1
|
Kachlany SC, Vega BA. Therapeutic Applications of Aggregatibacter actinomycetemcomitans Leukotoxin. Pathogens 2024; 13:354. [PMID: 38787206 PMCID: PMC11123898 DOI: 10.3390/pathogens13050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative oral bacterium that has been primarily studied for its role in causing periodontal disease. The bacterium has also been implicated in several systemic diseases such as endocarditis and soft tissue abscesses. Leukotoxin (LtxA) is perhaps the best studied protein virulence factor from A. actinomycetemcomitans. The protein can rapidly destroy white blood cells (WBCs), helping the bacterium to subvert the host immune system. The functional receptor for LtxA is lymphocyte function associated antigen-1 (LFA-1), which is expressed exclusively on the surfaces of WBCs. Bacterial expression and secretion of the protein are highly regulated and controlled by a number of genetic and environmental factors. The mechanism of LtxA action on WBCs varies depending on the type of cell that is being killed, and the protein has been shown to activate numerous cell death pathways in susceptible cells. In addition to serving as an important virulence factor for the bacterium, because of its exquisite specificity and rapid activity, LtxA is also being investigated as a therapeutic agent that may be used to treat diseases such as hematological malignancies and autoimmune/inflammatory diseases. It is our hope that this review will inspire an increased intensity of research related to LtxA and its effect on Aggressive Periodontitis, the disease that led to its initial discovery.
Collapse
Affiliation(s)
- Scott C. Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | | |
Collapse
|
2
|
Lacouture C, Chaves B, Guipouy D, Houmadi R, Duplan-Eche V, Allart S, Destainville N, Dupré L. LFA-1 nanoclusters integrate TCR stimulation strength to tune T-cell cytotoxic activity. Nat Commun 2024; 15:407. [PMID: 38195629 PMCID: PMC10776856 DOI: 10.1038/s41467-024-44688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.
Collapse
Affiliation(s)
- Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Beatriz Chaves
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Delphine Guipouy
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Valérie Duplan-Eche
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Cha M, Jeong SH, Jung J, Baeg Y, Park S, Bae S, Lim CS, Park JH, Lee J, Gho YS, Oh SW, Shon MJ. Quantitative imaging of vesicle-protein interactions reveals close cooperation among proteins. J Extracell Vesicles 2023; 12:e12322. [PMID: 37186457 PMCID: PMC10130417 DOI: 10.1002/jev2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Membrane-bound vesicles such as extracellular vesicles (EVs) can function as biochemical effectors on target cells. Docking of the vesicles onto recipient plasma membranes depends on their interaction with cell-surface proteins, but a generalizable technique that can quantitatively observe these vesicle-protein interactions (VPIs) is lacking. Here, we describe a fluorescence microscopy that measures VPIs between single vesicles and cell-surface proteins, either in a surface-tethered or in a membrane-embedded state. By employing cell-derived vesicles (CDVs) and intercellular adhesion molecule-1 (ICAM-1) as a model system, we found that integrin-driven VPIs exhibit distinct modes of affinity depending on vesicle origin. Controlling the surface density of proteins also revealed a strong support from a tetraspanin protein CD9, with a critical dependence on molecular proximity. An adsorption model accounting for multiple protein molecules was developed and captured the features of density-dependent cooperativity. We expect that VPI imaging will be a useful tool to dissect the molecular mechanisms of vesicle adhesion and uptake, and to guide the development of therapeutic vesicles.
Collapse
Affiliation(s)
- Minkwon Cha
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- POSTECH Biotech CenterPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Sang Hyeok Jeong
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jaehun Jung
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yoonjin Baeg
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Sung‐Soo Park
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Seoyoon Bae
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Chan Seok Lim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jun Hyuk Park
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jie‐Oh Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- Institute of Membrane ProteinsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Seung Wook Oh
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Min Ju Shon
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
4
|
Hermans D, Houben E, Baeten P, Slaets H, Janssens K, Hoeks C, Hosseinkhani B, Duran G, Bormans S, Gowing E, Hoornaert C, Beckers L, Fung WK, Schroten H, Ishikawa H, Fraussen J, Thoelen R, de Vries HE, Kooij G, Zandee S, Prat A, Hellings N, Broux B. Oncostatin M triggers brain inflammation by compromising blood-brain barrier integrity. Acta Neuropathol 2022; 144:259-281. [PMID: 35666306 DOI: 10.1007/s00401-022-02445-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRβ) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRβ-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Doryssa Hermans
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Evelien Houben
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Paulien Baeten
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Kris Janssens
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Cindy Hoeks
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Baharak Hosseinkhani
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Gayel Duran
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Seppe Bormans
- Institute for Materials Research (IMO), UHasselt, Diepenbeek, Belgium
| | - Elizabeth Gowing
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Chloé Hoornaert
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Lien Beckers
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, Medical Faculty Mannheim, University Children's Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Judith Fraussen
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), UHasselt, Diepenbeek, Belgium
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Stephanie Zandee
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Alexandre Prat
- Centre de Recherche du CHUM (CRCHUM), Neuroimmunology Unit, Montreal, QC, Canada
| | - Niels Hellings
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Ghosh S, Feigelson SW, Montresor A, Shimoni E, Roncato F, Legler DF, Laudanna C, Haran G, Alon R. CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophys J 2021; 120:4002-4012. [PMID: 34411577 DOI: 10.1016/j.bpj.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Carlo Laudanna
- Department of Medicine, University of Verona, Verona, Italy
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Zhou F, Zhang F, Zarnitsyna VI, Doudy L, Yuan Z, Li K, McEver RP, Lu H, Zhu C. The kinetics of E-selectin- and P-selectin-induced intermediate activation of integrin αLβ2 on neutrophils. J Cell Sci 2021; 134:271954. [PMID: 34435628 DOI: 10.1242/jcs.258046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/19/2021] [Indexed: 01/03/2023] Open
Abstract
Selectins and integrins are key players in the adhesion and signaling cascade that recruits leukocytes to inflamed tissues. Selectin binding induces β2 integrin binding to slow leukocyte rolling. Here, a micropipette was used to characterize neutrophil adhesion to E-selectin and intercellular adhesion molecule-1 (ICAM-1) at room temperature. The time-dependent adhesion frequency displayed two-stage kinetics, with an E-selectin-mediated fast increase to a low plateau followed by a slow increase to a high plateau mediated by intermediate-affinity binding of integrin αLβ2 to ICAM-1. The αLβ2 activation required more than 5 s contact to E-selectin and spleen tyrosine kinase (Syk) activity. A multi-zone channel was used to analyze αLβ2 activation by P-selectin in separate zones of receptors or antibodies, finding an inverse relationship between the rolling velocity on ICAM-1 and P-selectin dose, and a P-selectin dose-dependent change from bent to extended conformations with a closed headpiece that was faster at 37°C than at room temperature. Activation of αLβ2 exhibited different levels of cooperativity and persistent times depending on the strength and duration of selectin stimulation. These results define the precise timing and kinetics of intermediate activation of αLβ2 by E- and P-selectins.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Fang Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Veronika I Zarnitsyna
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Larissa Doudy
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Zhou Yuan
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Kaitao Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Rodger P McEver
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| |
Collapse
|
7
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
8
|
Gaudet A, Portier L, Mathieu D, Hureau M, Tsicopoulos A, Lassalle P, De Freitas Caires N. Cleaved endocan acts as a biologic competitor of endocan in the control of ICAM-1-dependent leukocyte diapedesis. J Leukoc Biol 2020; 107:833-841. [PMID: 32272492 DOI: 10.1002/jlb.3ab0320-612rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Dysregulated leukocyte diapedesis is a major contributor to acute severe inflammatory states like sepsis and acute respiratory distress syndrome, which are common conditions in critically ill subjects. Endocan is a circulating proteoglycan that binds to the leukocyte integrin LFA-1 and blocks its interaction with its endothelial ligand ICAM-1, subsequently leading to the inhibition of leukocyte recruitment. Recent data have highlighted the hypothetic role of p14, endocan's major catabolite found in the bloodstream of septic patients, as a potential antagonist of endocan, thus participating in the regulation of acute inflammation. We hereby characterize the role of p14 as a biologic competitor of endocan, through assessment of its molecular interactions with LFA-1, endocan, and ICAM-1, as well as its effects on human leukocyte trafficking. Using immunodetection assay, we report that p14 can bind to LFA-1, thus inhibiting the interaction between LFA-1 and endocan, which in turn leads to the restoration of the ICAM-1/LFA-1 interaction. In primary human T cells trafficking assays, we underline the absence of effect of p14 on ICAM-1-dependent adhesion and migration, as well as on transendothelial migration. However, in those models, p14 reverses the antimigratory effect of endocan. To conclude, our study supports the hypothesis of an antagonistic role of p14 versus endocan in its effect on the LFA-1/ICAM-1-dependent human leukocyte recruitment.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,CHU Lille, Pôle de Réanimation, Hôpital Roger Salengro, Lille, France
| | - Lucie Portier
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,Biothelis, Lille, France
| | - Daniel Mathieu
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,CHU Lille, Pôle de Réanimation, Hôpital Roger Salengro, Lille, France
| | - Maxence Hureau
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,CHU Lille, Pôle de Réanimation, Hôpital Roger Salengro, Lille, France
| | - Anne Tsicopoulos
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,Institut Pasteur de Lille, Lille, France.,CHU Lille, Pôle de Pneumologie, Hôpital Calmette, Lille, France
| | - Philippe Lassalle
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Nathalie De Freitas Caires
- Center for Infection and Immunity of Lille, University of Lille, U1019 - UMR 8204, Lille, France.,CNRS, UMR 8204, Lille, France.,INSERM, U1019, Lille, France.,Biothelis, Lille, France
| |
Collapse
|
9
|
Traunecker E, Gardner R, Fonseca JE, Polido-Pereira J, Seitz M, Villiger PM, Iezzi G, Padovan E. Blocking of LFA-1 enhances expansion of Th17 cells induced by human CD14(+) CD16(++) nonclassical monocytes. Eur J Immunol 2015; 45:1414-25. [PMID: 25678252 DOI: 10.1002/eji.201445100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023]
Abstract
Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Emmanuel Traunecker
- Department of Biomedicine (DBM), Basel University Hospital, Basel, Switzerland
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular da Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Michael Seitz
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Peter M Villiger
- Universitätsklinik für Rheumatologie, Klinische Immunologie und Allergologie, Inselspital, Bern, Switzerland
| | - Giandomenica Iezzi
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| | - Elisabetta Padovan
- Department of Biomedicine (DBM), Cancer Immunotherapy, Institute of Surgical Research (ICFS), Basel University Hospital, Basel, Switzerland
| |
Collapse
|
10
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Hintersteiner M, Kallen J, Schmied M, Graf C, Jung T, Mudd G, Shave S, Gstach H, Auer M. Identification and X-ray co-crystal structure of a small-molecule activator of LFA-1-ICAM-1 binding. Angew Chem Int Ed Engl 2014; 53:4322-6. [PMID: 24692345 PMCID: PMC4314669 DOI: 10.1002/anie.201310240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Indexed: 01/07/2023]
Abstract
Stabilization of protein-protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X-ray co-crystal structure determination of IBE-667, an ICAM-1 binding enhancer for LFA-1. IBE-667 was designed based on the SAR information obtained from an on-bead screen of tagged one-bead one-compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE-667 in promoting the binding of LFA-1 on activated immune cells to ICAM-1.
Collapse
Affiliation(s)
| | - Jörg Kallen
- Novartis Institutes for BioMedical ResearchNovartis Campus, 4056 Basel (Switzerland)
| | - Mario Schmied
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Christine Graf
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Thomas Jung
- Affiliation when work was performed: Novartis Institutes for BioMedical ResearchBrunnerstrasse 59, 1235 Vienna (Austria)
| | - Gemma Mudd
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| | - Steven Shave
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| | - Hubert Gstach
- Institute of Medical Chemistry, Medical Univ. of ViennaWaehringerstrasse 10, 1090 Vienna (Austria)
| | - Manfred Auer
- The University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM)CH Waddington Building, 3.07, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD (UK)
| |
Collapse
|
12
|
Hintersteiner M, Kallen J, Schmied M, Graf C, Jung T, Mudd G, Shave S, Gstach H, Auer M. Identifizierung und Strukturbestimmung eines niedermolekularen Aktivators der LFA-1/ICAM-1-Bindung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Abstract
Integrin α1β1 is widely expressed in mesenchyme and the immune system, as well as a minority of epithelial tissues. Signaling through α1 contributes to the regulation of extracellular matrix composition, in addition to supplying in some tissues a proliferative and survival signal that appears to be unique among the collagen binding integrins. α1 provides a tissue retention function for cells of the immune system including monocytes and T cells, where it also contributes to their long-term survival, providing for peripheral T cell memory, and contributing to diseases of autoimmunity. The viability of α1 null mice, as well as the generation of therapeutic monoclonal antibodies against this molecule, have enabled studies of the role of α1 in a wide range of pathophysiological circumstances. The immune functions of α1 make it a rational therapeutic target.
Collapse
|
14
|
Chen W, Lou J, Evans EA, Zhu C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. ACTA ACUST UNITED AC 2013; 199:497-512. [PMID: 23109670 PMCID: PMC3483124 DOI: 10.1083/jcb.201201091] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A biomembrane force probe visualizes force-regulated reversible switches between bent and extended conformations of αLβ2 integrin on the surface of a living cell. As adhesion molecules, integrins connect a cell to its environment and transduce signals across the membrane. Their different functional states correspond to distinct conformations. Using a biomembrane force probe, we observed real-time reversible switches between bent and extended conformations of a single integrin, αLβ2, on the surface of a living cell by measuring its nanometer-scale headpiece displacements, bending and unbending frequencies, and molecular stiffness changes. We determined the stabilities of these conformations, their dynamic equilibrium, speeds and rates of conformational changes, and the impact of divalent cations and tensile forces. We quantified how initial and subsequent conformations of αLβ2 regulate the force-dependent kinetics of dissociation from intercellular adhesion molecule 1. Our findings provide new insights into how integrins function as nanomachines to precisely control cell adhesion and signaling.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
15
|
DiFranco KM, Gupta A, Galusha LE, Perez J, Nguyen TVK, Fineza CD, Kachlany SC. Leukotoxin (Leukothera®) targets active leukocyte function antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway. J Biol Chem 2012; 287:17618-17627. [PMID: 22467872 DOI: 10.1074/jbc.m111.314674] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leukotoxin (LtxA) is a protein toxin that is secreted from the oral bacterium, Aggregatibacter actinomycetemcomitans. LtxA targets specifically the β(2) integrin, leukocyte function antigen-1 (LFA-1) on white blood cells (WBCs) and causes cell death. LtxA preferentially targets activated WBCs and is being developed as a therapeutic agent for the treatment of WBC diseases such as hematologic malignancies and autoimmune/inflammatory diseases. However, the mechanism by which interaction between LtxA and LFA-1 results in cell death is not well understood. Furthermore, how LtxA preferentially recognizes activated WBCs is not known. We show here that LtxA interacts specifically with LFA-1 in the active (exposed) conformation. In THP-1 monocytes, LtxA caused rapid activation of caspases, but LtxA could overcome the inhibition of caspases and still intoxicate. In contrast, inhibiting the vesicular trafficking pathway or cathepsin D release from the lysosome resulted in significant inhibition of LtxA-mediated cytotoxicity, indicating a more potent, lysosomal mediated cell death pathway. LtxA caused rapid disruption of the lysosomal membrane and release of lysosomal contents into the cytosol. Binding of LtxA to LFA-1 resulted in the internalization of both LtxA and LFA-1, with LtxA localizing specifically to the lysosomal compartment. To our knowledge, LtxA represents the first bacterial toxin shown to localize to the lysosome where it induces rapid cell death.
Collapse
Affiliation(s)
- Kristina M DiFranco
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Anukriti Gupta
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Lindsey E Galusha
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Jarelys Perez
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - To-Vy K Nguyen
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Camille D Fineza
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103
| | - Scott C Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103; Actinobac Biomed, Inc., North Brunswick, New Jersey 08902.
| |
Collapse
|
16
|
Perdomo-Arciniegas AM, Vernot JP. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int J Hematol 2011; 94:525-32. [PMID: 22127557 DOI: 10.1007/s12185-011-0970-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 01/25/2023]
Abstract
Hematopoietic stem cells (HSC) lose their capacity for engraftment during ex vivo cytokine expansion. It has been shown that mesenchymal stem cells (MSC) improve HSC transplantability; however, the molecular mechanisms responsible for this effect have not yet been completely elucidated. This paper reports that expanding HSC in co-culture with MSC enhances a vascular cell adhesion molecule (VCAM-1)-dependent pro-migratory phenotype. MSC did not regulate the HSC expression of CD49d (VCAM-1 counter-receptor molecule), but did decrease the cytokine-induced HSC VCAM-1-mediated pro-adhesive phenotype. Co-culture with MSC reduced the expression of the inactive conformation of lymphocyte function-associated antigen (LFA-1) at the HSC uropod, and induced higher expression of an LFA-1 activation epitope. Interestingly, VCAM-1-dependent HSC migration was modulated by targeting this LFA-1 high affinity form, suggesting integrin cross-regulation. VCAM-1-mediated HSC transmigration appeared to favor the more primitive HSC immunophenotype. Our results suggested that co-culture with MSC improved VCAM-1-dependent migration of primitive HSC, which was affected in ex vivo cytokine-expanded HSCs by a mechanism involving LFA-1 modulation.
Collapse
Affiliation(s)
- Ana-María Perdomo-Arciniegas
- Cellular and Molecular Physiology Group, Physiology Division, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | | |
Collapse
|
17
|
Lovastatin inhibits T-cell proliferation while preserving the cytolytic function of EBV, CMV, and MART-1-specific CTLs. J Immunother 2011; 33:975-82. [PMID: 20948439 DOI: 10.1097/cji.0b013e3181fb0486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Statin treatment has been shown to reduce graft-versus-host disease while preserving graft-versus-tumor effect in allogeneic stem cell transplantation. Herein, we investigated whether lovastatin treatment affects the function of human cytolytic T lymphocytes (CTLs). Upon T-cell receptor stimulation, lovastatin significantly inhibited the proliferation of both CD4+ and CD8+ T cells from healthy donors whereas their intracellular cytokine production including interferon-γ and tumor necrosis factor-α remained the same with a slight decrease of interleukin-2. Moreover, the specific lysis of target cells by CTL lines derived from patients and normal donors specific for Epstein-Barr virus-encoded antigen latent membrane protein-2 or cytomegalovirus-encoded antigen pp65 was uncompromised in the presence of lovastatin. In addition, we evaluated the effect of lovastatin on the proliferation and effector function of the CD8+ tumor-infiltrating lymphocytes (TILs) derived from melanoma patients specific for MART-1 antigen. Lovastatin significantly reduced the expansion of antigen-specific TILs upon MART-1 stimulation. However, the effector function of TILs, including the specific lysis of target cells and secretion of cytokine interferon-γ, remained intact with lovastatin treatment. Taken together, these data demonstrated that lovastatin inhibits the proliferation of Epstein-Barr virus, cytomegalovirus, and MART-1-specific CTLs without affecting cytolytic capacity. The differential effect of lovastatin on the proliferation versus cytotoxicity of CTLs might shed some light on elucidating the possible mechanisms of graft-versus-host disease and graft-versus-tumor effect elicited by alloimmune responses.
Collapse
|
18
|
Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, Siahaan TJ. Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Theranostics 2011; 1:277-89. [PMID: 21611107 PMCID: PMC3100608 DOI: 10.7150/thno/v01p0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 01/02/2023] Open
Abstract
The long-term objective of this project is to utilize the I-domain protein for the α-subunit of LFA-1 to target drugs to lymphocytes by binding to ICAM receptors on the cell surface. The short-term goal is to provide proof-of-concept that I-domain conjugated to small molecules can still bind to and uptake by ICAM-1 on the surface of lymphocytes (i.e., Raji cells). To accomplish this goal, the I-domain protein was labeled with FITC at several lysine residues to produce the FITC-I-domain and CD spectroscopy showed that the FITC-I-domain has a secondary structure similar to that of the parent I-domain. The FITC-I-domain was taken up by Raji cells via receptor-mediated endocytosis and its uptake can be blocked by anti-I-domain mAb but not by its isotype control. Antibodies to ICAM-1 enhance the binding of I-domain to ICAM-1, suggesting it binds to ICAM-1 at different sites than the antibodies. The results indicate that fluorophore modification does not alter the binding and uptake properties of the I-domain protein. Thus, I-domain could be useful as a carrier of drug to target ICAM-1-expressing lymphocytes.
Collapse
|
19
|
Chen W, Lou J, Zhu C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J Biol Chem 2010; 285:35967-78. [PMID: 20819952 PMCID: PMC2975219 DOI: 10.1074/jbc.m110.155770] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/30/2010] [Indexed: 11/06/2022] Open
Abstract
Binding of lymphocyte function-associated antigen-1 (LFA-1) to intercellular adhesion molecule-1 (ICAM-1) mediates leukocyte adhesion under force. Using a biomembrane force probe capable of measuring single bond interactions, we showed ICAM-1 binding to LFA-1 at different conformations, including the bent conformation with the lowest affinity. We quantify how force and conformations of LFA-1 regulate its kinetics with ICAM-1. At zero-force, on-rates were substantially changed by conditions that differentially favor a bent or extended LFA-1 with a closed or open headpiece; but off-rates were identical. With increasing force, LFA-1/ICAM-1 bond lifetimes (reciprocal off-rates) first increased (catch bonds) and then decreased (slip bonds). Three states with distinct off-rates were identified from lifetime distributions. Force shifted the associated fractions from the short- to intermediate- and long-lived states, producing catch bonds at low forces, but increased their off-rates exponentially, converting catch to slip bonds at high forces. An internal ligand antagonist that blocks pulling of the α(7)-helix suppressed the intermediate-/long-lived states and eliminated catch bonds, revealing an internal catch bond between the αA and βA domains. These results elucidate an allosteric mechanism for the mechanochemistry of LFA-1/ICAM-1 binding.
Collapse
Affiliation(s)
- Wei Chen
- From the Coulter Department of Biomedical Engineering
- Woodruff School of Mechanical Engineering, and
| | - Jizhong Lou
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 and
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhu
- From the Coulter Department of Biomedical Engineering
- Woodruff School of Mechanical Engineering, and
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 and
| |
Collapse
|
20
|
Carreño R, Brown WS, Li D, Hernandez JA, Wang Y, Kim TK, Craft JW, Komanduri KV, Radvanyi LG, Hwu P, Molldrem JJ, Legge GB, McIntyre BW, Ma Q. 2E8 binds to the high affinity I-domain in a metal ion-dependent manner: a second generation monoclonal antibody selectively targeting activated LFA-1. J Biol Chem 2010; 285:32860-32868. [PMID: 20724473 DOI: 10.1074/jbc.m110.111591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of leukocyte function-associated antigen-1 (LFA-1) plays a critical role in regulating immune responses. The metal ion-dependent adhesion site on the I-domain of LFA-1 α(L) subunit is the key recognition site for ligand binding. Upon activation, conformation changes in the I-domain can lead LFA-1 from the low affinity state to the high affinity (HA) state. Using the purified HA I-domain locked by disulfide bonds for immunization, we developed an mAb, 2E8, that specifically binds to cells expressing the HA LFA-1. The surface plasmon resonance analysis has shown that 2E8 only binds to the HA I-domain and that the dissociation constant (K(D)) for HA I-domain is 197 nm. The binding of 2E8 to the HA I-domain is metal ion-dependent, and the affinity decreased as Mn(2+) was replaced sequentially by Mg(2+) and Ca(2+). Surface plasmon resonance analysis demonstrates that 2E8 inhibits the interaction of HA I-domain and ICAM-1. Furthermore, we found that 2E8 can detect activated LFA-1 on both JY and Jurkat cells using flow cytometry and parallel plate adhesion assay. In addition, 2E8 inhibits JY cell adhesion to human umbilical vein endothelial cells and homotypic aggregation. 2E8 treatment reduces the proliferation of both human CD4(+) and CD8(+) T cells upon OKT3 stimulation without the impairment of their cytolytic function. Taken together, these data demonstrate that 2E8 is specific for the high affinity form of LFA-1 and that 2E8 inhibits LFA-1/ICAM-1 interactions. As a novel activation-specific monoclonal antibody, 2E8 is a potentially useful reagent for blocking high affinity LFA-1 and modulating T cell activation in research and therapeutics.
Collapse
Affiliation(s)
- Roberto Carreño
- From the Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Houston, Texas 77030
| | | | - Dan Li
- From the Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Houston, Texas 77030
| | - Jessica A Hernandez
- Department of Melanoma Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Yang Wang
- From the Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Houston, Texas 77030
| | - Tae Kon Kim
- Adult Stem Cell Transplant Program, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136
| | - John W Craft
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Krishna V Komanduri
- Adult Stem Cell Transplant Program, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136
| | - Laszlo G Radvanyi
- Department of Melanoma Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Patrick Hwu
- Department of Melanoma Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Jeffrey J Molldrem
- From the Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Houston, Texas 77030
| | - Glen B Legge
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | | | - Qing Ma
- From the Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, Houston, Texas 77030.
| |
Collapse
|
21
|
Watterson SH, Xiao Z, Dodd DS, Tortolani DR, Vaccaro W, Potin D, Launay M, Stetsko DK, Skala S, Davis PM, Lee D, Yang X, McIntyre KW, Balimane P, Patel K, Yang Z, Marathe P, Kadiyala P, Tebben AJ, Sheriff S, Chang CY, Ziemba T, Zhang H, Chen BC, DelMonte AJ, Aranibar N, McKinnon M, Barrish JC, Suchard SJ, Murali Dhar TG. Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521). J Med Chem 2010; 53:3814-30. [PMID: 20405922 DOI: 10.1021/jm100348u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.
Collapse
Affiliation(s)
- Scott H Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Y, Li D, Jones D, Bassett R, Sale GE, Khalili J, Komanduri KV, Couriel DR, Champlin RE, Molldrem JJ, Ma Q. Blocking LFA-1 activation with lovastatin prevents graft-versus-host disease in mouse bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15:1513-22. [PMID: 19896074 DOI: 10.1016/j.bbmt.2009.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Graft-versus-host disease (GVHD) following bone marrow transplantation (BMT) is mediated by alloreactive donor T lymphocytes. Migration and activation of donor-derived T lymphocytes play critical roles in the development of GVHD. Leukocyte function-associated antigen-1 (LFA-1) regulates T cell adhesion and activation. We previously demonstrated that the I-domain, the ligand-binding site of LFA-1, changes from the low-affinity state to the high-affinity state on LFA-1 activation. Therapeutic antagonists, such as statins, inhibit LFA-1 activation and immune responses by modulating the affinity state of the LFA-1 I-domain. In the present study, we report that lovastatin blocked mouse T cell adhesion, proliferation, and cytokine production in vitro. Furthermore, blocking LFA-1 in the low-affinity state with lovastatin reduced the mortality and morbidity associated with GVHD in a murine BMT model. Specifically, lovastatin prevented T lymphocytes from homing to lymph nodes and Peyer's patches during the GVHD initiation phase and after donor lymphocyte infusion (DLI) after the establishment of GVHD. In addition, treatment with lovastatin impaired donor-derived T cell proliferation in vivo. Taken together, these results indicate the important role of lovastatin in the treatment of GVHD.
Collapse
Affiliation(s)
- Yang Wang
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Li D, Nurieva R, Yang J, Sen M, Carreño R, Lu S, McIntyre BW, Molldrem JJ, Legge GB, Ma Q. LFA-1 affinity regulation is necessary for the activation and proliferation of naive T cells. J Biol Chem 2009; 284:12645-53. [PMID: 19297325 DOI: 10.1074/jbc.m807207200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of LFA-1 (lymphocyte function-associated antigen) is a critical event for T cell co-stimulation. The mechanism of LFA-1 activation involves both affinity and avidity regulation, but the role of each in T cell activation remains unclear. We have identified antibodies that recognize and block different affinity states of the mouse LFA-1 I-domain. Monoclonal antibody 2D7 preferentially binds to the low affinity conformation, and this specific binding is abolished when LFA-1 is locked in the high affinity conformation. In contrast, M17/4 can bind both the locked high and low affinity forms of LFA-1. Although both 2D7 and M17/4 are blocking antibodies, 2D7 is significantly less potent than M17/4 in blocking LFA-1-mediated adhesion; thus, blocking high affinity LFA-1 is critical for preventing LFA-1-mediated adhesion. Using these reagents, we investigated whether LFA-1 affinity regulation affects T cell activation. We found that blocking high affinity LFA-1 prevents interleukin-2 production and T cell proliferation, demonstrated by TCR cross-linking and antigen-specific stimulation. Furthermore, there is a differential requirement of high affinity LFA-1 in the activation of CD4(+) and CD8(+) T cells. Although CD4(+) T cell activation depends on both high and low affinity LFA-1, only high affinity LFA-1 provides co-stimulation for CD8(+) T cell activation. Together, our data demonstrated that the I-domain of LFA-1 changes to the high affinity state in primary T cells, and high affinity LFA-1 is critical for facilitating T cell activation. This implicates LFA-1 activation as a novel regulatory mechanism for the modulation of T cell activation and proliferation.
Collapse
Affiliation(s)
- Yang Wang
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carreño R, Li D, Sen M, Nira I, Yamakawa T, Ma Q, Legge GB. A mechanism for antibody-mediated outside-in activation of LFA-1. J Biol Chem 2008; 283:10642-8. [PMID: 18199751 DOI: 10.1074/jbc.m704699200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEM83 is an inserted domain (I-domain)-specific antibody that up-regulates the interaction of LFA-1 with ICAM-1 through an outside-in activation mechanism. We demonstrate here that there is no change in the affinity of the MEM83 antibody for the I-domain in either its low (wild-type) or high affinity form and that MEM83 does not enhance the binding of the wild-type I-domain to ICAM-1. Furthermore, we show that the antibody acts as an activating agent to induce LFA-1/ICAM-1-dependent homotypic cell aggregation only as an IgG, but not as a Fab fragment. On the basis of these data, we propose an avidity-based mechanism that requires no direct activation of the LFA-1 I-domain by the binding of the antibody; rather, activation is enhanced when there is an interaction with both arms of the IgG. A molecular model of the antibody interaction with LFA-1 illustrates the symmetry and accessibility of the two MEM83 epitopes across the LFA-1/ICAM-1 heterotetramer. We hypothesize that MEM83 stabilizes adjacent LFA-1 molecules in their active form by the free energy that is gained from the binding of the I-domains to each arm of the IgG. This leads to stabilization of the open state of the integrin and outside-in signaling. Our model supports a mechanism in which both affinity and avidity regulation are required in the activation of LFA-1.
Collapse
Affiliation(s)
- Roberto Carreño
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A 2007; 104:4095-100. [PMID: 17360483 PMCID: PMC1820714 DOI: 10.1073/pnas.0608491104] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silencing gene expression by RNAi is a powerful method for exploring gene function and validating drug targets and potentially for therapy. Lymphocytes and other primary blood cells are resistant to lipid-based transfection in vitro and are difficult to target in vivo. We show here that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells. Moreover, a fusion protein constructed from an antibody that preferentially recognizes activation-dependent conformational changes in LFA-1 selectively targets activated leukocytes and can be used to suppress gene expression and cell proliferation only in activated lymphocytes. The siRNA-fusion protein complexes do not cause lymphocyte activation or induce IFN responses. K562 cells expressing latent WT or constitutively activated LFA-1 engrafted in the lungs of SCID mice are selectively targeted by intravenously injected fusion protein-siRNA complexes, demonstrating the potential in vivo applicability of LFA-1-directed siRNA delivery.
Collapse
Affiliation(s)
- Dan Peer
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
| | - Pengcheng Zhu
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
| | - Christopher V. Carman
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Judy Lieberman
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail:
and
| | - Motomu Shimaoka
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
- To whom correspondence may be addressed. E-mail:
and
| |
Collapse
|
26
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
27
|
Dunehoo AL, Anderson M, Majumdar S, Kobayashi N, Berkland C, Siahaan TJ. Cell Adhesion Molecules for Targeted Drug Delivery. J Pharm Sci 2006; 95:1856-72. [PMID: 16850395 DOI: 10.1002/jps.20676] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid advancement of the understanding of the structure and function of cell adhesion molecules (i.e., integrins, cadherins) has impacted the design and development of drugs (i.e., peptide, proteins) with the potential to treat cancer and heart and autoimmune diseases. For example, RGD peptides/peptidomimetics have been marketed as anti-thrombic agents and are being investigated for inhibiting tumor angiogenesis. Other cell adhesion peptides derived from ICAM-1 and LFA-1 sequences were found to block T-cell adhesion to vascular endothelial cells and epithelial cells; these peptides are being investigated for treating autoimmune diseases. Recent findings suggest that cell adhesion receptors such as integrins can internalize their peptide ligands into the intracellular space. Thus, many cell adhesion peptides (i.e., RGD peptide) were used to target drugs, particles, and diagnostic agents to a specific cell that has increased expression of cell adhesion receptors. This review is focused on the utilization of cell adhesion peptides and receptors in specific targeted drug delivery, diagnostics, and tissue engineering. In the future, more information on the mechanism of internalization and intracellular trafficking of cell adhesion molecules will be exploited for delivering drug molecules to a specific type of cell or for diagnosis of cancer and heart and autoimmune diseases.
Collapse
Affiliation(s)
- Alison L Dunehoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
28
|
Cairo CW, Mirchev R, Golan DE. Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering. Immunity 2006; 25:297-308. [PMID: 16901728 DOI: 10.1016/j.immuni.2006.06.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 05/19/2006] [Accepted: 06/06/2006] [Indexed: 11/21/2022]
Abstract
The alpha(L)beta(2) integrin (leukocyte function-associated antigen-1 [LFA-1]) is regulated to engage and maintain T cell adhesion. Conformational changes in the receptor are associated with changes in receptor-ligand affinity and are necessary for firm adhesion. Less well understood is the relationship between receptor conformation and the regulation of its lateral mobility. We have used fluorescence photobleaching recovery and single-particle tracking to measure the lateral mobility of specific conformations of LFA-1. These measurements show that different receptor conformations have distinct diffusion profiles and that these profiles vary according to the activation state of the cell. Notably, a high-affinity conformation of LFA-1 is mobile on resting cells but immobile on phorbol-12-myristate-13-acetate-activated cells. This activation-induced immobilization is prevented by a calpain inhibitor and by an allosteric LFA-1 inhibitor. Our results suggest that current models of LFA-1 regulation are incomplete and that LFA-1 confinement by cytoskeletal attachment regulates cell adhesion both negatively and positively.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
29
|
Anderson ME, Tejo BA, Yakovleva T, Siahaan TJ. Characterization of Binding Properties of ICAM-1 Peptides to LFA-1: Inhibitors of T-cell Adhesion. Chem Biol Drug Des 2006; 68:20-8. [PMID: 16923022 DOI: 10.1111/j.1747-0285.2006.00407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we characterized the binding site of two intercellular adhesion molecule-1-derived cyclic peptides, cIBC and cIBR, to the LFA-1 on the surface of T cells. These peptides had been able to inhibit LFA-1/intercellular adhesion molecule-1 signal by blocking the signal-2 of immune synapse. Both peptides prefer to bind to the closed form of LFA-1 I-domain, indicating that two peptides act as allosteric inhibitors against intercellular adhesion molecule-1. Binding site mapping using monoclonal antibodies proposes that cIBC binds to around residues 266-272 of LFA-1 I-domain where this site is adjacent to the metal ion-dependent adhesion site. On the other hand, cIBR binds to the pocket called L-site where is distant from metal ion-dependent adhesion site. Cross-inhibition mapping between two peptides show that cIBR could inhibit the binding of cIBC but not vice versa, suggesting that cIBR has some properties that allow this peptide bind to more than one site. Structural comparison between cIBC and cIBR reveals that cIBR is more flexible than cIBC, allowing this peptide bind to exposed region, such as cIBC-binding site as well as cramped pocket like L-site. Our findings are important for understanding the selectivity of cIBC and cIBR peptides; thus, they can be conjugated with drugs and transported specifically to the target.
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
30
|
Yakubenko VP, Yadav SP, Ugarova TP. Integrin alphaDbeta2, an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 2005; 107:1643-50. [PMID: 16239428 PMCID: PMC1367263 DOI: 10.1182/blood-2005-06-2509] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integrin alphaDbeta2, the most recently discovered member of the beta2 subfamily of integrin adhesion receptors, is up-regulated on macrophage foam cells. Although other members of the subfamily have been subjects of extensive research, the recognition specificity and the molecular basis for alphaDbeta2 ligand binding remain unknown. Based on the high extent of structural homology between alphaDbeta2 and the major myeloid-cell-specific integrin alphaMbeta2 (Mac-1), noted for its capacity to bind multiple ligands, we considered that the 2 integrins have similar recognition specificity. In this study, using recombinant and natural alphaDbeta2-expressing cells, we demonstrate that alphaDbeta2 supports adhesion and migration to many extracellular matrix proteins in a fashion similar to alphaMbeta2. Consistent with these data, the recombinant alphaDI-domain of the receptor bound selected ligands. The binding was activation-dependent because the alphaDI-domain with its C-terminal alpha7 helix truncated, but not the form with the C-terminal part extended, bound ligands. When the alphaDI-domain segment Lys244-Lys260 (highly homologous to its alphaMI-domain counterpart Lys245-Arg261 responsible for alphaMbeta2 multiligand-binding properties) was inserted into the mono-specific alphaLI-domain, the chimeric protein bound many ligands with affinities similar to those of wild-type alphaDI-domain. These results establish integrin alphaDbeta2 as a multiligand receptor and indicate that the mechanism whereby alphaDbeta2 exhibits broad ligand specificity resembles that used by alphaMbeta2, the most promiscuous member of the integrin family.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | | | |
Collapse
|
31
|
Chou YK, Edwards DM, Weinberg AD, Vandenbark AA, Kotzin BL, Fontenot AP, Burrows GG. Activation pathways implicate anti-HLA-DP and anti-LFA-1 antibodies as lead candidates for intervention in chronic berylliosis. THE JOURNAL OF IMMUNOLOGY 2005; 174:4316-24. [PMID: 15778396 DOI: 10.4049/jimmunol.174.7.4316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells play a key role in granulomatous inflammation in the lung of patients with chronic beryllium disease. The goal of this study was to characterize activation pathways of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells from chronic beryllium disease patients to identify possible therapeutic interventional strategies. Our results demonstrate that in the presence of APCs, beryllium induced strong proliferation responses of BAL CD4(+) T cells, production of superoptimal concentrations of secreted proinflammatory cytokines, IFN-gamma, TNF-alpha,and IL-2, and up-regulation of numerous T cell surface markers that would promote T-T Ag presentation. Ab blocking experiments revealed that anti-HLA-DP or anti-LFA-1 Ab strongly reduced proliferation responses and cytokine secretion by BAL CD4(+) T cells. In contrast, anti-HLA-DR or anti-OX40 ligand Ab mainly affected beryllium-induced proliferation responses with little impact on cytokines other than IL-2, thus implying that nonproliferating BAL CD4(+) T cells may still contribute to inflammation. Blockade with CTLA4-Ig had a minimal effect on proliferation and cytokine responses, confirming that activation was independent of B7/CD28 costimulation. These results indicate a prominent role for HLA-DP and LFA-1 in BAL CD4(+) T cell activation and further suggest that specific Abs to these molecules could serve as a possible therapy for chronic beryllium disease.
Collapse
Affiliation(s)
- Yuan K Chou
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Song G, Yang Y, Liu JH, Casasnovas JM, Shimaoka M, Springer TA, Wang JH. An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2. Proc Natl Acad Sci U S A 2005; 102:3366-71. [PMID: 15728350 PMCID: PMC552929 DOI: 10.1073/pnas.0500200102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the Ig superfamily (IgSF), intercellular adhesion molecules (ICAMs) form a subfamily that binds the leukocyte integrin alphaLbeta2. We report a 1.65-A-resolution crystal structure of the ICAM-3 N-terminal domain (D1) in complex with the inserted domain, the ligand-binding domain of alphaLbeta2. This high-resolution structure and comparisons among ICAM subfamily members establish that the binding of ICAM-3 D1 onto the inserted domain represents a common docking mode for ICAM subfamily members. The markedly different off-rates of ICAM-1, -2, and -3 appear to be determined by the hydrophobicity of residues that surround a metal coordination bond in the alphaLbeta2-binding interfaces. Variation in composition of glycans on the periphery of the interfaces influences on-rate.
Collapse
Affiliation(s)
- Gang Song
- CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Vitte J, Benoliel AM, Eymeric P, Bongrand P, Pierres A. Beta-1 integrin-mediated adhesion may be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering. Biophys J 2005; 86:4059-74. [PMID: 15189901 PMCID: PMC1304306 DOI: 10.1529/biophysj.103.038778] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of cell integrin receptors involves modulation of membrane expression, shift between different affinity states, and topographical redistribution on the cell membrane. Here we attempted to assess quantitatively the functional importance of receptor clustering. We studied beta-1 integrin-mediated attachment of THP-1 cells to fibronectin-coated surfaces under low shear flow. Cells displayed multiple binding events with a half-life of the order of 1 s. The duration of binding events after the first second after arrest was quantitatively accounted for by a model assuming the existence of a short-time intermediate binding state with 3.6 s(-1) dissociation rate and 1.3 s(-1) transition frequency toward a more stable state. Cell binding to surfaces coated with lower fibronectin densities was concluded to be mediated by single molecular interactions, whereas multiple bonds were formed <1 s after contact with higher fibronectin surface densities. Cell treatment with microfilament inhibitors or a neutral antiintegrin antibody decreased bond number without changing aforementioned kinetic parameters whereas a function enhancing antibody increased the rate of bond formation and/or the lifetime of intermediate state. Receptor aggregation was induced by treating cells with neutral antiintegrin antibody and antiimmunoglobulin antibodies. A semiquantitative confocal microscopy study suggested that this treatment increased between 40% and 100% the average number of integrin receptors located in a volume of approximately 0.045 microm(3) surrounding each integrin. This aggregation induced up to 2.7-fold increase of the average number of bonds. Flow cytometric analysis of fluorescent ligand binding showed that THP-1 cells displayed low-affinity beta-1 integrins with a dissociation constant in the micromolar range. It is concluded that the initial step of cell adhesion was mediated by multiple incomplete bonds rather than a single equilibrium-state ligand receptor association. This interpretation accounts for the functional importance of integrin clustering.
Collapse
Affiliation(s)
- Joana Vitte
- Laboratoire d'Immunologie, Institut National de la Sante et de la Recherche Medicale U600, Centre National de la Recherche Scientifique FRE2059, Hopital de Ste-Marguerite, Marseille, France
| | | | | | | | | |
Collapse
|
34
|
Patcha V, Wigren J, Winberg ME, Rasmusson B, Li J, Särndahl E. Differential inside-out activation of beta2-integrins by leukotriene B4 and fMLP in human neutrophils. Exp Cell Res 2004; 300:308-19. [PMID: 15474996 DOI: 10.1016/j.yexcr.2004.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/24/2004] [Indexed: 11/25/2022]
Abstract
We have investigated how LTB4, an endogenous chemoattractant encountered early in the inflammatory process, and fMLP, a bacteria-derived chemotactic peptide emanating from the site of infection, mediate inside-out regulation of the beta2-integrin. The role of the two chemoattractants on beta2-integrin avidity was investigated by measuring their effect on beta2-integrin clustering and surface mobility, whereas their effect on beta2-integrin affinity was measured by the expression of a high affinity epitope, a ligand-binding domain on beta2-integrins, and by integrin binding to s-ICAM. We find that the two chemoattractants modulate the beta2-integrin differently. LTB4 induces an increase in integrin clustering and surface mobility, but only a modest increase in integrin affinity. fMLP evokes a large increase in beta2-integrin affinity as well as in clustering and mobility. Lipoxin, which acts as a stop signal for the functions mediated by pro-inflammatory agents, was used as a tool for further examining the inside-out mechanisms. While LTB4-induced integrin clustering and mobility were inhibited by lipoxin, only a minor inhibition of fMLP-induced beta2-integrin avidity and no inhibition of integrin affinity were detected. The different modes of the inside-out regulation of beta2-integrins suggest that distinct mechanisms are involved in the beta2-integrin modulation induced by various chemoattractants.
Collapse
Affiliation(s)
- Veronika Patcha
- Division of Cell Biology/IBK, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Calvete JJ. Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3. Exp Biol Med (Maywood) 2004; 229:732-44. [PMID: 15337827 DOI: 10.1177/153537020422900805] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Integrins are heterodimeric type I transmembrane cell-adhesive receptors whose affinity for ligands is regulated by tertiary and quaternary conformational changes that are transmitted from the cytoplasmic tails to the extracellular ectodomains during the transition from the inactive to the active state. Receptor occupancy initiates further structural alterations that transduce signals across the plasma membrane and result in receptor clustering and recruitment of signaling molecules and cytoskeletal rearrangements at the integrin's cytoplasmic domains. The large distance between the intracellular cytoplasmic domains and the ligand-binding site, which in an extended conformation spans more that 200 A, imposes a complex mechanism of interdomain communication for the bidirectional information flow across the plasma membrane. Significant progress has recently been made in elucidating the crystal and electron microscopy structures of integrin ectodomains in its unliganded and liganded states, and the nuclear magnetic resonance solution structures of stalk domains and the cytoplasmic tails. These structures revealed the location of sites that are functionally important and provided the basis for defining new models of integrin activation and signaling through bidirectional conformational changes, and for understanding the structural basis of the cation-dependent ligand-binding specificity of integrins. Platelet integrin alphaIIbbeta3 has served as a paradigm for many aspects of the structure and function of integrins The aim of this minireview is to combine recent structural and biochemical studies on integrin receptors that converge into a model of the tertiary and quaternary conformational changes in alphaIIbbeta3 and other homologous integrins that propagate inside-out and outside-in signals.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, C.S.I.C., 46010, Valencia, Spain.
| |
Collapse
|
36
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
37
|
Anderson ME, Siahaan TJ. Mechanism of binding and internalization of ICAM-1-derived cyclic peptides by LFA-1 on the surface of T cells: a potential method for targeted drug delivery. Pharm Res 2004; 20:1523-32. [PMID: 14620502 DOI: 10.1023/a:1026188212126] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Peptides derived from the Domain 1 of the adhesion molecule ICAM-1(1-21) are being developed as targeting ligands for LFA-1 receptors expressed on activated T cells. This work aims to elucidate the binding and internalization of ICAM-1-derived cyclic peptides (cIBL, cIBC, and cIBR) to LFA-1. METHODS Ninety-six-well plates coated with soluble LFA-1 (sLFA-1) were used to characterize the binding of FITC-labeled peptide. An anti-CD11a antibody to the I-domain of LFA-1 was used to inhibit the binding of these peptides, which was quantified using a fluorescence plate reader. An unrelated FITC-labeled cyclic peptide was used as a negative control, and PE-labeled anti-CD11a antibodies (PE-R3.2 and PE-R7.1) were used as positive controls. Peptide binding to cell surface LFA-1 was visualized using colocalization of FITC-cIBR peptide and PE-labeled anti-CD18 antibody (LFA-1 beta-subunit) on SKW-3 T cells by fluorescent microscopy. Inhibition of ICAM-1 binding to LFA-1 by peptides was evaluated using a Biacore assay. Binding and internalization of FITC-labeled peptides were evaluated by flow cytometry and confocal microscopy at 4 degrees C and 37 degrees C. RESULTS These FITC-labeled cyclic peptides bind to sLFA-1 and can be blocked by an anti-CD11a antibody to the I-domain, suggesting that their binding site is on the I-domain of LFA-1. The FITC-cIBR peptide was localized with an anti-CD18 antibody on the surface of T cells, indicating that the FITC-cIBR peptide binds to LFA-1 on the cell surface. Flow cytometry and confocal microscopy demonstrated that FITC-labeled peptides were internalized in a temperature-dependent manner. Biacore analysis demonstrated that these peptides did not inhibit sICAM-1 from binding to immobilized sLFA-1. However, the binding properties of the soluble forms of LFA-1 and ICAM-1 may not correlate to their interaction at the cell surface. CONCLUSIONS Cyclic ICAM-1-derived peptides (cIBL, cIBC, and cIBR) bind to the I-domain of LFA-1 and are internalized by LFA-1 receptors on the surface of T cells. Therefore, these peptides could be used to target and deliver drugs to the cytoplasmic domain of T cells.
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
38
|
Carman CV, Springer TA. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol 2004; 15:547-56. [PMID: 14519389 DOI: 10.1016/j.ceb.2003.08.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Integrins play critical roles in development, wound healing, immunity and cancer. Central to their function is their unique ability to modulate dynamically their adhesiveness through both affinity- and valency-based mechanisms. Recent advances have shed light on the structural basis for affinity regulation and on the signaling mechanisms responsible for both affinity and valency modes of regulation.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Blood Research, Harvard Medical School, Department of Pathology, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Anderson ME, Siahaan TJ. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides 2003; 24:487-501. [PMID: 12732350 DOI: 10.1016/s0196-9781(03)00083-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review describes the role of modulation of intracellular adhesion molecule-1 (ICAM-1)/leukocyte function-associated antigen-1 (LFA-1) interaction in controlling autoimmune diseases or inducing immunotolerance. ICAM-1/LFA-1 interaction is essential for T-cell activation as well as for migration of T-cells to target tissues. This interaction also functions, along with Signal-1, as a co-stimulatory signal (Signal-2) for T-cell activation, which is delivered by the T-cell receptors (TCR)-major histocompatibility complex (MHC)-peptide complex. Therefore, blocking ICAM-1/LFA-1 interaction can suppress T-cell activation in autoimmune diseases and organ transplantation. Many types of inhibitors (i.e. antibodies, peptides, small molecules) have been developed to block ICAM-1/LFA-1 interactions, and some of these molecules have reached clinical trials. Peptides derived from ICAM-1 and LFA-1 sequences have been shown to inhibit T-cell adhesion and activation. In addition, these inhibitors have been useful in elucidating the mechanism of ICAM-1/LFA-1 interaction. Besides binding to LFA-1, the ICAM-1 peptide can be internalized by LFA-1 receptors into the cytoplasmic domain of T-cells. Therefore, this ICAM-1 peptide can be utilized to selectively target toxic drugs to T-cells, thus avoiding harmful side effects. Finally, bi-functional inhibitory peptide (BPI), which is made by conjugating the antigenic peptide and an LFA-1 peptide, can alter the T-cell commitment from T-helper-1 (Th1) to T-helper-2 (Th2)-like cells, suggesting that this peptide may have a role in blocking the formation of the "immunological synapse."
Collapse
Affiliation(s)
- Meagan E Anderson
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | |
Collapse
|
40
|
Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 2003; 112:99-111. [PMID: 12526797 PMCID: PMC4372089 DOI: 10.1016/s0092-8674(02)01257-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structure of the I domain of integrin alpha L beta 2 bound to the Ig superfamily ligand ICAM-1 reveals the open ligand binding conformation and the first example of an integrin-IgSF interface. The I domain Mg2+ directly coordinates Glu-34 of ICAM-1, and a dramatic swing of I domain residue Glu-241 enables a critical salt bridge. Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligand binding. Pulling down on the C-terminal alpha 7 helix with introduced disulfide bonds ratchets the beta 6-alpha 7 loop into three different positions in the closed, intermediate, and open conformations, with a progressive increase in affinity.
Collapse
Affiliation(s)
- Motomu Shimaoka
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
| | - Tsan Xiao
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
| | - Jin-Huan Liu
- Dana-Farber Cancer Institute, Department of Pediatrics, Department of Medicine, Department of Biological Chemistry, Department of Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yuting Yang
- Dana-Farber Cancer Institute, Department of Pediatrics, Department of Medicine, Department of Biological Chemistry, Department of Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yicheng Dong
- Dana-Farber Cancer Institute, Department of Pediatrics, Department of Medicine, Department of Biological Chemistry, Department of Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Chang-Duk Jun
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
| | - Alison McCormack
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
| | - Rongguang Zhang
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Junichi Takagi
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
| | - Jia-Huai Wang
- Dana-Farber Cancer Institute, Department of Pediatrics, Department of Medicine, Department of Biological Chemistry, Department of Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Correspondence: (T.A.S.), (J.-H.W.)
| | - Timothy A. Springer
- The Center for Blood Research, Department of Pathology, Department of Anesthesia, Department of Pediatrics, Boston, Massachusetts 02115
- Correspondence: (T.A.S.), (J.-H.W.)
| |
Collapse
|
41
|
Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 2002; 13:3369-87. [PMID: 12388743 PMCID: PMC129952 DOI: 10.1091/mbc.e02-05-0259] [Citation(s) in RCA: 535] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The von Willebrand A (VWA) domain is a well-studied domain involved in cell adhesion, in extracellular matrix proteins, and in integrin receptors. A number of human diseases arise from mutations in VWA domains. We have analyzed the phylogenetic distribution of this domain and the relationships among approximately 500 proteins containing this domain. Although the majority of VWA-containing proteins are extracellular, the most ancient ones, present in all eukaryotes, are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport, and the proteasome. A common feature seems to be involvement in multiprotein complexes. Subsequent evolution involved deployment of VWA domains by Metazoa in extracellular proteins involved in cell adhesion such as integrin beta subunits (all Metazoa). Nematodes and chordates separately expanded their complements of extracellular matrix proteins containing VWA domains, whereas plants expanded their intracellular complement. Chordates developed VWA-containing integrin alpha subunits, collagens, and other extracellular matrix proteins (e.g., matrilins, cochlin/vitrin, and von Willebrand factor). Consideration of the known properties of VWA domains in integrins and extracellular matrix proteins allows insights into their involvement in protein-protein interactions and the roles of bound divalent cations and conformational changes. These allow inferences about similar functions in novel situations such as protease regulators (e.g., complement factors and trypsin inhibitors) and intracellular proteins (e.g., helicases, chelatases, and copines).
Collapse
Affiliation(s)
- Charles A Whittaker
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Abstract
Among adhesion receptor families, integrins are particularly important in biological processes that require rapid modulation of adhesion and de-adhesion. Activation on a timescale of < 1 s of beta2 integrins on leukocytes and beta3 integrins on platelets enables deposition of these cells at sites of inflammation or vessel wall injury. Recent crystal, nuclear magnetic resonance (NMR), and electron microscope (EM) structures of integrins and their domains lead to a unifying mechanism of activation for both integrins that contain and those that lack an inserted (I) domain. The I domain adopts two alternative conformations, termed open and closed. In striking similarity to signaling G-proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations that stabilize a particular conformation show that the open conformation has high affinity for ligand, whereas the closed conformation has low affinity. Movement of the C-terminal alpha-helix 10 A down the side of the domain in the open conformation is sufficient to increase affinity at the distal ligand-binding site 9,000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. Recent structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the integrin headpiece, and a critical role for integrin epidermal growth factor (EGF) domains in the stalk region. The headpiece of the integrin faces down towards the membrane in the inactive conformation, and extends upward in a "switchblade"-like opening upon activation. These long-range structural rearrangements of the entire integrin molecule involving interdomain contacts appear closely linked to conformational changes within the I and I-like domains, which result in increased affinity and competence for ligand binding.
Collapse
Affiliation(s)
- Junichi Takagi
- The Center for Blood Research, Department of Pathology, Harvard Medical School, Boston 02115, Massachusetts, USA
| | | |
Collapse
|
43
|
Artym VV, Petty HR. Molecular proximity of Kv1.3 voltage-gated potassium channels and beta(1)-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J Gen Physiol 2002; 120:29-37. [PMID: 12084773 PMCID: PMC2311400 DOI: 10.1085/jgp.20028607] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of beta1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti-beta1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K(+) channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between beta1-integrins and Kv1.3 channels. However, the irrelevant K(+) channel blocker apamin had no effect on RET between beta1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with beta1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins.
Collapse
Affiliation(s)
- Vira V Artym
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|