1
|
Cave R, Kalizang'oma A, Chaguza C, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Bonomali F, Nyirenda R, Swarthout TD, Kwambana-Adams B, French N, Heyderman RS. Expansion of pneumococcal serotype 23F and 14 lineages with genotypic changes in capsule polysaccharide locus and virulence gene profiles post introduction of pneumococcal conjugate vaccine in Blantyre, Malawi. Microb Genom 2024; 10:001264. [PMID: 38896467 PMCID: PMC11261835 DOI: 10.1099/mgen.0.001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.
Collapse
Affiliation(s)
- Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
| | - Akuzike Kalizang'oma
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | | | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | | | - Todd D. Swarthout
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Brenda Kwambana-Adams
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, UK
| | - Robert S. Heyderman
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| |
Collapse
|
2
|
Werren JP, Mostacci N, Gjuroski I, Holivololona L, Troxler LJ, Hathaway LJ, Furrer J, Hilty M. Carbon source-dependent capsule thickness regulation in Streptococcus pneumoniae. Front Cell Infect Microbiol 2023; 13:1279119. [PMID: 38094742 PMCID: PMC10716237 DOI: 10.3389/fcimb.2023.1279119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Background The polysaccharide capsule of Streptococcus pneumoniae plays a major role in virulence, adherence to epithelial cells, and overall survival of the bacterium in the human host. Galactose, mannose, and N-acetylglucosamine (GlcNAc) are likely to be relevant for metabolization in the nasopharynx, while glucose is the primary carbon source in the blood. In this study, we aim to further the understanding of the influence of carbon sources on pneumococcal growth, capsule biosynthesis, and subsequent adherence potential. Methods We tested the growth behavior of clinical wild-type and capsule knockout S. pneumoniae strains, using galactose, GlcNAc, mannose, and glucose as carbon source for growth. We measured capsule thickness and quantified capsule precursors by fluorescein isothiocyanate (FITC)-dextran exclusion assays and 31P-nuclear magnetic resonance measurements, respectively. We also performed epithelial adherence assays using Detroit 562 cells and performed a transcriptome analysis (RNA sequencing). Results We observed a reduced growth in galactose, mannose, and GlcNAc compared to growth in glucose and found capsular size reductions in mannose and GlcNAc compared to galactose and glucose. Additionally, capsular precursor measurements of uridine diphosphate-(UDP)-glucose and UDP-galactose showed less accumulation of precursors in GlcNAc or mannose than in glucose and galactose, indicating a possible link with the received capsular thickness measurements. Epithelial adherence assays showed an increase in adherence potential for a pneumococcal strain, when grown in mannose compared to glucose. Finally, transcriptome analysis of four clinical isolates revealed not only strain specific but also common carbon source-specific gene expression. Conclusion Our findings may indicate a careful adaption of the lifestyle of S. pneumoniae according to the monosaccharides encountered in the respective human niche.
Collapse
Affiliation(s)
- Joel P. Werren
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Ilche Gjuroski
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Bern, Switzerland
| | - Lalaina Holivololona
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Lukas J. Troxler
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Lucy J. Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Maruhn K, Itzek A, Imoehl M, van der Linden M. A simple PCR assay for the identification of the novel Streptococcus pneumoniae serotype 7D. J Med Microbiol 2023; 72. [PMID: 37552048 DOI: 10.1099/jmm.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
The identification of the novel pneumococcal serotype 7D by Neufeld quellung reaction requires significant expertise. To circumvent this, we developed a simple serotype-specific PCR method to discriminate serotype 7D from the closely related serotypes 7C, 7B and 40. The established PCR was validated with the strain collection of the German National Reference Center for Streptococci (GNRCS). However, no isolate initially assigned as serotype 7B, 7C or 40 was identified as serotype 7D.
Collapse
Affiliation(s)
- Karsten Maruhn
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Itzek
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
| | - Matthias Imoehl
- Laboratory Diagnostic Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark van der Linden
- National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
4
|
Ganaie FA, Saad JS, Lo SW, McGee L, Bentley SD, van Tonder AJ, Hawkins P, Keenan JD, Calix JJ, Nahm MH. Discovery and Characterization of Pneumococcal Serogroup 36 Capsule Subtypes, Serotypes 36A and 36B. J Clin Microbiol 2023; 61:e0002423. [PMID: 36971549 PMCID: PMC10117043 DOI: 10.1128/jcm.00024-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus pneumoniae can produce a wide breadth of antigenically diverse capsule types, a fact that poses a looming threat to the success of vaccines that target pneumococcal polysaccharide (PS) capsule. Yet, many pneumococcal capsule types remain undiscovered and/or uncharacterized. Prior sequence analysis of pneumococcal capsule synthesis (cps) loci suggested the existence of capsule subtypes among isolates identified as "serotype 36" according to conventional capsule typing methods. We discovered these subtypes represent two antigenically similar but distinguishable pneumococcal capsule serotypes, 36A and 36B. Biochemical analysis of their capsule PS structure reveals that both have the shared repeat unit backbone [→5)-α-d-Galf-(1→1)-d-Rib-ol-(5→P→6)-β-d-ManpNAc-(1→4)-β-d-Glcp-(1→] with two branching structures. Both serotypes have a β-d-Galp branch to Ribitol. Serotypes 36A and 36B differ by the presence of a α-d-Glcp-(1→3)-β-d-ManpNAc or α-d-Galp-(1→3)-β-d-ManpNAc branch, respectively. Comparison of the phylogenetically distant serogroup 9 and 36 cps loci, which all encode this distinguishing glycosidic bond, revealed that the incorporation of Glcp (in types 9N and 36A) versus Galp (in types 9A, 9V, 9L, and 36B) is associated with the identity of four amino acids in the cps-encoded glycosyltransferase WcjA. Identifying functional determinants of cps-encoded enzymes and their impact on capsule PS structure is key to improving the resolution and reliability of sequencing-based capsule typing methods and discovering novel capsule variants indistinguishable by conventional serotyping methods.
Collapse
Affiliation(s)
- Feroze A. Ganaie
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paulina Hawkins
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jeremy D. Keenan
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Juan J. Calix
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H. Nahm
- Department of Medicine, Division of Pulmonary/Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun 2022; 13:7635. [PMID: 36496442 PMCID: PMC9735280 DOI: 10.1038/s41467-022-35253-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.
Collapse
|
6
|
Gong W, Liang M, Zhao J, Wang H, Chen Z, Wang F, Gu G. Biochemical Characterization and Synthetic Application of WciN and Its Mutants From Streptococcus pneumoniae Serotype 6B. Front Chem 2022; 10:914698. [PMID: 35783203 PMCID: PMC9240355 DOI: 10.3389/fchem.2022.914698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
The biochemical properties of α-1,3-galactosyltransferase WciN from Streptococcus pneumoniae serotype 6B were systemically characterized with the chemically synthesized Glcα-PP-(CH2)11-OPh as an acceptor substrate. The in vitro site-directed mutation of D38 and A150 residues of WciN was further investigated, and the enzymatic activities of those WciN mutants revealed that A150 residue was the pivotal residue responsible for nucleotide donor recognition and the single-site mutation could completely cause pneumococcus serotype switch. Using WciNA150P and WciNA150D mutants as useful tool enzymes, the disaccharides Galα1,3Glcα-PP-(CH2)11-OPh and Glcα1,3Glcα-PP-(CH2)11-OPh were successfully prepared in multi-milligram scale in high yields.
Collapse
Affiliation(s)
- Wei Gong
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Min Liang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| | - Jielin Zhao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| | - Hong Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| | - Zonggang Chen
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- School of Pharmaceutical Science, Shandong University, Jinan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
- *Correspondence: Guofeng Gu,
| |
Collapse
|
7
|
Downs SL, Madhi SA, Van der Merwe L, Nunes MC, Olwagen CP. High-throughput nanofluidic real-time PCR to discriminate Pneumococcal Conjugate Vaccine (PCV)-associated serogroups 6, 18, and 22 to serotypes using modified oligonucleotides. Sci Rep 2021; 11:23728. [PMID: 34887480 PMCID: PMC8660885 DOI: 10.1038/s41598-021-03127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Current real-time high-throughput Polymerase Chain Reaction (qPCR) methods do not distinguish serotypes 6A from 6B, 18C from 18A/B and 22F from 22A. We established a nanofluidic real-time PCR (Fluidigm) for serotyping that included Dual-Priming-Oligonucleotides (DPO), a Locked-Nucleic-Acid (LNA) probe and TaqMan assay-sets for high-throughput serotyping. The designed assay-sets target capsular gene wciP in serogroup 6, wciX and wxcM in serogroup 18, and wcwA in serogroup 22. An algorithm combining results from published assay-sets (6A/B/C/D; 6C/D; 18A/B/C; 22A/F) and designed assay-sets for 6A/C; 18B/C/F; 18C/F, 18F and 22F was validated through blind analysis of 1973 archived clinical samples collected from South African children ≤ 5-years-old (2009–2011), previously serotyped with the culture-based Quellung method. All assay-sets were efficient (92–101%), had low variation between replicates (R2 > 0.98), and were able to detect targets at a limit of detection (LOD) of < 100 Colony-Forming-Units (CFU)/mL of sample. There was high concordance (Kappa = 0.73–0.92); sensitivity (85–100%) and specificity (96–100%) for Fluidigm compared with Quellung for serotyping 6A; 6B; 6C; 18C and 22F. Fluidigm distinguishes vaccine-serotypes 6A, 6B, 18C, next-generation PCV-serotype 22F and non-vaccine-serotypes 6C, 6D, 18A, 18B, 18F and 22A. Discriminating single serotypes is important for assessing serotype replacement and the impact of PCVs on vaccine- and non-vaccine serotypes.
Collapse
Affiliation(s)
- S L Downs
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - S A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L Van der Merwe
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - M C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C P Olwagen
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
8
|
Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines. Proc Natl Acad Sci U S A 2021; 118:2013350118. [PMID: 33380455 PMCID: PMC7812815 DOI: 10.1073/pnas.2013350118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pneumococcal infection-caused diseases are responsible for substantial morbidity and mortality worldwide. Traditional pneumococcal vaccines are developed based on purified capsular polysaccharides (CPS) or CPS conjugated to a protein carrier. Production processes of the traditional vaccines are laborious, and thereby increase the vaccine cost and limit their use in developing nations. A cost-effective pneumococcal vaccine using the recombinant attenuated Salmonella vaccine (RASV) was developed in this study. We cloned and expressed genes for seven serotypes of CPSs in the RASV strain. The RASV-delivered CPSs induced robust humoral and cell-mediated responses and mediated efficient protection of mice against pneumococcal infection. Our work provides an innovative strategy for mass producing low-cost bioconjugated polysaccharide vaccines for needle-free mucosal delivery against pneumococcal infections. Streptococcus pneumoniae capsular polysaccharides (CPSs) are major determinants of bacterial pathogenicity. CPSs of different serotypes form the main components of the pneumococcal vaccines Pneumovax, Prevnar7, and Prevnar13, which substantially reduced the S. pneumoniae disease burden in developed countries. However, the laborious production processes of traditional polysaccharide-based vaccines have raised the cost of the vaccines and limited their impact in developing countries. The aim of this study is to develop a kind of low-cost live vaccine based on using the recombinant attenuated Salmonella vaccine (RASV) system to protect against pneumococcal infections. We cloned genes for seven different serotypes of CPSs to be expressed by the RASV strain. Oral immunization of mice with the RASV-CPS strains elicited robust Th1 biased adaptive immune responses. All the CPS-specific antisera mediated opsonophagocytic killing of the corresponding serotype of S. pneumoniae in vitro. The RASV-CPS2 and RASV-CPS3 strains provided efficient protection of mice against challenge infections with either S. pneumoniae strain D39 or WU2. Synthesis and delivery of S. pneumoniae CPSs using the RASV strains provide an innovative strategy for low-cost pneumococcal vaccine development, production, and use.
Collapse
|
9
|
Carbon Source-Dependent Changes of the Structure of Streptococcus pneumoniae Capsular Polysaccharide with Serotype 6F. Int J Mol Sci 2021; 22:ijms22094580. [PMID: 33925509 PMCID: PMC8123889 DOI: 10.3390/ijms22094580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
The structure of the exopolysaccharide capsule of Streptococcus pneumoniae is defined by the genetic arrangement of the capsule operon allowing the unequivocal identification of the pneumococcal serotype. Here, we investigated the environment-dependent composition of the polysaccharide structure of S. pneumoniae serotype 6F. When grown in a chemically defined medium (CDM) with glucose versus galactose, the exopolysaccharide capsule of the serotype 6F strains reveals a ratio of 1/0.6 or 1/0.3 for galactose/glucose in the capsule by 1H-NMR analyses, respectively. Increased production of the capsule precursor UDP-glucose has been identified by 31P-NMR in CDM with glucose. Flow cytometric experiments using monoclonal antibodies showed decreased labelling of Hyp6AG4 (specific for serotype 6A) antibodies when 6F is grown in glucose as compared to galactose, which mirrors the 1H-NMR results. Whole-genome sequencing analyses of serotype 6F isolates suggested that the isolates evolved during two different events from serotype 6A during the time when the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced. In conclusion, this study shows differences in the capsular structure of serotype 6F strains using glucose as compared to galactose as the carbon source. Therefore, 6F strains may show slightly different polysaccharide composition while colonizing the human nasopharynx (galactose rich) as compared to invasive locations such as the blood (glucose rich).
Collapse
|
10
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
11
|
Su T, Nakamoto R, Chun YY, Chua WZ, Chen JH, Zik JJ, Sham LT. Decoding capsule synthesis in Streptococcus pneumoniae. FEMS Microbiol Rev 2020; 45:6041728. [PMID: 33338218 DOI: 10.1093/femsre/fuaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae synthesizes more than one hundred types of capsular polysaccharides (CPS). While the diversity of the enzymes and transporters involved is enormous, it is not limitless. In this review, we summarized the recent progress on elucidating the structure-function relationships of CPS, the mechanisms by which they are synthesized, how their synthesis is regulated, the host immune response against them, and the development of novel pneumococcal vaccines. Based on the genetic and structural information available, we generated provisional models of the CPS repeating units that remain unsolved. In addition, to facilitate cross-species comparisons and assignment of glycosyltransferases, we illustrated the biosynthetic pathways of the known CPS in a standardized format. Studying the intricate steps of pneumococcal CPS assembly promises to provide novel insights for drug and vaccine development as well as improve our understanding of related pathways in other species.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Ye Yu Chun
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wan Zhen Chua
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Jia Hui Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Justin J Zik
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
12
|
Nahm MH, Brissac T, Kilian M, Vlach J, Orihuela CJ, Saad JS, Ganaie F. Pneumococci Can Become Virulent by Acquiring a New Capsule From Oral Streptococci. J Infect Dis 2020; 222:372-380. [PMID: 31605125 PMCID: PMC7457184 DOI: 10.1093/infdis/jiz456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Pneumococcal conjugate vaccines have been successful, but their use has increased infections by nonvaccine serotypes. Oral streptococci often harbor capsular polysaccharide (PS) synthesis loci (cps). Although this has not been observed in nature, if pneumococcus can replace its cps with oral streptococcal cps, it may increase its serotype repertoire. In the current study, we showed that oral Streptococcus strain SK95 and pneumococcal strain D39 both produce structurally identical capsular PS, and their genetic backgrounds influence the amount of capsule production and shielding from nonspecific killing. SK95 is avirulent in a well-established in vivo mouse model. When acapsular pneumococcus was transformed with SK95 cps, the transformant became virulent and killed all mice. Thus, cps from oral Streptococcus strains can make acapsular pneumococcus virulent, and interspecies cps transfer should be considered a potential mechanism of serotype replacement. Our findings, along with publications from the US Centers for Disease Control and Prevention, highlight potential limitations of the 2013 World Health Organization criterion for studying pneumococcal serotypes carried without isolating bacteria. We show that an oral streptococcal strain, SK95, and a pneumococcal strain, D39, both produce chemically identical capsular PS. We also show that transferring SK95 cps into noncapsulated, avirulent pneumococcus gave it the capacity for virulence in a mouse model.
Collapse
Affiliation(s)
- Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Feroze Ganaie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
13
|
A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020; 11:mBio.00937-20. [PMID: 32430472 PMCID: PMC7240158 DOI: 10.1128/mbio.00937-20] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The polysaccharide capsule is essential for the pathogenicity of pneumococcus, which is responsible for millions of deaths worldwide each year. Currently available pneumococcal vaccines are designed to elicit antibodies to the capsule polysaccharides of the pneumococcal isolates commonly causing diseases, and the antibodies provide protection only against the pneumococcus expressing the vaccine-targeted capsules. Since pneumococci can produce different capsule polysaccharides and therefore reduce vaccine effectiveness, it is important to track the appearance of novel pneumococcal capsule types and how these new capsules are created. Herein, we describe a new and the 100th pneumococcal capsule type with unique chemical and serological properties. The capsule type was named 10D for its serologic similarity to 10A. Genetic studies provide strong evidence that pneumococcus created 10D capsule polysaccharide by capturing a large genetic fragment from an oral streptococcus. Such interspecies genetic exchanges could greatly increase diversity of pneumococcal capsules and complicate serotype shifts. Streptococcus pneumoniae (pneumococcus) is a major human pathogen producing structurally diverse capsular polysaccharides. Widespread use of highly successful pneumococcal conjugate vaccines (PCVs) targeting pneumococcal capsules has greatly reduced infections by the vaccine types but increased infections by nonvaccine serotypes. Herein, we report a new and the 100th capsule type, named serotype 10D, by determining its unique chemical structure and biosynthetic roles of all capsule synthesis locus (cps) genes. The name 10D reflects its serologic cross-reaction with serotype 10A and appearance of cross-opsonic antibodies in response to immunization with 10A polysaccharide in a 23-valent pneumococcal vaccine. Genetic analysis showed that 10D cps has three large regions syntenic to and highly homologous with cps loci from serotype 6C, serotype 39, and an oral streptococcus strain (S. mitis SK145). The 10D cps region syntenic to SK145 is about 6 kb and has a short gene fragment of wciNα at the 5′ end. The presence of this nonfunctional wciNα fragment provides compelling evidence for a recent interspecies genetic transfer from oral streptococcus to pneumococcus. Since oral streptococci have a large repertoire of cps loci, widespread PCV usage could facilitate the appearance of novel serotypes through interspecies recombination.
Collapse
|
14
|
A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020. [PMID: 32430472 DOI: 10.1128/mbio10.1128/mbio] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen producing structurally diverse capsular polysaccharides. Widespread use of highly successful pneumococcal conjugate vaccines (PCVs) targeting pneumococcal capsules has greatly reduced infections by the vaccine types but increased infections by nonvaccine serotypes. Herein, we report a new and the 100th capsule type, named serotype 10D, by determining its unique chemical structure and biosynthetic roles of all capsule synthesis locus (cps) genes. The name 10D reflects its serologic cross-reaction with serotype 10A and appearance of cross-opsonic antibodies in response to immunization with 10A polysaccharide in a 23-valent pneumococcal vaccine. Genetic analysis showed that 10D cps has three large regions syntenic to and highly homologous with cps loci from serotype 6C, serotype 39, and an oral streptococcus strain (S. mitis SK145). The 10D cps region syntenic to SK145 is about 6 kb and has a short gene fragment of wciNα at the 5' end. The presence of this nonfunctional wciNα fragment provides compelling evidence for a recent interspecies genetic transfer from oral streptococcus to pneumococcus. Since oral streptococci have a large repertoire of cps loci, widespread PCV usage could facilitate the appearance of novel serotypes through interspecies recombination.IMPORTANCE The polysaccharide capsule is essential for the pathogenicity of pneumococcus, which is responsible for millions of deaths worldwide each year. Currently available pneumococcal vaccines are designed to elicit antibodies to the capsule polysaccharides of the pneumococcal isolates commonly causing diseases, and the antibodies provide protection only against the pneumococcus expressing the vaccine-targeted capsules. Since pneumococci can produce different capsule polysaccharides and therefore reduce vaccine effectiveness, it is important to track the appearance of novel pneumococcal capsule types and how these new capsules are created. Herein, we describe a new and the 100th pneumococcal capsule type with unique chemical and serological properties. The capsule type was named 10D for its serologic similarity to 10A. Genetic studies provide strong evidence that pneumococcus created 10D capsule polysaccharide by capturing a large genetic fragment from an oral streptococcus. Such interspecies genetic exchanges could greatly increase diversity of pneumococcal capsules and complicate serotype shifts.
Collapse
|
15
|
Tafroji W, Bernadette FM, Giri Rachman EA, Safari D. The use of PCR and BsmAI restriction combination targeting wciP gene to determine serotype 6A, 6B, 6C and 6D Streptococcus pneumoniae. J Microbiol Methods 2020; 172:105909. [PMID: 32246952 DOI: 10.1016/j.mimet.2020.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
We designed a sensitive and reliable method to distinguish serogroup 6 using PCR followed by enzymatic restriction digest. We discovered that this serotyping method was able to distinguish serotypes 6A, 6B, 6C, and 6D based on the recognition site of BsmAI in the wciP region.
Collapse
Affiliation(s)
- Wisnu Tafroji
- Molecular Bacteriology Laboratory, Eijkman Institute for Molecular Biology, Indonesia
| | | | - Ernawati A Giri Rachman
- School of Life Sciences and Technology (SITH), Bandung Institute of Technology (ITB), Indonesia
| | - Dodi Safari
- Molecular Bacteriology Laboratory, Eijkman Institute for Molecular Biology, Indonesia.
| |
Collapse
|
16
|
Terra VS, Plumptre CD, Wall EC, Brown JS, Wren BW. Construction of a pneumolysin deficient mutant in streptococcus pneumoniae serotype 1 strain 519/43 and phenotypic characterisation. Microb Pathog 2020; 141:103999. [PMID: 31996316 PMCID: PMC7212698 DOI: 10.1016/j.micpath.2020.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/01/2023]
Abstract
Streptococcus pneumoniae capsular serotype 1 continues to pose a huge infectious disease burden in low- and middle-income countries, particularly in West Africa. However, studies on this important serotype have been hampered by the inability to genetically modify these strains. In this study we have genetically modified a serotype 1 strain (519/43), the first time that this has been achieved for this serotype, providing the methodology for a deeper understanding of its biology and pathogenicity. As proof of principle we constructed a defined pneumolysin mutant and showed that it lost its ability to lyse red blood cells. We also showed that when mice were infected intranasally with the mutant 519/43Δply there was no significant difference between the load of bacteria in lungs and blood when compared to the wild type 519/43. When mice were infected intraperitoneally there were significantly fewer bacteria recovered from blood for the mutant 519/43Δply strain, although all mice still displayed signs of disease. Our study demonstrates S. pneumoniae serotype 1 strains can be genetically manipulated using our methodology and demonstrate that the ability to cause pneumonia in mice is independent of active pneumolysin for the 519/43 serotype 1 strain. Mutagenesis in Serotype 1 S. pneumoniae is possible in strain 519/43. 519/43 possess pneumolysin D380 N, however it is not more haemolytic than the pneumolysin present in D39. 519/43 strain is capable of causing disease independently of pneumolysin.
Collapse
Affiliation(s)
- Vanessa S Terra
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Charles D Plumptre
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, WC1E 6JF, United Kingdom
| | - Emma C Wall
- Division of Infection and Immunity, UCL Cruciform Building, London, WC1E 6BT, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, WC1E 6JF, United Kingdom
| | - Brendan W Wren
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
17
|
Troxler LJ, Werren JP, Schaffner TO, Mostacci N, Vermathen P, Vermathen M, Wüthrich D, Simillion C, Brugger SD, Bruggmann R, Hathaway LJ, Furrer J, Hilty M. Carbon source regulates polysaccharide capsule biosynthesis in Streptococcus pneumoniae. J Biol Chem 2019; 294:17224-17238. [PMID: 31594867 PMCID: PMC6873171 DOI: 10.1074/jbc.ra119.010764] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
The exopolysaccharide capsule of Streptococcus pneumoniae is an important virulence factor, but the mechanisms that regulate capsule thickness are not fully understood. Here, we investigated the effects of various exogenously supplied carbohydrates on capsule production and gene expression in several pneumococcal serotypes. Microscopy analyses indicated a near absence of the capsular polysaccharide (CPS) when S. pneumoniae was grown on fructose. Moreover, serotype 7F pneumococci produced much less CPS than strains of other serotypes (6B, 6C, 9V, 15, and 23F) when grown on glucose or sucrose. RNA-sequencing revealed carbon source-dependent regulation of distinct genes of WT strains and capsule-switch mutants of serotypes 6B and 7F, but could not explain the mechanism of capsule thickness regulation. In contrast, 31P NMR of whole-cell extract from capsule-knockout strains (Δcps) clearly revealed the accumulation or absence of capsule precursor metabolites when cells were grown on glucose or fructose, respectively. This finding suggests that fructose uptake mainly results in intracellular fructose 1-phosphate, which is not converted to CPS precursors. In addition, serotype 7F strains accumulated more precursors than did 6B strains, indicating less efficient conversion of precursor metabolites into the CPS in 7F, in line with its thinner capsule. Finally, isotopologue sucrose labeling and NMR analyses revealed that the uptake of the labeled fructose subunit into the capsule is <10% that of glucose. Our findings on the effects of carbon sources on CPS production in different S. pneumoniae serotypes may contribute to a better understanding of pneumococcal diseases and could inform future therapeutic approaches.
Collapse
Affiliation(s)
- Lukas J Troxler
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Thierry O Schaffner
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland
| | - Nadezda Mostacci
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, 3012 Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland.,Applied Microbiology Research Unit, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Division of Clinical Microbiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.,The Forsyth Institute (Microbiology), Cambridge, Massachusetts 02142.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts 02142
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
18
|
Feldman C, Normark S, Henriques-Normark B, Anderson R. Pathogenesis and prevention of risk of cardiovascular events in patients with pneumococcal community-acquired pneumonia. J Intern Med 2019; 285:635-652. [PMID: 30584680 DOI: 10.1111/joim.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that cardiovascular events (CVE) occur quite commonly, both in the acute phase and in the long-term, in patients with community-acquired pneumonia (CAP). CVE have been noted in up to 30% of patients hospitalized with all-cause CAP. One systematic review and meta-analysis of hospitalized patients with all-cause CAP noted that the incidence rates for overall cardiac events were 17.7%, for incident heart failure were 14.1%, for acute coronary syndromes were 5.3% and for incident cardiac arrhythmias were 4.7%. In the case of pneumococcal CAP, almost 20% of patients studied had one or more of these cardiac events. Recent research has provided insights into the pathogenesis of the acute cardiac events occurring in pneumococcal infections. With respect to the former, key involvements of the major pneumococcal protein virulence factor, pneumolysin, are now well documented, whilst systemic platelet-driven neutrophil activation may also contribute. However, events involved in the pathogenesis of the long-term cardiovascular sequelae remain largely unexplored. Emerging evidence suggests that persistent antigenaemia may predispose to the development of a systemic pro-inflammatory/prothrombotic phenotype underpinning the risk of future cardiovascular events. The current manuscript briefly reviews the occurrence of cardiovascular events in patients with all-cause CAP, as well as in pneumococcal and influenza infections. It highlights the close interaction between influenza and pneumococcal pneumonia. It also includes a brief discussion of mechanisms of the acute cardiac events in CAP. However, the primary focus is on the prevalence, pathogenesis and prevention of the longer-term cardiac sequelae of severe pneumococcal disease, particularly in the context of persistent antigenaemia and associated inflammation.
Collapse
Affiliation(s)
- C Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - B Henriques-Normark
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC), Singapore Centre on Environmental Life Sciences Engineering (SCELCE), Nanyang Technical University, Singapore, Singapore
| | - R Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Sime WT, Aseffa A, Woldeamanuel Y, Brovall S, Morfeldt E, Henriques-Normark B. Serotype and molecular diversity of nasopharyngeal Streptococcus pneumoniae isolates from children before and after vaccination with the ten-valent pneumococcal conjugate vaccine (PCV10) in Ethiopia. BMC Infect Dis 2019; 19:409. [PMID: 31077141 PMCID: PMC6511162 DOI: 10.1186/s12879-019-4024-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/25/2019] [Indexed: 12/01/2022] Open
Abstract
Background Streptococcus pneumoniae is a major human pathogen, and nasopharyngeal colonization is the first step for transmission and pathogenesis of pneumococcal diseases. Ethiopia introduced the 10-valent pneumococcal conjugate vaccine (PCV10) in October 2011. Here we studied nasopharyngeal carriage rates of pneumococci in children and analyzed the serotype and genetic diversity of pneumococcal isolates before first dose and after completion of the vaccine. Method A longitudinal study was conducted from February 2013 to November 2016. Totally 789 infants were enrolled at the age of 6 weeks before first dose of PCV10 vaccination, 206 were re-sampled at the age of 9 months, and 201 at 2 years of age after the final dose of PCV10 at the age of 14 weeks. One hundred sixteen children were followed during all the three sampling periods. A total of 422 nasopharyngeal isolates were serotyped using gel diffusion and the Quellung reaction, 325 were typed with pulsed field gel electrophoresis (PFGE), and 12 were selected for multi locus sequence typing (MLST). Results Pneumococcal carriage rates at the age of 6 weeks, 9 months and 2 years of age were 26.6% (210/789), 56.8% (117/206) and 48.3% (97/201), respectively. Out of 116 children none of them carried the same strain during the three period and the carriage rate at the age of 6 weeks, 9 months and 2 years were 32.7% (38/116), 59.% (69/116) and 49.1% (57/116) respectively. Totally 59 pneumococcal serotypes were identified among 422 isolates. Serotype 6A (5.0%) dominated followed by 34 (4.5%), 10A (4.0%), 11A (4.0%), 19F (3.8%), 15B (3.8%), 23F (3.6%), and 15A (3.6%). The proportion of non-PCV10 serotypes among the isolates recovered at 6 weeks, 9 months and 2 years was 79.4, 88.9 and 89.7% respectively. Molecular typing of 325 isolates collected at 6 weeks and 9 months of age showed a high genetic diversity. Conclusion This study highlights the presence of very diverse serotypes in Ethiopia where non-vaccine serotypes were predominant. Completion of the PCV10 schedule was associated with an approximately 50% reduction of vaccine-type carriage and increase of non-vaccine types. PCV13 would potentially reduce vaccine-type carriage by further 10%. Electronic supplementary material The online version of this article (10.1186/s12879-019-4024-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wondewosen Tsegaye Sime
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia. .,Department of Microbiology, Parasitology and Immunology, Saint Paul's Hospital Millennium Medical College, 1271, Addis Ababa, Ethiopia.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Yimtubezenash Woldeamanuel
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, College of Medicine and Health Science, 9086, Addis Ababa, Ethiopia
| | - Sarah Brovall
- The Public Health Agency of Sweden, Stockholm, Sweden
| | - Eva Morfeldt
- The Public Health Agency of Sweden, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- The Public Health Agency of Sweden, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, MTC, Karolinska Institutet, 171 77, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
20
|
Kjeldsen C, Slott S, Elverdal PL, Sheppard CL, Kapatai G, Fry NK, Skovsted IC, Duus JØ. Discovery and description of a new serogroup 7 Streptococcus pneumoniae serotype, 7D, and structural analysis of 7C and 7D. Carbohydr Res 2018; 463:24-31. [DOI: 10.1016/j.carres.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
21
|
Mauffrey F, Fournier É, Demczuk W, Martin I, Mulvey M, Martineau C, Lévesque S, Bekal S, Domingo MC, Doualla-Bell F, Longtin J, Lefebvre B. Comparison of sequential multiplex PCR, sequetyping and whole genome sequencing for serotyping of Streptococcus pneumoniae. PLoS One 2017; 12:e0189163. [PMID: 29236737 PMCID: PMC5728576 DOI: 10.1371/journal.pone.0189163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/20/2017] [Indexed: 01/22/2023] Open
Abstract
Streptococcus pneumoniae is one of the major causes of pneumonia, meningitis and other pneumococcal infections in young children and elders. Determination of circulating S. pneumoniae serotypes is an essential service by public health laboratories for the monitoring of putative serotype replacement following the introduction of pneumococcal conjugate vaccines (PCVs) and of the efficacy of the immunization program. The Quellung method remains the gold standard for typing S. pneumoniae. Although this method is very effective, it is also costly, time consuming and not totally reliable due to its subjective nature. The objectives of this study were to test and evaluate the efficiency of 3 different molecular methods compared to the Quellung method. Sequential multiplex PCR, sequetyping and whole genome sequencing (WGS) were chosen and tested using a set of diverse S. pneumoniae. One-hundred and eighteen isolates covering 83 serotypes were subjected to multiplex PCR and sequetyping while 88 isolates covering 53 serotypes were subjected to WGS. Sequential multiplex PCR allowed the identification of a significant proportion (49%) of serotypes at the serogroup or subset level but only 27% were identified at the serotype level. Using WGS, 55% to 60% of isolates were identified at the serotype level depending on the analysis strategy used. Finally, sequetyping demonstrated the lowest performance, with 17% of misidentified serotypes. The use of Jin cpsB database instead of the GenBank database slightly improved results but did not significantly impact the efficiency of sequetyping. Although none of these molecular methods may currently replace the Quellung method, WGS remains the most promising molecular pneumococcal serotyping method.
Collapse
Affiliation(s)
- Florian Mauffrey
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Éric Fournier
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Christine Martineau
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Simon Lévesque
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marc-Christian Domingo
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Florence Doualla-Bell
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Jean Longtin
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| |
Collapse
|
22
|
Bricio-Moreno L, Ebruke C, Chaguza C, Cornick J, Kwambana-Adams B, Yang M, Mackenzie G, Wren BW, Everett D, Antonio M, Kadioglu A. Comparative Genomic Analysis and In Vivo Modeling of Streptococcus pneumoniae ST3081 and ST618 Isolates Reveal Key Genetic and Phenotypic Differences Contributing to Clonal Replacement of Serotype 1 in The Gambia. J Infect Dis 2017; 216:1318-1327. [PMID: 28968897 PMCID: PMC5853340 DOI: 10.1093/infdis/jix472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is one of the leading causes of invasive pneumococcal disease (IPD) in West Africa, with ST618 being the dominant cause of IPD in The Gambia. Recently however, a rare example of clonal replacement was observed, where the ST3081 clone of serotype 1 replaced the predominant ST618 clone as the main cause of IPD. In the current study, we sought to find the reasons for this unusual replacement event. Using whole-genome sequence analysis and clinically relevant models of in vivo infection, we identified distinct genetic and phenotypic characteristics of the emerging ST3081 clone. We show that ST3081 is significantly more virulent than ST618 in models of invasive pneumonia, and is carried at higher densities than ST618 during nasopharyngeal carriage. We also observe sequence type-specific accessory genes and a unique sequence type-specific fixed mutation in the pneumococcal toxin pneumolysin, which is associated with increased hemolytic activity in ST3081 and may contribute to increased virulence in this clone. Our study provides evidence that, within the same serotype 1 clonal complex, biological properties differ significantly from one clone to another in terms of virulence and host invasiveness, and that these differences may be the result of key genetic differences within the genome.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
| | - Chinelo Ebruke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Chrispin Chaguza
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Jennifer Cornick
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Brenda Kwambana-Adams
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Marie Yang
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
| | - Grant Mackenzie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
| | - Dean Everett
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Martin Antonio
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit, Banjul, The Gambia
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool
| |
Collapse
|
23
|
Gillis HD, Demczuk WHB, Griffith A, Martin I, Warhuus M, Lang ALS, ElSherif M, McNeil SA, LeBlanc JJ. PCR-based discrimination of emerging Streptococcus pneumoniae serotypes 22F and 33F. J Microbiol Methods 2017; 144:99-106. [PMID: 29162393 DOI: 10.1016/j.mimet.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/30/2022]
Abstract
Serotyping of Streptococcus pneumoniae is important to monitor disease epidemiology and assess the impact of pneumococcal vaccines. Traditionally, the Quellung reaction used serotype-specific antibodies to classify S. pneumoniae based on differences in capsular antigens. More recently, PCR-based serotype deduction relying on serotype-specific capsule biosynthesis genes has been broadly applied for pneumococcal surveillance. However, PCR-based serotyping lacks discrimination for certain S. pneumoniae serotypes, including the differentiation of serotype 22F from 22A, and serotype 33F from 33A and 37. Serotypes 22F and 33F are emerging serotypes that are absent in the currently licensed 13-valent pneumococcal conjugate vaccine, but present in the new candidate 15-valent formulation. This study validated novel PCR reactions to detect and discriminate S. pneumoniae serotypes 22F and 33F. In order to differentiate S. pneumoniae serotypes 22F or 33F from genetically similar serotypes, two novel PCR reactions were designed and validated. The specificity of all PCR targets was evaluated using all 92 different S. pneumoniae serotypes, as well as 32 other streptococci. Reproducibility was evaluated using geographically and genetically diverse strains of S. pneumoniae serotypes 22F and 22A, or serotypes 33F, 33A, and 37 that were previously characterized by reputable reference laboratories. Overall, S. pneumoniae serotypes 22F and 33F could be accurately and reproducibly be detected and discriminated using PCR alone. Such a molecular serotyping approach provides a valuable diagnostic tool that is feasible in any molecular laboratory, to enable pneumococcal serotype surveillance and subsequent assessment of the impact of the new 15-valent candidate pneumococcal vaccine.
Collapse
Affiliation(s)
- Hayley D Gillis
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada; Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia (NS), Canada
| | | | - Averil Griffith
- National Microbiology Laboratory (NML), Winnipeg, MB, Canada
| | - Irene Martin
- National Microbiology Laboratory (NML), Winnipeg, MB, Canada
| | - Michelle Warhuus
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada
| | - Amanda L S Lang
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada; Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia (NS), Canada
| | - May ElSherif
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada; Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia (NS), Canada
| | - Shelly A McNeil
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada; Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia (NS), Canada
| | - Jason J LeBlanc
- Canadian Center for Vaccinology (CCfV), Dalhousie University, Halifax, Nova Scotia (NS), Canada; Nova Scotia Health Authority (NSHA), Halifax, Nova Scotia (NS), Canada.
| |
Collapse
|
24
|
Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ, Turner P, Aanensen DM, Bentley SD, Didelot X, Fraser C. Pneumococcal Capsule Synthesis Locus cps as Evolutionary Hotspot with Potential to Generate Novel Serotypes by Recombination. Mol Biol Evol 2017; 34:2537-2554. [PMID: 28595308 PMCID: PMC5850285 DOI: 10.1093/molbev/msx173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diversity of the polysaccharide capsule in Streptococcus pneumoniae-main surface antigen and the target of the currently used pneumococcal vaccines-constitutes a major obstacle in eliminating pneumococcal disease. Such diversity is genetically encoded by almost 100 variants of the capsule biosynthesis locus, cps. However, the evolutionary dynamics of the capsule remains not fully understood. Here, using genetic data from 4,519 bacterial isolates, we found cps to be an evolutionary hotspot with elevated substitution and recombination rates. These rates were a consequence of relaxed purifying selection and positive, diversifying selection acting at this locus, supporting the hypothesis that the capsule has an increased potential to generate novel diversity compared with the rest of the genome. Diversifying selection was particularly evident in the region of wzd/wze genes, which are known to regulate capsule expression and hence the bacterium's ability to cause disease. Using a novel, capsule-centered approach, we analyzed the evolutionary history of 12 major serogroups. Such analysis revealed their complex diversification scenarios, which were principally driven by recombination with other serogroups and other streptococci. Patterns of recombinational exchanges between serogroups could not be explained by serotype frequency alone, thus pointing to nonrandom associations between co-colonizing serotypes. Finally, we discovered a previously unobserved mosaic serotype 39X, which was confirmed to carry a viable and structurally novel capsule. Adding to previous discoveries of other mosaic capsules in densely sampled collections, these results emphasize the strong adaptive potential of the bacterium by its ability to generate novel antigenic diversity by recombination.
Collapse
Affiliation(s)
- Rafał J. Mostowy
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicola De Maio
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute for Emerging Infections, Oxford Martin School, Oxford, United Kingdom
| | - Claire Chewapreecha
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Susannah J. Salter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Turner
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Position of O-Acetylation within the Capsular Repeat Unit Impacts the Biological Properties of Pneumococcal Serotypes 33A and 33F. Infect Immun 2017; 85:IAI.00132-17. [PMID: 28438972 DOI: 10.1128/iai.00132-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) produces many capsule types that differ in their abilities to evade host immune recognition. To explain these serotype-dependent protective capacities, many studies have investigated capsular thickness or the interaction of the capsule with complement proteins, but the effects of small chemical modifications of the capsule on its function have not been studied. One small chemical modification found frequently among pneumococcal capsules is O-acetylation. Pneumococcal serotype 33A has two membrane-bound O-acetyltransferase genes, wciG and wcjE A 33A wcjE-deficient variant, 33F, occurs naturally and is increasing in prevalence in the wake of widespread conjugate vaccine use, but no wciG-deficient variants have been reported. To study the biological consequence of the loss of O-acetylation, we created wciG-deficient variants in both serotypes 33A and 33F, which we named 33X1 (ΔwciG) and 33X2 (ΔwciG ΔwcjE). Serotypes 33X1 and 33X2 express novel capsule types based on serological and biochemical analyses. We found that loss of WcjE-mediated O-acetylation appears not to affect cell wall shielding, since serotypes 33A and 33F exhibit comparable nonspecific opsonophagocytic killing, biofilm production, and adhesion to nasopharyngeal cells, though serotype 33F survived short-term drying better than serotype 33A. Loss of WciG-mediated O-acetylation in serotypes 33X1 and 33X2, however, resulted in a phenotype resembling that of nonencapsulated strains: increased cell wall accessibility, increased nonspecific opsonophagocytic killing, enhanced biofilm formation, and increased adhesion to nasopharyngeal cells. We conclude that WciG-mediated, but not WcjE-mediated, O-acetylation is important for producing protective capsules in 33A and that small chemical changes to the capsule can drastically affect its biological properties.
Collapse
|
26
|
Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumoniae. Sci Rep 2017; 7:2715. [PMID: 28578394 PMCID: PMC5457420 DOI: 10.1038/s41598-017-02996-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria is a healthcare problem worldwide. We evaluated the antimicrobial activity of rhodomyrtone, an acylphloroglucinol present in Rhodomyrtus tomentosa leaves, against the human Gram-positive pathogen Streptococcus pneumoniae. The compound exhibited pronounced anti-pneumococcal activity against a broad collection of clinical isolates. We studied the effects at the molecular level by integrated proteomic and metabolomic analysis. The results revealed alterations in enzymes and metabolites involved in several metabolic pathways including amino acid biosynthesis, nucleic acid biosynthesis, glucid, and lipid metabolism. Notably, the levels of two enzymes (glycosyltransferase and UTP-glucose-1-phosphate uridylyltransferase) and three metabolites (UDP-glucose, UDP-glucuronic acid and UDP-N-acetyl-D-galactosamine) participating in the synthesis of the pneumococcal capsule clearly diminished in the bacterial cells exposed to rhodomyrtone. Rhodomyrtone-treated pneumococci significantly possessed less amount of capsule, as measured by a colorimetric assay and visualized by electron microscopy. These findings reveal the utility of combining proteomic and metabolomic analyses to provide insight into phenotypic features of S. pneumoniae treated with this potential novel antibiotic. This can lead to an alternative antibiotic for the treatment of S. pneumoniae infections, because of the growing concern regarding antimicrobial resistance.
Collapse
|
27
|
Nagaraj G, Ganaie F, Govindan V, Ravikumar KL. Development of PCRSeqTyping-a novel molecular assay for typing of Streptococcus pneumoniae. Pneumonia (Nathan) 2017; 9:8. [PMID: 28702310 PMCID: PMC5471960 DOI: 10.1186/s41479-017-0032-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/01/2017] [Indexed: 11/25/2022] Open
Abstract
Background Precise serotyping of pneumococci is essential for vaccine development, to better understand the pathogenicity and trends of drug resistance. Currently used conventional and molecular methods of serotyping are expensive and time-consuming, with limited coverage of serotypes. An accurate and rapid serotyping method with complete coverage of serotypes is an urgent necessity. This study describes the development and application of a novel technology that addresses this need. Methods Polymerase chain reaction (PCR) was performed, targeting 1061 bp cpsB region, and the amplicon was subjected to sequencing. The sequence data was analyzed using the National Centre for Biotechnology Information database. For homologous strains, a second round of PCR, sequencing, and data analysis was performed targeting 10 group-specific genes located in the capsular polysaccharide region. Ninety-one pneumococcal reference strains were analyzed with PCRSeqTyping and compared with Quellung reaction using Pneumotest Kit (SSI, Denmark). Results A 100% correlation of PCRSeqTyping results was observed with Pneumotest results. Fifty-nine reference strains were uniquely identified in the first step of PCRSeqTyping. The remaining 32 homologous strains out of 91 were also uniquely identified in the second step. Conclusion This study describes a PCRSeqTyping assay that is accurate and rapid, with high reproducibility. This assay is amenable for clinical testing and does not require culturing of the samples. It is a significant improvement over other methods because it covers all pneumococcal serotypes, and it has the potential for use in diagnostic laboratories and surveillance studies.
Collapse
Affiliation(s)
- Geetha Nagaraj
- Central Research Laboratory, KIMS Hospital and Research Centre, KR Road, VV Purum, Bangalore, Karnataka 560 004 India
| | - Feroze Ganaie
- Central Research Laboratory, KIMS Hospital and Research Centre, KR Road, VV Purum, Bangalore, Karnataka 560 004 India
| | - Vandana Govindan
- Central Research Laboratory, KIMS Hospital and Research Centre, KR Road, VV Purum, Bangalore, Karnataka 560 004 India
| | | |
Collapse
|
28
|
Parra EL, Duarte C, Rodríguez K, Sanabria O, Moreno J. Frequency and molecular characterization of invasive isolates of Streptococcus pneumoniae serotypes 6C and 6D in Colombia. Enferm Infecc Microbiol Clin 2017; 35:283-286. [DOI: 10.1016/j.eimc.2016.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
|
29
|
Geno KA, Saad JS, Nahm MH. Discovery of Novel Pneumococcal Serotype 35D, a Natural WciG-Deficient Variant of Serotype 35B. J Clin Microbiol 2017; 55:1416-1425. [PMID: 28202800 PMCID: PMC5405259 DOI: 10.1128/jcm.00054-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
Pneumococcus (Streptococcus pneumoniae) remains a significant cause of morbidity and mortality, especially among those at the extremes of age. Its capsular polysaccharide is essential for systemic virulence. Over 90 serologically distinct pneumococcal capsular polysaccharides (serotypes) are recognized, but they are unequal in prevalence. Because antibodies against the capsule are protective, polysaccharide conjugate vaccines, which are constructed against the most prevalent serotypes, have caused great reductions in pneumococcal disease caused by these serotypes. In response, however, the relative prevalences of serotypes have shifted. Certain previously rare serotypes, such as serotype 35B, are increasing in prevalence. Serotype 35B is thus a likely future vaccine candidate, but due to their previous rarity, serotype 35B strains have not been scrutinized for underlying heterogeneity. We studied putative serotype 35B clinical isolates to assess the uniformity of their serological reactions. While most isolates exhibited the accepted serology of serotype 35B, one isolate failed to bind to critical serotyping reagents. We determined that the genetic basis for this aberrant serology was the presence of inactivating mutations in the O-acetyltransferase gene wciG Complementation studies in a wciG deletion strain verified that the mutant WciG was nonfunctional, and the serology of the mutant could be restored through complementation with a construct encoding a functional WciG. Nuclear magnetic resonance studies confirmed that the capsule of the WciG-deficient isolate lacked O-acetylation but was otherwise identical to serotype 35B. As this isolate expresses a unique serology with unique biochemistry and a stable genetic basis, we named its novel capsule serotype 35D.
Collapse
Affiliation(s)
- K Aaron Geno
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Moon H Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Draft Genome Sequences of Clinical Isolates of Serotype 6E Streptococcus pneumoniae from Five Asian Countries. GENOME ANNOUNCEMENTS 2017; 5:5/10/e01728-16. [PMID: 28280026 PMCID: PMC5347246 DOI: 10.1128/genomea.01728-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although serotype 6E Streptococcus pneumoniae consistently expresses capsules of either vaccine-serotype 6A or 6B, certain genetic variants of serotype 6E may evade vaccine induced immunity. Thus, draft genome sequences from five clinical isolates of serotype 6E from each of five different Asian countries have been generated to provide insight into the genomic diversity in serotype 6E strains.
Collapse
|
31
|
Falkenhorst G, Remschmidt C, Harder T, Wichmann O, Glodny S, Hummers-Pradier E, Ledig T, Bogdan C. Background paper to the updated pneumococcal vaccination recommendation for older adults in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:1623-1657. [DOI: 10.1007/s00103-016-2466-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae. mBio 2016; 7:mBio.01844-16. [PMID: 27935839 PMCID: PMC5111408 DOI: 10.1128/mbio.01844-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis. Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. Expression of a capsular polysaccharide is among the principal virulence factors of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species of streptococci that form a significant part of our commensal microbiota. The demonstrated antigenic identity of many capsular polysaccharides expressed by commensal streptococci and S. pneumoniae raises important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and the pathogen.
Collapse
|
33
|
Chaguza C, Cornick JE, Harris SR, Andam CP, Bricio-Moreno L, Yang M, Yalcin F, Ousmane S, Govindpersad S, Senghore M, Ebruke C, Du Plessis M, Kiran AM, Pluschke G, Sigauque B, McGee L, Klugman KP, Turner P, Corander J, Parkhill J, Collard JM, Antonio M, von Gottberg A, Heyderman RS, French N, Kadioglu A, Hanage WP, Everett DB, Bentley SD. Understanding pneumococcal serotype 1 biology through population genomic analysis. BMC Infect Dis 2016; 16:649. [PMID: 27821148 PMCID: PMC5100261 DOI: 10.1186/s12879-016-1987-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumococcus kills over one million children annually and over 90 % of these deaths occur in low-income countries especially in Sub-Saharan Africa (SSA) where HIV exacerbates the disease burden. In SSA, serotype 1 pneumococci particularly the endemic ST217 clone, causes majority of the pneumococcal disease burden. To understand the evolution of the virulent ST217 clone, we analysed ST217 whole genomes from isolates sampled from African and Asian countries. METHODS We analysed 226 whole genome sequences from the ST217 lineage sampled from 9 African and 4 Asian countries. We constructed a whole genome alignment and used it for phylogenetic and coalescent analyses. We also screened the genomes to determine presence of antibiotic resistance conferring genes. RESULTS Population structure analysis grouped the ST217 isolates into five sequence clusters (SCs), which were highly associated with different geographical regions and showed limited intracontinental and intercontinental spread. The SCs showed lower than expected genomic sequence, which suggested strong purifying selection and small population sizes caused by bottlenecks. Recombination rates varied between the SCs but were lower than in other successful clones such as PMEN1. African isolates showed higher prevalence of antibiotic resistance genes than Asian isolates. Interestingly, certain West African isolates harbored a defective chloramphenicol and tetracycline resistance-conferring element (Tn5253) with a deletion in the loci encoding the chloramphenicol resistance gene (cat pC194), which caused lower chloramphenicol than tetracycline resistance. Furthermore, certain genes that promote colonisation were absent in the isolates, which may contribute to serotype 1's rarity in carriage and consequently its lower recombination rates. CONCLUSIONS The high phylogeographic diversity of the ST217 clone shows that this clone has been in circulation globally for a long time, which allowed its diversification and adaptation in different geographical regions. Such geographic adaptation reflects local variations in selection pressures in different locales. Further studies will be required to fully understand the biological mechanisms which makes the ST217 clone highly invasive but unable to successfully colonise the human nasopharynx for long durations which results in lower recombination rates.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Jennifer E. Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA UK
| | - Cheryl P. Andam
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Massachusetts, MA 02115 USA
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
| | - Feyruz Yalcin
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA UK
| | - Sani Ousmane
- Unité de Biologie, Centre de Recherche Médicale et Sanitaire (CERMES), Niamey, Niger
| | - Shanil Govindpersad
- National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
| | - Madikay Senghore
- Bacterial Diseases Programme, Medical Research Council (MRC), Banjul, The Gambia
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
| | - Chinelo Ebruke
- Bacterial Diseases Programme, Medical Research Council (MRC), Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Mignon Du Plessis
- National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
| | - Anmol M. Kiran
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Betuel Sigauque
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia GA 30329 USA
| | - Keith P. Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
- Bill and Melinda Gates Foundation, Seattle, WA 98109 USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA UK
| | - Jean-Marc Collard
- Unité de Biologie, Centre de Recherche Médicale et Sanitaire (CERMES), Niamey, Niger
| | - Martin Antonio
- Bacterial Diseases Programme, Medical Research Council (MRC), Banjul, The Gambia
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert S. Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
| | - William P. Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Massachusetts, MA 02115 USA
| | - Dean B. Everett
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Stephen D. Bentley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA UK
| | | |
Collapse
|
34
|
Polysaccharide Capsule Composition of Pneumococcal Serotype 19A Subtypes Is Unaltered among Subtypes and Independent of the Nutritional Environment. Infect Immun 2016; 84:3152-3160. [PMID: 27550933 DOI: 10.1128/iai.00474-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Serotype 19A strains have emerged as a cause of invasive pneumococcal disease after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7), and serotype 19A has now been included in the recent 13-valent vaccine (PCV13). Genetic analysis has revealed at least three different capsular serotype 19A subtypes, and nutritional environment-dependent variation of the 19A capsule structure has been reported. Pneumococcal vaccine effectiveness and serotyping accuracy might be impaired by structural differences in serotype 19A capsules. We therefore analyzed the distribution of 19A subtypes collected within a Swiss national surveillance program and determined capsule composition under different nutritional conditions with high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. After the introduction of PCV7, a significant relative increase of subtype 19A-II and decrease of 19A-I occurred. Chemical analyses showed no difference in the composition as well as the linkage of 19A subtype capsular saccharides grown in defined and undefined growth media, which is consistent with a trisaccharide repeat unit composed of rhamnose, N-acetyl-mannosamine, and glucose. In summary, our study suggests that no structural variance dependent of the nutritional environment or the subtype exists. The serotype 19A subtype shift observed after the introduction of the PCV7 can therefore not be explained by selection of a capsule structure variant. However, capsule composition analysis of emerging 19A clones is recommended in cases where there is no other explanation for a selective advantage, such as antibiotic resistance or loss or acquisition of other virulence factors.
Collapse
|
35
|
Gairola S, Gautam M, Patil D, Manoj Kumar K, Shinde P, Jana SK, Dhere R, Jadhav S. Development and application of HPLC-RI and HPLC-MS/MS based methods for quantification of residual deoxycholate levels in pneumococcal polysaccharides. Biologicals 2016; 44:517-525. [PMID: 27666435 DOI: 10.1016/j.biologicals.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
The analysis of residual sodium deoxycholate (DOC); a detergent of biological origin used in manufacturing of polysaccharide vaccines is challenging due to complex sample matrices and the lack of suitable methods. Here we report, rapid and sensitive high-performance liquid chromatography-refractive index (HPLC-RI) and tandem mass spectrometry (HPLC-MS/MS) methods for estimation of residual DOC in pneumococcal polysaccharides. For HPLC-RI method, separation was achieved using Luna C18 column and mobile phase compositions of acetonitrile: methanol: 20 mM sodium acetate (60:05:35% v/v). For HPLC-MS/MS method, separation was achieved using a Hypersil BDS C18 column with gradient elution of methanol and water (0.1% formic acid). MS/MS method showed linearity (r2 = 0.997) over the range of 10-320 ng/mL with limits of detection (LOD) and lower limit of quantitation (LOQ) of 3 and 10 ng/mL respectively. Precision (% RSD) and accuracy (% recovery) for both methods were in the range of 0.74-8.29% and 82.33-117.86% respectively. Sample matrices interferences were addressed following novel sample clean-up method based on liquid-liquid extraction. Both methods enabled traceable quantitation of DOC in intermediate and purified pneumococcal polysaccharides of serotypes: 1, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F and 23F.
Collapse
Affiliation(s)
- Sunil Gairola
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India.
| | - Manish Gautam
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Dada Patil
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Krishna Manoj Kumar
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Pravin Shinde
- Doctors' Analytical Laboratories Pvt Ltd - TTC Rabale MIDC, Mumbai 400 701, India
| | - S K Jana
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Rajeev Dhere
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Suresh Jadhav
- Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| |
Collapse
|
36
|
Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule. mBio 2016; 7:mBio.01053-16. [PMID: 27677790 PMCID: PMC5040112 DOI: 10.1128/mbio.01053-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD) globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs). Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate) and how many individual recombination events occur per isolate (the frequency). Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions. IMPORTANCE The capsule determines >90 different pneumococcal serotypes, which vary in capsule size, virulence, duration, and prevalence of carriage. Current serotype-specific vaccines elicit anticapsule antibodies. Pneumococcus can take up exogenous DNA by transformation and insert it into its chromosome by homologous recombination. This mechanism has disseminated drug resistance and generated vaccine escape variants. It is hence crucial to pneumococcal evolutionary response to interventions, but there has been no systematic study quantifying whether serotypes vary in recombination and whether this is associated with serotype-specific properties such as capsule size or carriage duration. Larger capsules could physically inhibit DNA uptake, or given the longer carriage duration for larger capsules, this may promote recombination. We find that recombination varies among capsules and is associated with capsule size, carriage duration, and carriage prevalence and negatively associated with invasiveness. The consequence of this work is that serotypes with different capsules may respond differently to selective pressures like vaccines.
Collapse
|
37
|
Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP, Harrison TG, Fry NK. Whole genome sequencing of Streptococcus pneumoniae: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ 2016; 4:e2477. [PMID: 27672516 PMCID: PMC5028725 DOI: 10.7717/peerj.2477] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Streptococcus pneumoniae typically express one of 92 serologically distinct capsule polysaccharide (cps) types (serotypes). Some of these serotypes are closely related to each other; using the commercially available typing antisera, these are assigned to common serogroups containing types that show cross-reactivity. In this serotyping scheme, factor antisera are used to allocate serotypes within a serogroup, based on patterns of reactions. This serotyping method is technically demanding, requires considerable experience and the reading of the results can be subjective. This study describes the analysis of the S. pneumoniae capsular operon genetic sequence to determine serotype distinguishing features and the development, evaluation and verification of an automated whole genome sequence (WGS)-based serotyping bioinformatics tool, PneumoCaT (Pneumococcal Capsule Typing). Initially, WGS data from 871 S. pneumoniae isolates were mapped to reference cps locus sequences for the 92 serotypes. Thirty-two of 92 serotypes could be unambiguously identified based on sequence similarities within the cps operon. The remaining 60 were allocated to one of 20 ‘genogroups’ that broadly correspond to the immunologically defined serogroups. By comparing the cps reference sequences for each genogroup, unique molecular differences were determined for serotypes within 18 of the 20 genogroups and verified using the set of 871 isolates. This information was used to design a decision-tree style algorithm within the PneumoCaT bioinformatics tool to predict to serotype level for 89/94 (92 + 2 molecular types/subtypes) from WGS data and to serogroup level for serogroups 24 and 32, which currently comprise 2.1% of UK referred, invasive isolates submitted to the National Reference Laboratory (NRL), Public Health England (June 2014–July 2015). PneumoCaT was evaluated with an internal validation set of 2065 UK isolates covering 72/92 serotypes, including 19 non-typeable isolates and an external validation set of 2964 isolates from Thailand (n = 2,531), USA (n = 181) and Iceland (n = 252). PneumoCaT was able to predict serotype in 99.1% of the typeable UK isolates and in 99.0% of the non-UK isolates. Concordance was evaluated in UK isolates where further investigation was possible; in 91.5% of the cases the predicted capsular type was concordant with the serologically derived serotype. Following retesting, concordance increased to 99.3% and in most resolved cases (97.8%; 135/138) discordance was shown to be caused by errors in original serotyping. Replicate testing demonstrated that PneumoCaT gave 100% reproducibility of the predicted serotype result. In summary, we have developed a WGS-based serotyping method that can predict capsular type to serotype level for 89/94 serotypes and to serogroup level for the remaining four. This approach could be integrated into routine typing workflows in reference laboratories, reducing the need for phenotypic immunological testing.
Collapse
Affiliation(s)
- Georgia Kapatai
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Carmen L Sheppard
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Ali Al-Shahib
- Infectious Disease Informatics, Public Health England, London, United Kingdom
| | - David J Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Anthony P Underwood
- Infectious Disease Informatics, Public Health England, London, United Kingdom
| | - Timothy G Harrison
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| |
Collapse
|
38
|
Porat N, Benisty R, Givon-Lavi N, Trefler R, Dagan R. The impact of pneumococcal conjugate vaccines on carriage of and disease caused by Streptococcus pneumoniae serotypes 6C and 6D in southern Israel. Vaccine 2016; 34:2806-12. [DOI: 10.1016/j.vaccine.2016.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/28/2022]
|
39
|
Kay EJ, Yates LE, Terra VS, Cuccui J, Wren BW. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli. Open Biol 2016; 6:150243. [PMID: 27110302 PMCID: PMC4838161 DOI: 10.1098/rsob.150243] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| | - Laura E Yates
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| | - Vanessa S Terra
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| | - Jon Cuccui
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology , London School of Hygiene and Tropical Medicine , Keppel Street, London WC1E 7HT , UK
| |
Collapse
|
40
|
Pneumococcus with the "6E" cps Locus Produces Serotype 6B Capsular Polysaccharide. J Clin Microbiol 2016; 54:967-71. [PMID: 26818670 DOI: 10.1128/jcm.03194-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/20/2022] Open
Abstract
Genetic studies of serogroup 6 isolates ofStreptococcus pneumoniaeidentified putative serotype 6E. Although its capsular polysaccharide structure has not been elucidated, putative serotype 6E is described in an increasing number of studies as a potentially new serotype. We show here that SPEC6B, which is widely used as a target strain for serotype 6B opsonophagocytosis assays, has the genetic features of the putative serotype 6E but produces capsular polysaccharide identical to 6B capsular polysaccharide as determined by one-dimensional (1D) and 2D nuclear magnetic resonance (NMR). Thus, putative serotype 6E is a mere genetic variant of serotype 6B. Also, SPEC6B is appropriate as a target strain for serotype 6B opsonophagocytosis assays. This example illustrates the difficulties of assigning new bacterial serotypes based on genetic findings alone.
Collapse
|
41
|
Galanis I, Lindstrand A, Darenberg J, Browall S, Nannapaneni P, Sjöström K, Morfeldt E, Naucler P, Blennow M, Örtqvist Å, Henriques-Normark B. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J 2016; 47:1208-18. [PMID: 26797033 PMCID: PMC4819883 DOI: 10.1183/13993003.01451-2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023]
Abstract
The effects of pneumococcal conjugated vaccines (PCVs) need to be investigated. In Stockholm County, Sweden, PCV7 was introduced in the childhood immunisation programme in 2007 and changed to PCV13 in 2010.Over 90% of all invasive isolates during 2005-2014 (n=2336) and carriage isolates, 260 before and 647 after vaccine introduction, were characterised by serotyping, molecular typing and antibiotic susceptibility, and serotype diversity was calculated. Clinical information was collected for children and adults with invasive pneumococcal disease (IPD).The IPD incidence decreased post-PCV7, but not post-PCV13, in vaccinated children. Beneficial herd effects were seen in older children and adults, but not in the elderly. The herd protection was more pronounced post-PCV7 than post-PCV13. PCV7 serotypes decreased. IPD caused by PCV13 serotypes 3 and 19A increased post-PCV7. Post-PCV13, serotypes 6A and 19A, but not serotype 3, decreased. The serotype distribution changed in carriage and IPD to nonvaccine types, also in nonvaccinated populations. Expansion of non-PCV13 serotypes was largest following PCV13 introduction. Serotype diversity increased and nonvaccine clones emerged, such as CC433 (serotype 22F) in IPD and CC62 (serotype 11A) in carriage. In young children, meningitis, septicaemia and severe rhinosinusitis, but not bacteraemic pneumonia, decreased.Pneumococcal vaccination leads to expansion of new or minor serotypes/clones, also in nonvaccinated populations.
Collapse
Affiliation(s)
- Ilias Galanis
- Public Health Agency of Sweden, Solna, Sweden These authors contributed equally to this article
| | - Ann Lindstrand
- Public Health Agency of Sweden, Solna, Sweden Dept of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden These authors contributed equally to this article
| | - Jessica Darenberg
- Public Health Agency of Sweden, Solna, Sweden These authors contributed equally to this article
| | - Sarah Browall
- Dept of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Dept of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Pontus Naucler
- Dept of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet, Stockholm, Sweden Dept of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Margareta Blennow
- Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden Dept of Clinical Sciences and Education, Karolinska Institutet, Stockholm, Sweden
| | - Åke Örtqvist
- Dept of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet, Stockholm, Sweden Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden These authors contributed equally to this article
| | - Birgitta Henriques-Normark
- Public Health Agency of Sweden, Solna, Sweden Dept of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden These authors contributed equally to this article
| |
Collapse
|
42
|
Abstract
Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Its virulence is largely due to its polysaccharide capsule, which shields it from the host immune system, and because of this, the capsule has been extensively studied. Studies of the capsule led to the identification of DNA as the genetic material, identification of many different capsular serotypes, and identification of the serotype-specific nature of protection by adaptive immunity. Recent studies have led to the determination of capsular polysaccharide structures for many serotypes using advanced analytical technologies, complete elucidation of genetic basis for the capsular types, and the development of highly effective pneumococcal conjugate vaccines. Conjugate vaccine use has altered the serotype distribution by either serotype replacement or switching, and this has increased the need to serotype pneumococci. Due to great advances in molecular technologies and our understanding of the pneumococcal genome, molecular approaches have become powerful tools to predict pneumococcal serotypes. In addition, more-precise and -efficient serotyping methods that directly detect polysaccharide structures are emerging. These improvements in our capabilities will greatly enhance future investigations of pneumococcal epidemiology and diseases and the biology of colonization and innate immunity to pneumococcal capsules.
Collapse
|
43
|
Abstract
Competitive interactions between Streptococcus pneumoniae strains during host colonization could influence the serotype distribution in nasopharyngeal carriage and pneumococcal disease. We evaluated the competitive fitness of strains of serotypes 6B, 14, 19A, 19F, 23F, and 35B in a mouse model of multiserotype carriage. Isogenic variants were constructed using clinical strains as the capsule gene donors. Animals were intranasally inoculated with a mixture of up to six pneumococcal strains of different serotypes, with separate experiments involving either clinical isolates or isogenic capsule-switch variants of clinical strain TIGR4. Upper-respiratory-tract samples were repeatedly collected from animals in order to monitor changes in the serotype ratios using quantitative PCR. A reproducible hierarchy of capsular types developed in the airways of mice inoculated with multiple strains. Serotype ranks in this hierarchy were similar among pneumococcal strains of different genetic backgrounds in different strains of mice and were not altered when tested under a range of host conditions. This rank correlated with the measure of the metabolic cost of capsule synthesis and in vitro measure of pneumococcal cell surface charge, both parameters considered to be predictors of serotype-specific fitness in carriage. This study demonstrates the presence of a robust competitive hierarchy of pneumococcal serotypes in vivo that is driven mainly, but not exclusively, by the capsule itself. Streptococcus pneumoniae (pneumococcus) is the leading cause of death due to respiratory bacterial infections but also a commensal frequently carried in upper airways. Available vaccines induce immune responses against polysaccharides coating pneumococcal cells, but with over 90 different capsular types (serotypes) identified, they can only target strains of the selected few serotypes most prevalent in disease. Vaccines not only protect vaccinated individuals against disease but also protect by reducing carriage of vaccine-targeted strains to induce herd effects across whole populations. Unfortunately, reduction in the circulation of vaccine-type strains is offset by increase in carriage and disease from nonvaccine strains, indicating the importance of competitive interactions between pneumococci in shaping the population structure of this pathogen. Here, we showed that the competitive ability of pneumococcal strains to colonize the host strongly depends on the type of capsular polysaccharide expressed by pneumococci and only to a lesser degree on strain or host genetic backgrounds or on variation in host immune responses.
Collapse
|
44
|
Immunization with Pneumococcal Surface Protein K of Nonencapsulated Streptococcus pneumoniae Provides Protection in a Mouse Model of Colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1146-53. [PMID: 26311246 DOI: 10.1128/cvi.00456-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Current vaccinations are effective against encapsulated strains of Streptococcus pneumoniae, but they do not protect against nonencapsulated Streptococcus pneumoniae (NESp), which is increasing in colonization and incidence of pneumococcal disease. Vaccination with pneumococcal proteins has been assessed for its ability to protect against pneumococcal disease, but several of these proteins are not expressed by NESp. Pneumococcal surface protein K (PspK), an NESp virulence factor, has not been assessed for immunogenic potential or host modulatory effects. Mammalian cytokine expression was determined in an in vivo mouse model and in an in vitro cell culture system. Systemic and mucosal mouse immunization studies were performed to determine the immunogenic potential of PspK. Murine serum and saliva were collected to quantitate specific antibody isotype responses and the ability of antibody and various proteins to inhibit epithelial cell adhesion. Host cytokine response was not reduced by PspK. NESp was able to colonize the mouse nasopharynx as effectively as encapsulated pneumococci. Systemic and mucosal immunization provided protection from colonization by PspK-positive (PspK(+)) NESp. Anti-PspK antibodies were recovered from immunized mice and significantly reduced the ability of NESp to adhere to human epithelial cells. A protein-based pneumococcal vaccine is needed to provide broad protection against encapsulated and nonencapsulated pneumococci in an era of increasing antibiotic resistance and vaccine escape mutants. We demonstrate that PspK may serve as an NESp target for next-generation pneumococcal vaccines. Immunization with PspK protected against pneumococcal colonization, which is requisite for pneumococcal disease.
Collapse
|
45
|
van der Linden M, Falkenhorst G, Perniciaro S, Imöhl M. Effects of Infant Pneumococcal Conjugate Vaccination on Serotype Distribution in Invasive Pneumococcal Disease among Children and Adults in Germany. PLoS One 2015; 10:e0131494. [PMID: 26132078 PMCID: PMC4488910 DOI: 10.1371/journal.pone.0131494] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
This study describes the effects of the introduction of universal infant pneumococcal conjugate vaccination in 2006 on invasive pneumococcal disease (IPD) among children and adults in Germany with a focus on the dynamics of serotype distribution in vaccinated and non-vaccinated age groups. Over a period of 22 years (1992-2014), microbiological diagnostic laboratories from all over Germany have been sending isolates of IPD cases to the German National Reference Center for Streptococci on a voluntary basis. Streptococcus pneumoniae isolates were serotyped using Neufeld's Quellung method. Among children <16 years, the proportion of PCV7 serotypes among isolates from IPD cases decreased from 61.8% before vaccination (1997-2006) to 23.5% in the early vaccination period (2007-2010; p = 1.30E-72) and sank further to 5.2% in the late vaccination period (2010-2014; p = 4.59E-25). Similar reductions were seen for the separate age groups <2 years, 2-4 years and 5-15 years. Among adults, the proportion of PCV7 serotypes decreased from 43.4% in the pre-vaccination period (1992-2006) to 24.7% (p = 3.78E-88) in the early vaccination period and 8.2% (p = 5.97E-161) in the late vaccination period. Both among children and among adults, the non-PCV7 serotypes 1, 3, 7F and 19A significantly increased in the early vaccination period. After the switch from PCV7 to PVC10/PCV13 for infant vaccination in 2010, serotypes 1, 6A and 7F significantly decreased. A decrease in serotype 19A was only observed in 2013-2014, as compared to 2010-2011 (children p = 4.16E-04, adults p = 6.98E-06). Among adults, serotype 3, which strongly increased in the early vaccination period (p = 4.44E-15), remained at a constant proportion in the late vaccination period. The proportion of non-PCV13 vaccine serotypes increased over the whole vaccination period, with serotypes 10A, 12F, 23B, 24F and 38 most significantly increasing among children and serotypes 6C, 12F, 15A, 22F and 23B increasing among adults. Eight years of childhood pneumococcal conjugate vaccination have had a strong effect on the pneumococcal population in Germany, both among the target group for vaccination as well as among older children and adults.
Collapse
Affiliation(s)
- Mark van der Linden
- National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital (RWTH), Aachen, Germany
- * E-mail:
| | - Gerhard Falkenhorst
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Stephanie Perniciaro
- National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital (RWTH), Aachen, Germany
| | - Matthias Imöhl
- National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital (RWTH), Aachen, Germany
| |
Collapse
|
46
|
Genomics Reveals the Worldwide Distribution of Multidrug-Resistant Serotype 6E Pneumococci. J Clin Microbiol 2015; 53:2271-85. [PMID: 25972423 PMCID: PMC4473186 DOI: 10.1128/jcm.00744-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/06/2015] [Indexed: 02/02/2023] Open
Abstract
The pneumococcus is a leading pathogen infecting children and adults. Safe, effective vaccines exist, and they work by inducing antibodies to the polysaccharide capsule (unique for each serotype) that surrounds the cell; however, current vaccines are limited by the fact that only a few of the nearly 100 antigenically distinct serotypes are included in the formulations. Within the serotypes, serogroup 6 pneumococci are a frequent cause of serious disease and common colonizers of the nasopharynx in children. Serotype 6E was first reported in 2004 but was thought to be rare; however, we and others have detected serotype 6E among recent pneumococcal collections. Therefore, we analyzed a diverse data set of ∼1,000 serogroup 6 genomes, assessed the prevalence and distribution of serotype 6E, analyzed the genetic diversity among serogroup 6 pneumococci, and investigated whether pneumococcal conjugate vaccine-induced serotype 6A and 6B antibodies mediate the killing of serotype 6E pneumococci. We found that 43% of all genomes were of serotype 6E, and they were recovered worldwide from healthy children and patients of all ages with pneumococcal disease. Four genetic lineages, three of which were multidrug resistant, described ∼90% of the serotype 6E pneumococci. Serological assays demonstrated that vaccine-induced serotype 6B antibodies were able to elicit killing of serotype 6E pneumococci. We also revealed three major genetic clusters of serotype 6A capsular sequences, discovered a new hybrid 6C/6E serotype, and identified 44 examples of serotype switching. Therefore, while vaccines appear to offer protection against serotype 6E, genetic variants may reduce vaccine efficacy in the longer term because of the emergence of serotypes that can evade vaccine-induced immunity.
Collapse
|
47
|
Jauneikaite E, Tocheva AS, Jefferies JMC, Gladstone RA, Faust SN, Christodoulides M, Hibberd ML, Clarke SC. Current methods for capsular typing of Streptococcus pneumoniae. J Microbiol Methods 2015; 113:41-9. [PMID: 25819558 DOI: 10.1016/j.mimet.2015.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/21/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
Abstract
Streptococcus pneumoniae is a major respiratory tract pathogen causing pneumococcal disease mainly in children aged less than five years and in the elderly. Ninety-eight different capsular types (serotypes) of pneumococci have been reported, but pneumococcal conjugate vaccines (PCV) include polysaccharide antigens against only 7, 10 or 13 serotypes. It is therefore important to track the emergence of serotypes due to the clonal expansion of non-vaccine serotypes. Increased numbers of carried and disease-causing pneumococci are now being analysed as part of the post-PCV implementation surveillance studies and hence rapid, accurate and cost-effective typing methods are important. Here we describe serotyping methods published prior to 10th November 2014 for pneumococcal capsule typing. Sixteen methods were identified; six were based on serological tests using immunological properties of the capsular epitopes, eight were semi-automated molecular tests, and one describes the identification of capsular type directly from whole genome data, which also allows for further intra and inter-genome analyses. There was no single method that could be recommended for all pneumococcal capsular typing applications. Although the Quellung reaction is still considered to be the gold-standard, laboratories should take into account the number of pneumococcal isolates and the type of samples to be used for testing, the time frame for the results and the resources available in order to select the most appropriate method. Most likely, a combination of phenotypic and genotypic methods would be optimal to monitor and evaluate the impact of pneumococcal conjugate vaccines and to provide information for future vaccine formulations.
Collapse
Affiliation(s)
- Elita Jauneikaite
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK; Infectious Diseases, Genome Institute of Singapore, 138672, Singapore
| | - Anna S Tocheva
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Johanna M C Jefferies
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Rebecca A Gladstone
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Myron Christodoulides
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, 138672, Singapore; London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| |
Collapse
|
48
|
Gladstone RA, Jefferies JM, Tocheva AS, Beard KR, Garley D, Chong WW, Bentley SD, Faust SN, Clarke SC. Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine 2015; 33:2015-21. [PMID: 25776920 PMCID: PMC4392391 DOI: 10.1016/j.vaccine.2015.03.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/02/2022]
Abstract
PCV7 serotype replacement was near complete 5 years after PCV7 introduction. The carriage rate remained stable through out the 5 year period. Serotypes unique to PCV13 significantly decreased by the final winter. Clonal expansion of existing genotypes was primarily responsible for replacement. Continued surveillance is needed to monitor replacement until equilibrium is reached.
The seven-valent pneumococcal conjugate vaccine (PCV7) was added to the UK national immunisation programme in September 2006. PCV13 replaced PCV7 in April 2010. As carriage precedes disease cases this study collected carried pneumococci from children each winter from 2006/7 to 2010/11 over PCV introduction. Conventional microbiology and whole genome sequencing were utilised to characterise pneumococcal strains. Overall prevalence of pneumococcal carriage remained stable. Vaccine serotypes (VT) decreased (p < 0.0001) with concomitant increases in non-vaccine serotypes (NVT). In winter 2010/11 only one isolate of PCV7 VT was observed (6B). PCV13 unique VTs decreased between winters immediately preceding and following PCV13 introduction (p = 0.04). Significant decreases for VTs 6B, 19F, 23F (PCV7) and 6A (PCV13) and increases for NVT 21, 23B, 33F and 35F were detected. The serotype replacement was accompanied by parallel changes in genotype prevalence for associated sequence types with clonal expansion contributing to replacement. By winter 2010/11, serotype coverage of PCV7 and PCV13 was 1% and 11% respectively. VT replacement was observed for PCV7 and PCV13 serotypes. Conjugate vaccine design and use requires continuous monitoring and revision.
Collapse
Affiliation(s)
- Rebecca A Gladstone
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Johanna M Jefferies
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Anna S Tocheva
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Kate R Beard
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - David Garley
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Wei Wei Chong
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | | | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK.
| |
Collapse
|
49
|
Genetic, biochemical, and serological characterization of a new pneumococcal serotype, 6H, and generation of a pneumococcal strain producing three different capsular repeat units. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:313-8. [PMID: 25589550 DOI: 10.1128/cvi.00647-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae clinical isolates were recently described that produced capsular polysaccharide with properties of both serotypes 6A and 6B. Their hybrid serological property correlated with mutations affecting the glycosyltransferase WciP, which links rhamnose to ribitol by an α(1-3) linkage for serotypes 6A and 6C and an α(1-4) linkage for serotypes 6B and 6D. The isolates had mutations in the triad residues of WciP that have been correlated with enzyme specificity. The canonical triad residues of WciP are Ala192-Ser195-Arg254 for serotypes 6A and 6C and Ser192-Asn195-Gly254 for serotypes 6B and 6D. To prove that the mutations in the triad residues are responsible for the hybrid serotype, we introduced the previously described Ala192-Cys195-Arg254 triad into a 6A strain and found that the change made WciP bispecific, resulting in 6A and 6B repeat unit expression, although 6B repeat unit production was favored over production of 6A repeat units. Likewise, this triad permitted a 6C strain to express 6C and 6D repeat units. With reported bispecificity in WciN, which adds either glucose or galactose as the second sugar in the serogroup 6 repeat unit, the possibility exists for a strain to simultaneously produce all four serogroup 6 repeat units; however, when genes encoding both bispecific enzymes were introduced into a 6A strain, only 6A, 6B, and 6D repeat units were detected serologically. Nonetheless, this may be the first example of a bacterial polysaccharide with three different repeat units. This strategy of expressing multiple repeat units in a single polymer is a novel approach to broadening vaccine coverage by eliminating the need for multiple polysaccharide sources to cover multiple serogroup members.
Collapse
|
50
|
Ramirez M. Streptococcus pneumoniae. MOLECULAR MEDICAL MICROBIOLOGY 2015:1529-1546. [DOI: 10.1016/b978-0-12-397169-2.00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|