1
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhao T, Li M, Wang Y, Cao J, Liu Y, Wang Z, Cheng G. Protective Effect of Que Zui Tea on d-Galactose-Induced Oxidative Stress Damage in Mice via Regulating SIRT1/Nrf2 Signaling Pathway. Molecules 2024; 29:1384. [PMID: 38543018 PMCID: PMC10975416 DOI: 10.3390/molecules29061384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1β and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yongchao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Mengcheng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yudan Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| |
Collapse
|
3
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
4
|
Samuelson DR, Haq S, Knoell DL. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front Cell Dev Biol 2022; 10:924820. [PMID: 35832795 PMCID: PMC9273032 DOI: 10.3389/fcell.2022.924820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Daren L. Knoell,
| |
Collapse
|
5
|
Ogle MM, Trevino R, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants (Basel) 2022; 11:635. [PMID: 35453320 PMCID: PMC9024550 DOI: 10.3390/antiox11040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment. In this regard, it is becoming increasingly clear that the loss or disruption of mitochondrial oxidant scavenging enzymes may be, in specific tumors, either an early event in transformation or exhibit tumor-promoting properties. One example of such an antioxidant enzyme is manganese superoxide dismutase (MnSOD, also referred to as SOD2), which detoxifies superoxide, a ROS that has been shown, when its normal physiological levels are disrupted, to lead to oncogenicity and therapy resistance. Here, we will also discuss how the acetylation of MnSOD leads to a change in detoxification function that leads to a cellular environment permissive for the development of lineage plasticity-like properties that may be one mechanism leading to tumorigenic and therapy-resistant phenotypes.
Collapse
Affiliation(s)
- Meredith M. Ogle
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Emily Relton
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
7
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules*. Angew Chem Int Ed Engl 2021; 60:15302-15306. [PMID: 33876544 PMCID: PMC8456511 DOI: 10.1002/anie.202104308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Indexed: 12/03/2022]
Abstract
Stress granules (SGs) are membrane-less organelles that assemble in the cytoplasm to organize cellular contents and promote rapid adaptation during stress. To understand how SGs contribute to physiological functions, we used electrochemical measurements to detect electroactive species in SGs. With amperometry, we discovered that reactive oxygen species (ROS) are encapsulated inside arsenite-induced SGs, and H2 O2 is the main species. The release kinetics of H2 O2 from single SGs and the number of H2 O2 molecules were quantified. The discovery that SGs contain ROS implicates them as communicators of the cellular stresses rather than a simple endpoint. This may explain how SGs regulate cellular metabolism and stress responses. This may also help better understand their cytoprotective functions in pathological conditions associated with SGs such as neurodegenerative diseases (NDs), cancers and viral infections.
Collapse
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Emily Relton
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nicolas Locker
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
8
|
Moshfegh CM, Case AJ. The Redox-Metabolic Couple of T Lymphocytes: Potential Consequences for Hypertension. Antioxid Redox Signal 2021; 34:915-935. [PMID: 32237890 PMCID: PMC8035925 DOI: 10.1089/ars.2020.8042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
Significance: T lymphocytes, as part of the adaptive immune system, possess the ability to activate and function in extreme cellular microenvironments, which requires these cells to remain highly malleable. One mechanism in which T lymphocytes achieve this adaptability is by responding to cues from both reactive oxygen and nitrogen species, as well as metabolic flux, which together fine-tune the functional fate of these adaptive immune cells. Recent Advances: To date, examinations of the redox and metabolic effects on T lymphocytes have primarily investigated these biological processes as separate entities. Given that the redox and metabolic environments possess significant overlaps of pathways and molecular species, it is inevitable that perturbations in one environment affect the other. Recent consideration of this redox-metabolic couple has demonstrated the strong link and regulatory consequences of these two systems in T lymphocytes. Critical Issues: The redox and metabolic control of T lymphocytes is essential to prevent dysregulated inflammation, which has been observed in cardiovascular diseases such as hypertension. The role of the adaptive immune system in hypertension has been extensively investigated, but the understanding of how the redox and metabolic environments control T lymphocytes in this disease remains unclear. Future Directions: Herein, we provide a discussion of the redox and metabolic control of T lymphocytes as separate entities, as well as coupled to one another, to regulate adaptive immunity. While investigations examining this pair together in T lymphocytes are sparse, we speculate that T lymphocyte destiny is shaped by the redox-metabolic couple. In contrast, disrupting this duo may have inflammatory consequences such as hypertension.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Andreyev AY, Kushnareva YE, Starkova NN, Starkov AA. Metabolic ROS Signaling: To Immunity and Beyond. BIOCHEMISTRY (MOSCOW) 2021; 85:1650-1667. [PMID: 33705302 PMCID: PMC7768995 DOI: 10.1134/s0006297920120160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a critical determinant of immune cell functionality. Immunometabolism, by definition, is a multidisciplinary area of immunology research that integrates the knowledge of energy transduction mechanisms and biochemical pathways. An important concept in the field is metabolic switch, a transition of immune cells upon activation to preferential utilization of select catabolic pathways for their energy needs. Mitochondria are not inert in this process and contribute to the metabolic adaptation by different mechanisms which include increasing ATP production to match dynamic bioenergetic demands and serving as a signaling platform. The latter involves generation of reactive oxygen species (ROS), one of the most intensively studied mitochondrial processes. While the role of mitochondrial ROS in the context of oxidative stress is well established, ROS signaling in immunity is an emerging and quickly changing field. In this review, we discuss ROS signaling and immunometabolism concepts from the standpoint of bioenergetics. We also provide a critical insight into the methodology for ROS assessment, outlining current challenges in the field. Finally, based on our analysis of the literature data, we hypothesize that regulatory ROS production, as opposed to oxidative stress, is controlled by mitochondrial biogenesis rather than metabolic switches.
Collapse
Affiliation(s)
- A Y Andreyev
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Y E Kushnareva
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - N N Starkova
- State University of New York, Maritime College, New York, NY 10465, USA.
| | - A A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
10
|
CTRP3 Activates the AMPK/SIRT1-PGC-1α Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke. Neurochem Res 2020; 45:3045-3058. [DOI: 10.1007/s11064-020-03152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
11
|
Metformin enhances protection in guinea pigs chronically infected with Mycobacterium tuberculosis. Sci Rep 2020; 10:16257. [PMID: 33004826 PMCID: PMC7530990 DOI: 10.1038/s41598-020-73212-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a chronic inflammatory disease that is often associated with alterations in systemic and cellular metabolism that resolves following successful antimicrobial drug treatment. We hypothesized that altered systemic glucose metabolism as a consequence of Mycobacterium tuberculosis (Mtb) infection, contributes to TB pathogenesis, and when normalized with anti-glycemic drugs would improve clinical outcomes. To test this hypothesis, guinea pigs were treated daily with the anti-diabetic drug metformin starting 4 weeks prior or concurrent with aerosol exposure to the H37Rv strain of Mtb. In the chronic stages of infection, Mtb infected metformin-treated animals had restored systemic insulin sensitivity but remained glucose intolerant as determined by oral glucose tolerance testing. Despite persistent glucose intolerance, metformin-treated guinea pigs had a 2.8-fold reduction in lung lesion burden and a 0.7 log decrease in CFUs. An alternative hypothesis that metformin treatment improved clinical disease by having a direct effect on immune cell energy metabolism was tested using extracellular flux analysis and flow cytometry. The proinflammatory immune response to Mtb infection in untreated guinea pigs was associated with a marked increase in energy metabolism (glycolysis and mitochondrial respiration) of peripheral blood mononuclear cells (PBMCs), which was normalized in metformin-treated guinea pigs. Moreover, both CD4+ and CD8+ T lymphocytes from Mtb infected, metformin treated animals maintained a more normal mitochondrial membrane potential while those isolated from untreated animals had persistent mitochondrial hyperpolarization. These data suggest that metformin promotes natural host resistance to Mtb infection by maintaining immune cell metabolic homeostasis and function during the chronic stages of active TB disease.
Collapse
|
12
|
Rahman J, Singh P, Merle NS, Niyonzima N, Kemper C. Complement's favourite organelle-Mitochondria? Br J Pharmacol 2020; 178:2771-2785. [PMID: 32840864 PMCID: PMC8359399 DOI: 10.1111/bph.15238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell‐autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system—the complosome—controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement—not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome–mitochondria relationship and also discuss key questions surrounding this novel research area.
Collapse
Affiliation(s)
- Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, Cuervo AM, Sen R, Ferrucci L. Age-associated changes in human CD4 + T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY) 2019; 11:9234-9263. [PMID: 31707363 PMCID: PMC6874450 DOI: 10.18632/aging.102438] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
To gain understanding on the mechanisms that drive immunosenescence in humans, we examined CD4+ T cells obtained from younger (20-39 years-old) and older (70+ years-old) healthy participants of the Baltimore Longitudinal Study on Aging (BLSA). We found that mitochondrial proteins involved in the electron transport chain were overrepresented in cells from older participants, with prevalent dysregulation of oxidative phosphorylation and energy metabolism molecular pathways. Surprisingly, gene transcripts coding for mitochondrial proteins pertaining to oxidative phosphorylation and electron transport chain pathways were underrepresented in older individuals. Paralleling the observed decrease in gene expression, mitochondrial respiration was impaired in CD4+ T cells from older subjects. Though mitochondrial number in both naïve and memory cells visualized with electron microcopy was similar in older versus younger participants, there were a significantly higher number of autophagosomes, many of them containing undegraded mitochondria, in older individuals. The presence of mitochondria inside the accumulated autophagic compartments in CD4+ T cells from older individuals was confirmed by immunofluorescence. These findings suggest that older age is associated with persistence of dysfunctional mitochondria in CD4+ T lymphocytes caused by defective mitochondrial turnover by autophagy, which may trigger chronic inflammation and contribute to the impairment of immune defense in older persons.
Collapse
Affiliation(s)
- Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shepherd H. Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher A. Dunn
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amit K. Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Reactive Oxygen Species in the Tumor Microenvironment: An Overview. Cancers (Basel) 2019; 11:cancers11081191. [PMID: 31426364 PMCID: PMC6721577 DOI: 10.3390/cancers11081191] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are important signaling molecules in cancer. The level of ROS will determine physiological effects. While high levels of ROS can cause damage to tissues and cell death, low levels of ROS can have a proliferative effect. ROS are produced by tumor cells but also cellular components that make up the tumor microenvironment (TME). In this review, we discuss the mechanisms by which ROS can affect the TME with particular emphasis on tumor-infiltrating leukocytes. Greater insight into ROS biology in this setting may allow for therapeutic manipulation of ROS levels in order to remodel the tumor microenvironment and increase anti-tumor activity.
Collapse
|
16
|
Ohta A. Oxygen-dependent regulation of immune checkpoint mechanisms. Int Immunol 2019; 30:335-343. [PMID: 29846615 DOI: 10.1093/intimm/dxy038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy of cancer has finally materialized following the success of immune checkpoint blockade. Since down-regulation of immune checkpoint mechanisms is beneficial in cancer treatment, it is important to ask why tumors are infamously filled with the immunosuppressive mechanisms. Indeed, immune checkpoints are physiological negative feedback mechanisms of immune activities, and the induction of such mechanisms is important in preventing excessive destruction of inflamed normal tissues. A condition commonly found in tumors and inflamed tissues is tissue hypoxia. Oxygen deprivation under hypoxic conditions by itself is immunosuppressive because proper oxygen supply could support bioenergetic demands of immune cells for optimal immune responses. However, importantly, hypoxia has been found to up-regulate a variety of immune checkpoints and to be able to drive a shift toward a more immunosuppressive environment. Moreover, extracellular adenosine, which accumulates due to tissue hypoxia, also contributes to the up-regulation of other immune checkpoints. Taken together, tissue oxygen is a key regulator of the immune response by directly affecting the energy status of immune effectors and by regulating the intensity of immunoregulatory activity in the environment. The regulators of various immune checkpoint mechanisms may represent the next focus to modulate the intensity of immune responses and to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Minatojima-Minamimachi, Kobe, Japan
| |
Collapse
|
17
|
Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res 2019; 124:1727-1746. [PMID: 30922174 DOI: 10.1161/circresaha.118.314284] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS Ndufs2 is essential for oxygen-sensing and HPV.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Danchen Wu
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - François Potus
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Edward A Sykes
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Jeffrey D Mewburn
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Rebecca L Charles
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Philip Eaton
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Richard A Sultanian
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (R.A.S.)
| | - Stephen L Archer
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.).,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| |
Collapse
|
18
|
Seo YS, Kim HS, Lee AY, Chun JM, Kim SB, Moon BC, Kwon BI. Codonopsis lanceolata attenuates allergic lung inflammation by inhibiting Th2 cell activation and augmenting mitochondrial ROS dismutase (SOD2) expression. Sci Rep 2019; 9:2312. [PMID: 30783201 PMCID: PMC6381190 DOI: 10.1038/s41598-019-38782-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/24/2018] [Indexed: 01/14/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disease induced by the inhalation of allergens, which trigger the activation of T helper type 2 (Th2) cells that release Th2 cytokines. Recently, herbal medicines are being considered a major source of novel agents to treat various diseases. In the present study, we evaluated the anti-asthmatic effects of a Codonopsis lanceolata extract (CLE) and the mechanisms involved in its anti-inflammatory effects. Treatment with CLE reduced infiltration of inflammatory cells, especially eosinophils, and the production of mucus in lung tissues. Levels of Th2 cytokines, such as IL-4, IL-5, and IL-13, and chemokines were also decreased following treatment with CLE. Moreover, Th2 cell proportion in vivo and differentiation in vitro were reduced as evidenced by the decreased expression of GATA3+. Furthermore, the expression of superoxide dismutase (SOD)2, a mitochondrial ROS (mROS) scavenger, was increased, which was related to Th2 cell regulation. Interestingly, treatment with CLE increased the number of macrophages in the lungs and enhanced the immune-suppressive property of macrophages. Our findings indicate that CLE has potential as a novel therapeutic agent to inhibit Th2 cell differentiation by regulating mROS scavenging.
Collapse
Affiliation(s)
- Yun-Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - A Yeong Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Sung Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Bo-In Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea. .,Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
19
|
Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1361-1372. [PMID: 29295631 PMCID: PMC6166689 DOI: 10.1089/ars.2017.7346] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE The complex etiology of type 1 diabetes (T1D) is the outcome of failures in regulating immunity in combination with beta cell perturbations. Mitochondrial dysfunction in beta cells and immune cells may be involved in T1D pathogenesis. Mitochondrial energy production is essential for the major task of beta cells (the secretion of insulin in response to glucose). Mitochondria are a major site of reactive oxygen species (ROS) production. Under immune attack, mitochondrial ROS (mtROS) participate in beta cell damage. Similarly, T cell fate during immune responses is tightly regulated by mitochondrial physiology, morphology, and metabolism. Production of mtROS is essential for signaling in antigen-specific T cell activation. Mitochondrial dysfunction in T cells has been noted as a feature of some human autoimmune diseases. Recent Advances: Preclinical and clinical studies indicate that mitochondrial dysfunction in beta cells sensitizes these cells to immune-mediated destruction via direct or indirect mechanisms. Sensitivity of beta cells to mtROS is associated with genetic T1D risk loci in human and the T1D-prone nonobese diabetic (NOD) mouse. Mitochondrial dysfunction and altered metabolism have also been observed in immune cells of NOD mice and patients with T1D. This immune cell mitochondrial dysfunction has been linked to deleterious functional changes. CRITICAL ISSUES It remains unclear how mitochondria control T cell receptor signaling and downstream events, including calcium flux and activation of transcription factors during autoimmunity. FUTURE DIRECTIONS Mechanistic studies are needed to investigate the mitochondrial pathways involved in autoimmunity, including T1D. These studies should seek to identify the role of mitochondria in regulating innate and adaptive immune cell activity and beta cell failure.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Scott E Stimpson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Gabriel A Fernandez-Bueno
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
20
|
Go YM, Fernandes J, Hu X, Uppal K, Jones DP. Mitochondrial network responses in oxidative physiology and disease. Free Radic Biol Med 2018; 116:31-40. [PMID: 29317273 PMCID: PMC5833979 DOI: 10.1016/j.freeradbiomed.2018.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023]
Abstract
Mitochondrial activities are linked directly or indirectly to all cellular functions in aerobic eukaryotes. Omics methods enable new approaches to study functional organization of mitochondria and their adaptive and maladaptive network responses to bioenergetic fuels, physiologic demands, environmental challenges and aging. In this review, we consider mitochondria collectively within a multicellular organism as a macroscale "mitochondriome", functioning to organize bioenergetics and metabolism as an organism utilizes environmental resources and protects against environmental threats. We address complexities of knowledgebase-driven functional mapping of mitochondrial systems and then consider data-driven network mapping using omics methods. Transcriptome-metabolome-wide association study (TMWAS) shows connectivity and organization of nuclear transcription with mitochondrial transport systems in cellular responses to mitochondria-mediated toxicity. Integration of redox and respiratory measures with TMWAS shows central redox hubs separating systems linked to oxygen consumption rate and H2O2 production. Combined redox proteomics, metabolomics and transcriptomics further shows that physiologic network structures can be visualized separately from toxicologic networks. These data-driven integrated omics methods create new opportunities for mitochondrial systems biology.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Abstract
Reactive oxygen species (ROS) mediate redox signaling necessary for numerous cellular functions. Yet, high levels of ROS in cells and tissues can cause damage and cell death. Therefore, regulation of redox homeostasis is essential for ROS-dependent signaling that does not incur cellular damage. Cells achieve this optimal balance by coordinating ROS production and elimination. In this Minireview, we discuss the mechanisms by which proliferating cancer and T cells maintain a carefully controlled redox balance. Greater insight into such redox biology may enable precisely targeted manipulation of ROS for effective medical therapies against cancer or immunological disorders.
Collapse
Affiliation(s)
- Hyewon Kong
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Navdeep S Chandel
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
22
|
Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol 2017; 47:57-66. [PMID: 28445781 PMCID: PMC5653465 DOI: 10.1016/j.semcancer.2017.04.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria serves a primary role in energy maintenance but also function to govern levels of mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a critical role in tumorigenesis and are now considered to be integral to the regulation of diverse signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS can damage DNA, activate oncogenes, block the function of tumor suppressors and drive migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of the mitochondria which are reliant on the epitranscriptomic control of selenocysteine incorporation. This review highlights the interplay between these many oncogenic signaling networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
Collapse
Affiliation(s)
- María Del Pilar Sosa Idelchik
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Ulrike Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - Thomas J Begley
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, NFE-4313, Albany, NY 12203, United States.
| |
Collapse
|
23
|
Abstract
Mitochondrial activity in cells must be tightly controlled in response to changes in intracellular circumstances. Despite drastic changes in intracellular conditions and mitochondrial morphology, it is not clear how mitochondrial activity is controlled during M phase of the cell cycle. Here, we show that mitochondrial activity is drastically changed during M phase. Mitochondrial membrane potential changed during M phase progression. Mitochondria were polarized until metaphase to the same extent as mitochondria in interphase cells, but were depolarized at around telophase and cytokinesis. After cytokinesis, mitochondrial membrane potential was recovered. In addition, the generation of superoxide anions in mitochondria was significantly reduced at metaphase even in the presence of antimycin A, an inhibitor of complex III. These results suggest that the electron supply to the mitochondrial electron transfer chain is suppressed during M phase. This suppression might decrease the reactive oxygen species generated by the fragmentation of mitochondria during M phase.
Collapse
|
24
|
Chen J, Chernatynskaya AV, Li JW, Kimbrell MR, Cassidy RJ, Perry DJ, Muir AB, Atkinson MA, Brusko TM, Mathews CE. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep 2017; 7:10835. [PMID: 28883439 PMCID: PMC5589742 DOI: 10.1038/s41598-017-11056-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes constitute a major effector cell population in autoimmune type 1 diabetes. Despite essential functions of mitochondria in regulating activation, proliferation, and apoptosis of T cells, little is known regarding T cell metabolism in the progression of human type 1 diabetes. In this study, we report, using two independent cohorts, that T cells from patients with type 1 diabetes exhibited mitochondrial inner-membrane hyperpolarization (MHP). Increased MHP was a general phenotype observed in T cell subsets irrespective of prior antigen exposure, and was not correlated with HbA1C levels, subject age, or duration of diabetes. Elevated T cell MHP was not detected in subjects with type 2 diabetes. T cell MHP was associated with increased activation-induced IFNγ production, and activation-induced IFNγ was linked to mitochondria-specific ROS production. T cells from subjects with type 1 diabetes also exhibited lower intracellular ATP levels. In conclusion, intrinsic mitochondrial dysfunction observed in type 1 diabetes alters mitochondrial ATP and IFNγ production; the latter is correlated with ROS generation. These changes impact T cell bioenergetics and function.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Anna V. Chernatynskaya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Jian-Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
- Present Address: Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Matthew R. Kimbrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Richard J. Cassidy
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
- Present Address: Department of Radiation Oncology, Emory University, Atlanta, GA USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Andrew B. Muir
- Department of Pediatrics, Emory University, Atlanta, GA USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL USA
| |
Collapse
|
25
|
van Rijt LS, Utsch L, Lutter R, van Ree R. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens? Int J Mol Sci 2017; 18:ijms18061112. [PMID: 28545251 PMCID: PMC5485936 DOI: 10.3390/ijms18061112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023] Open
Abstract
Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2, have specific effects on immune cells by cleaving cell membrane-bound regulatory molecules, and can disrupt tight junctions. The protease activity can induce a non-allergen-specific inflammatory response in the airways, which will set the stage for an allergen-specific Th2 response. In this review, we will discuss the evidence for the induction of oxidative stress as an underlying mechanism in Th2 sensitization to proteolytic allergens. We will discuss recent data linking the proteolytic activity of an allergen to its potential to induce oxidative stress and how this can facilitate allergic sensitization. Based on experimental data, we propose that a less proficient anti-oxidant response to allergen-induced oxidative stress contributes to the susceptibility to allergic sensitization. Besides the effect of oxidative stress on the immune response, we will also discuss how oxidative stress can increase the immunogenicity of an allergen by chemical modification.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Lara Utsch
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Sharkia I, Hadad Erlich T, Landolina N, Assayag M, Motzik A, Rachmin I, Kay G, Porat Z, Tshori S, Berkman N, Levi-Schaffer F, Razin E. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 2016; 140:204-214.e8. [PMID: 27871875 DOI: 10.1016/j.jaci.2016.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/31/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. OBJECTIVE We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. METHODS Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. RESULTS PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. CONCLUSION The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases.
Collapse
Affiliation(s)
- Israa Sharkia
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Hadad Erlich
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Assayag
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Rachmin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagi Tshori
- Department of Nuclear Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neville Berkman
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
27
|
Diebold L, Chandel NS. Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 2016; 100:86-93. [PMID: 27154978 DOI: 10.1016/j.freeradbiomed.2016.04.198] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022]
Abstract
Once thought of exclusively as damaging molecules, reactive oxygen species (ROS) are becoming increasingly appreciated for the role they play in cellular signaling through redox biology. Notably, mitochondria are a major source of ROS within a cell (mROS). Mounting evidence now clearly shows that mROS are critical for intracellular redox signaling by which they contribute to a plethora of cellular processes such as proliferation. mROS are essential for physiological cell proliferation, particularly by the regulation of hypoxia inducible factors (HIFs) under hypoxia. mROS are also vital mediators of growth factor signaling cascades such as angiotensin II (Ang II) and T-cell receptor (TCR) signaling. Pathological proliferative diseases such as cancer utilize mROS to their advantage, aberrantly activating growth factor signaling cascades and perpetuating angiogenesis under hypoxia. This review discusses how mROS positively regulate mitogenic cellular signaling through redox biology, which is critical for both physiological and pathological proliferation.
Collapse
Affiliation(s)
- Lauren Diebold
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc 2016; 92:1459-1474. [DOI: 10.1111/brv.12291] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Chloe C. Josefson
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
29
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
30
|
Chiaranunt P, Ferrara JLM, Byersdorfer CA. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol 2015; 68:564-74. [PMID: 26359186 PMCID: PMC11523081 DOI: 10.1016/j.molimm.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 07/19/2015] [Indexed: 02/09/2023]
Abstract
The classic paradigm of T cell metabolism posits that activated Teff cells utilize glycolysis to keep pace with increased energetic demands, while resting and Tmem cells rely on the oxidation of fat. In contrast, Teff cells during graft-versus-host disease (GVHD) increase their reliance on oxidative metabolism and, in particular, on fatty acid oxidation (FAO). To explore the potential mechanisms driving adoption of this alternative metabolism, we first review key pathways regulating FAO across a variety of disparate tissue types, including liver, heart, and skeletal muscle. Based upon these comparative studies, we then outline a consensus network of transcriptional and signaling pathways that predict a model for regulating FAO in Teff cells during GVHD. This model raises important implications about the dynamic nature of metabolic reprogramming in T cells and suggests exciting future directions for further study of in vivo T cell metabolism.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - James L M Ferrara
- The Tisch Cancer Institute & Division of Hematology/Medical Oncology, Icahn School of Medicine, Hess Center for Science and Medicine, New York, NY 10029, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
31
|
Fossati S, Giannoni P, Solesio ME, Cocklin SL, Cabrera E, Ghiso J, Rostagno A. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiol Dis 2015; 86:29-40. [PMID: 26581638 DOI: 10.1016/j.nbd.2015.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD.
Collapse
Affiliation(s)
- Silvia Fossati
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| | - Patrizia Giannoni
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Maria E Solesio
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Sarah L Cocklin
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Erwin Cabrera
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
32
|
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42:406-17. [PMID: 25786173 DOI: 10.1016/j.immuni.2015.02.002] [Citation(s) in RCA: 646] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Laura A Sena
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA.
| |
Collapse
|
33
|
Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 domains of ZAP-70 and Syk can block phosphopeptide binding. Biochem J 2015; 465:149-61. [PMID: 25287889 DOI: 10.1042/bj20140793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zeta-chain associated protein of 70 kDa (ZAP-70) and spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signalling respectively. They are recruited, via their tandem-SH2 (Src-homology domain 2) domains, to doubly phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signalling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys39 in ZAP-70, Cys206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of H2O2 and these two cysteine residues are also necessary for inhibition by H2O2. Our findings suggest a mechanism by which the reactive oxygen species generated during responses to antigen could attenuate signalling through these kinases and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains.
Collapse
|
34
|
Karahanian E, Rivera-Meza M, Tampier L, Quintanilla ME, Herrera-Marschitz M, Israel Y. Long-term inhibition of ethanol intake by the administration of an aldehyde dehydrogenase-2 (ALDH2)-coding lentiviral vector into the ventral tegmental area of rats. Addict Biol 2015; 20:336-44. [PMID: 24571199 DOI: 10.1111/adb.12130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies suggest that acetaldehyde generated from ethanol in the brain is reinforcing. The present studies tested the feasibility of achieving a long-term reduction of chronic and post-deprivation binge ethanol drinking by a single administration into the brain ventral tegmental area (VTA) of a lentiviral vector that codes for aldehyde dehydrogenase-2 (ALDH2), which degrades acetaldehyde. The ALDH2 gene coding vector or a control lentiviral vector were microinjected into the VTA of rats bred for their alcohol preference. In the chronic alcohol administration model, naïve animals administered the control vector and subsequently offered 10% ethanol and water ingested 8-9 g ethanol/kg body weight/day. The single administration of the ALDH2-coding vector prior to allowing ethanol availability reduced ethanol drinking by 85-90% (P < 0.001) for the 45 days tested. In the post-deprivation binge-drinking model, animals that had previously consumed ethanol chronically for 81 days were administered the lentiviral vector and were thereafter deprived of ethanol for three 7-day periods, each interrupted by a single 60-minute ethanol re-access after the last day of each deprivation period. Upon ethanol re-access, control vector-treated animals consumed intoxicating 'binge' amounts of ethanol, reaching intakes of 2.7 g ethanol/kg body weight in 60 minutes. The administration of the ALDH2-coding vector reduced re-access binge drinking by 75-80% (P < 0.001). This study shows that endowing the ventral tegmental with an increased ability to degrade acetaldehyde greatly reduces chronic alcohol consumption and post-deprivation binge drinking for prolonged periods and supports the hypothesis that brain-generated acetaldehyde promotes alcohol drinking.
Collapse
Affiliation(s)
| | - Mario Rivera-Meza
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Lutske Tampier
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; ICBM; Faculty of Medicine; University of Chile; Chile
| |
Collapse
|
35
|
Schumann J, Stanko K, Woertge S, Appelt C, Schumann M, Kühl AA, Panov I, Schliesser U, Vogel S, Ahrlich S, Vaeth M, Berberich-Siebelt F, Waisman A, Sawitzki B. The mitochondrial protein TCAIM regulates activation of T cells and thereby promotes tolerance induction of allogeneic transplants. Am J Transplant 2014; 14:2723-35. [PMID: 25363083 DOI: 10.1111/ajt.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023]
Abstract
Primary T cell activation and effector cell differentiation is required for rejection of allogeneic grafts in naïve recipients. It has become evident, that mitochondria play an important role for T cell activation. Expression of several mitochondrial proteins such as TCAIM (T cell activation inhibitor, mitochondrial) is down-regulated upon T cell receptor triggering. Here we report that TCAIM inhibited spontaneous development of memory and effector T cells. CD4(+) T cells from Tcaim knock-in (KI) mice showed reduced activation, cytokine secretion and proliferation in vitro. Tcaim KI T cells tolerated allogeneic skin grafts upon transfer into Rag-1 KO mice. CD4(+) and CD8(+) T cells from these mice did not infiltrate skin grafts and kept a naïve or central memory phenotype, respectively. They were unable to acquire effector phenotype and functions. TCAIM altered T cell activation-induced mitochondrial distribution and reduced mitochondrial reactive oxygen species (mROS) production. Thus, TCAIM controls T cell activation and promotes tolerance induction probably by regulating TCR-mediated mitochondrial distribution and mROS production.
Collapse
Affiliation(s)
- J Schumann
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Horan MP, Cooper DN. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum Genet 2013; 133:435-58. [DOI: 10.1007/s00439-013-1402-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/23/2013] [Indexed: 12/17/2022]
|