitochondrial ultrastructural changes, supporting mitochondrial involvement. We show that cardiotoxic LCs establish nonphysiologic protein-protein contacts in human cardiac cells, offering new clues on the pathogenesis of AL cardiomyopathy.
Collapse
Affiliation(s)
- Francesca Lavatelli
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Esther Imperlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefania Orrù
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paola Rognoni
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniela Sarnataro
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giuseppina Palladini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giuseppe Malpasso
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Maria Eugenia Soriano
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrea Di Fonzo
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Veronica Valentini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Massimiliano Gnecchi
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefano Perlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Francesco Salvatore
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Giampaolo Merlini
- *Amyloidosis Research and Treatment Center, Department of Molecular Medicine, **Department of Internal Medicine, Department of Cardiothoracic and Vascular Sciences, Laboratory of Experimental Cardiology for Cell and Molecular Therapy, University of Pavia, and Clinical Chemistry Laboratory, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy; Centro di Ricerca di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, Naples, Italy; Department of Movement Sciences, Parthenope University of Naples, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; Department of Biology, University of Padua, Padua, Italy; and Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
22
|
Abstract
β2-Microglobulin is responsible for systemic amyloidosis affecting patients undergoing long-term hemodialysis. Its genetic variant D76N causes a very rare form of familial systemic amyloidosis. These two types of amyloidoses differ significantly in terms of the tissue localization of deposits and for major pathological features. Considering how the amyloidogenesis of the β2-microglobulin mechanism has been scrutinized in depth for the last three decades, the comparative analysis of molecular and pathological properties of wild type β2-microglobulin and of the D76N variant offers a unique opportunity to critically reconsider the current understanding of the relation between the protein's structural properties and its pathologic behavior.
Collapse
Affiliation(s)
- Monica Stoppini
- From the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Vittorio Bellotti
- From the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy and the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
23
|
Treweek TM, Meehan S, Ecroyd H, Carver JA. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 2015; 72:429-451. [PMID: 25352169 PMCID: PMC11113218 DOI: 10.1007/s00018-014-1754-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.
Collapse
Affiliation(s)
- Teresa M Treweek
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
24
|
|
25
|
Liu Y, Carver JA, Calabrese AN, Pukala TL. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1481-5. [DOI: 10.1016/j.bbapap.2014.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
|
26
|
Cox D, Carver JA, Ecroyd H. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1830-43. [PMID: 24973551 DOI: 10.1016/j.bbadis.2014.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022]
Abstract
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
27
|
Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLoS Comput Biol 2014; 10:e1003606. [PMID: 24809460 PMCID: PMC4014404 DOI: 10.1371/journal.pcbi.1003606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/16/2014] [Indexed: 01/26/2023] Open
Abstract
A major component of ex vivo amyloid plaques of patients with dialysis-related amyloidosis (DRA) is a cleaved variant of β2-microglobulin (ΔN6) lacking the first six N-terminal residues. Here we perform a computational study on ΔN6, which provides clues to understand the amyloidogenicity of the full-length β2-microglobulin. Contrary to the wild-type form, ΔN6 is able to efficiently nucleate fibrillogenesis in vitro at physiological pH. This behavior is enhanced by a mild acidification of the medium such as that occurring in the synovial fluid of DRA patients. Results reported in this work, based on molecular simulations, indicate that deletion of the N-terminal hexapeptide triggers the formation of an intermediate state for folding and aggregation with an unstructured strand A and a native-like core. Strand A plays a pivotal role in aggregation by acting as a sticky hook in dimer assembly. This study further predicts that the detachment of strand A from the core is maximized at pH 6.2 resulting into higher aggregation efficiency. The structural mapping of the dimerization interface suggests that Tyr10, His13, Phe30 and His84 are hot-spot residues in ΔN6 amyloidogenesis. Dialysis-related amyloidosis (DRA) is a conformational disease that affects individuals undergoing long-term haemodialysis. In DRA the progressive accumulation of protein human β2-microglobulin (Hβ2m) in the osteoarticular system, followed by its assembly into amyloid fibrils, eventually leads to tissue erosion and destruction. Disclosing the aggregation mechanism of Hβ2m under physiologically relevant conditions represents a major challenge due to the inability of the protein to efficiently nucleate fibrillogenesis in vitro at physiological pH. On the other hand, ΔN6, a truncated variant of Hβ2m, which is also a major component of ex vivo amyloid deposits extracted from DRA patients, is able to efficiently form amyloid fibrils de novo in physiological conditions. This amyloidogenic behavior is dramatically enhanced in a slightly more acidic pH (6.2) compatible with the mild acidification that occurs in the synovial fluid of DRA patients. In this work, an innovative three-stage methodological approach, relying on an array of molecular simulations, spanning different levels of resolution is used to investigate the initial stage of the de novo aggregation mechanism of ΔN6 in a physiologically relevant pH range. We identify an intermediate state for folding and aggregation, whose potential to dimerize is enhanced at pH 6.2. Our results provide rationalizations for previous experimental observations and new insights into the molecular basis of DRA.
Collapse
Affiliation(s)
- Sílvia G. Estácio
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Heinrich Krobath
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica & Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EIS); (PFNF)
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada & Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (EIS); (PFNF)
| |
Collapse
|
28
|
Su Y, Sarell CJ, Eddy MT, Debelouchina GT, Andreas LB, Pashley CL, Radford SE, Griffin RG. Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6. J Am Chem Soc 2014; 136:6313-25. [PMID: 24679070 PMCID: PMC4017606 DOI: 10.1021/ja4126092] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Amyloid
fibrils formed from initially soluble proteins with diverse
sequences are associated with an array of human diseases. In the human
disorder, dialysis-related amyloidosis (DRA), fibrils contain two
major constituents, full-length human β2-microglobulin
(hβ2m) and a truncation variant, ΔN6 which
lacks the N-terminal six amino acids. These fibrils are assembled
from initially natively folded proteins with an all antiparallel β-stranded
structure. Here, backbone conformations of wild-type hβ2m and ΔN6 in their amyloid forms have been determined
using a combination of dilute isotopic labeling strategies and multidimensional
magic angle spinning (MAS) NMR techniques at high magnetic fields,
providing valuable structural information at the atomic-level about
the fibril architecture. The secondary structures of both fibril types,
determined by the assignment of ∼80% of the backbone resonances
of these 100- and 94-residue proteins, respectively, reveal substantial
backbone rearrangement compared with the location of β-strands
in their native immunoglobulin folds. The identification of seven
β-strands in hβ2m fibrils indicates that approximately
70 residues are in a β-strand conformation in the fibril core.
By contrast, nine β-strands comprise the fibrils formed from
ΔN6, indicating a more extensive core. The precise location
and length of β-strands in the two fibril forms also differ.
The results indicate fibrils of ΔN6 and hβ2m have an extensive core architecture involving the majority of residues
in the polypeptide sequence. The common elements of the backbone structure
of the two proteins likely facilitates their ability to copolymerize
during amyloid fibril assembly.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Brambilla F, Lavatelli F, Di Silvestre D, Valentini V, Palladini G, Merlini G, Mauri P. Shotgun Protein Profile of Human Adipose Tissue and Its Changes in Relation to Systemic Amyloidoses. J Proteome Res 2013; 12:5642-55. [DOI: 10.1021/pr400583h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Francesca Lavatelli
- Amyloid
Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Veronica Valentini
- Amyloid
Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Amyloid
Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department
of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloid
Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department
of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate, Italy
- Institute of Life Sciences, Scuola
Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|