1
|
Zheng Y, Fu D, Yang Z. OsDPE2 Regulates Rice Panicle Morphogenesis by Modulating the Content of Starch. RICE (NEW YORK, N.Y.) 2023; 16:5. [PMID: 36732485 PMCID: PMC9895648 DOI: 10.1186/s12284-023-00618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Starch is a carbon sink for most plants, and its biological role changes with response to the environment and during plant development. Disproportionating Enzyme 2 (DPE2) is a 4-α-glycosyltransferase involved in starch degradation in plants at night. LAX1 plays a vital role in axillary meristem initiation in rice. Herein, results showed that Oryza sativa Disproportionating Enzyme 2 (OsDPE2) could rescue the mutant phenotype of lax1-6, LAX1 mutant. OsDPE2 encodes rice DPE2 located in the cytoplasm. In this study, OsDPE2 affected the vegetative plant development of rice via DPE2 enzyme. Additionally, OsDPE2 regulated the reproductive plant development of rice by modulating starch content in young panicles. Furthermore, haplotype OsDPE2(AQ) with higher DPE2 enzyme activity increased the panicle yield of rice. In summary, OsDPE2 can regulate vegetative and reproductive plant development of rice by modulating starch content. Furthermore, DPE2 activities of OsDPE2 haplotypes are associated with the panicle yield of rice. This study provides guidance for rice breeding to improve panicle yield traits.
Collapse
Affiliation(s)
- Yi Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zenan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Chen L, Dong X, Yang H, Chai Y, Xia Y, Tian L, Qu LQ. Cytosolic disproportionating enzyme2 is essential for pollen germination and pollen tube elongation in rice. PLANT PHYSIOLOGY 2023; 191:96-109. [PMID: 36282529 PMCID: PMC9806659 DOI: 10.1093/plphys/kiac496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/07/2022] [Indexed: 05/12/2023]
Abstract
Degradation of starch accumulated in pollen provides energy and cellular materials for pollen germination and pollen tube elongation. Little is known about the function of cytosolic disproportionating enzyme2 (DPE2) in rice (Oryza sativa). Here, we obtained several DPE2 knockout mutant (dpe2) lines via genomic editing and found that the mutants grew and developed normally but with greatly reduced seed-setting rates. Reciprocal crosses between dpe2 and wild-type plants demonstrated that the mutant was male sterile. In vitro and in vivo examinations revealed that the pollen of the dpe2 mutant developed and matured normally but was defective in germination and elongation. DPE2 deficiency increased maltose content in pollen, whereas it reduced the levels of starch, glucose, fructose, and adenosine triphosphate (ATP). Exogenous supply of glucose or ATP to the germination medium partially rescued the pollen germination defects of dpe2. The expression of cytosolic phosphorylase2 (Pho2) increased significantly in dpe2 pollen. Knockout of Pho2 resulted in a semi-sterile phenotype. We failed to obtain homozygous dpe2 pho2 double mutant lines. Our results demonstrate that maltose catalyzed by DPE2 to glucose is the main energy source for pollen germination and pollen tube elongation, while Pho2 might partially compensate for deficiency of DPE2.
Collapse
Affiliation(s)
- Liangke Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Enzymatic potato starch modification and structure-function analysis of six diverse GH77 4-alpha-glucanotransferases. Int J Biol Macromol 2022; 224:105-114. [DOI: 10.1016/j.ijbiomac.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
4
|
Ishihara H, Alseekh S, Feil R, Perera P, George GM, Niedźwiecki P, Arrivault S, Zeeman SC, Fernie AR, Lunn JE, Smith AM, Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. PLANT PHYSIOLOGY 2022; 189:1976-2000. [PMID: 35486376 PMCID: PMC9342969 DOI: 10.1093/plphys/kiac162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Pumi Perera
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gavin M George
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Piotr Niedźwiecki
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Stephanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
5
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|
6
|
Palaniappan A, Emmambux MN. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34698594 DOI: 10.1080/10408398.2021.1994522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isomaltooligosaccharides (IMOs) are recognized as functional food ingredients with prebiotic potential that deliver health benefits. IMOs have attained commercial interest as they are produced from low-cost agricultural products that are widely available and have prospective applications in the food industry. The review examines the various production processes and the main challenges involved in deriving diverse structures of IMO with maximized yield and increased functionality. The different characterization and purification techniques employed for structural elucidation, the physico-chemical importance, technological properties, food-based applications and biological effects (in vitro and in vivo interventions) have been discussed in detail. The key finding is the need for research involving biotechnological and enzymology aspects to simplify the production technologies that meet the industrial and consumer requirements. The knowledge from this article delivers a clear insight to scientists, food technologists and the general public for the improved utilization of IMOs to support the emerging market for functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ayyappan Palaniappan
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Mohammad Naushad Emmambux
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Mérida A, Fettke J. Starch granule initiation in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:688-697. [PMID: 34051021 DOI: 10.1111/tpj.15359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.
Collapse
Affiliation(s)
- Angel Mérida
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla (US), Avda Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, 14476, Germany
| |
Collapse
|
8
|
Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends Parasitol 2021; 37:988-1001. [PMID: 34266735 DOI: 10.1016/j.pt.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
Nearly all eukaryotic cells synthesize carbohydrate reserves, such as glycogen, starch, or low-molecular-weight oligosaccharides. However, a number of parasitic protists have lost this capacity while others have lost, and subsequently evolved, entirely new pathways. Recent studies suggest that retention, loss, or acquisition of these pathways in different protists is intimately linked to their lifestyle. In particular, parasites with carbohydrate reserves often establish long-lived chronic infections and/or produce environmental cysts, whereas loss of these pathways is associated with parasites that have highly proliferative and metabolically active life-cycle stages. The evolution of mannogen biosynthesis in Leishmania and related parasites indicates that these pathways have played a role in defining the host range and niches occupied by some protists.
Collapse
Affiliation(s)
- Julie E Ralton
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - M Fleur Sernee
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021; 11:229. [PMID: 33968573 DOI: 10.1007/s13205-021-02787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02787-8.
Collapse
|
10
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
11
|
Raguin A, Ebenhöh O. Design starch: stochastic modeling of starch granule biogenesis. Biochem Soc Trans 2017; 45:885-893. [PMID: 28673938 PMCID: PMC5652221 DOI: 10.1042/bst20160407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/03/2022]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements.
Collapse
Affiliation(s)
- Adélaïde Raguin
- Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
12
|
He L, Park SH, Hai Dang ND, Duong HX, Duong TPC, Tran PL, Park JT, Ni L, Park KH. Characterization and thermal inactivation kinetics of highly thermostable ramie leaf β-amylase. Enzyme Microb Technol 2017; 101:17-23. [DOI: 10.1016/j.enzmictec.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 11/29/2022]
|
13
|
Smirnova J, Fernie AR, Spahn CMT, Steup M. Photometric assay of maltose and maltose-forming enzyme activity by using 4-alpha-glucanotransferase (DPE2) from higher plants. Anal Biochem 2017; 532:72-82. [PMID: 28576440 DOI: 10.1016/j.ab.2017.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (α- and β-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify β-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels.
Collapse
Affiliation(s)
- Julia Smirnova
- Institute for Biochemistry and Biology, Department of Plant Physiology, University of Potsdam, Building 20, Karl-Liebknecht-Str. 20, 14461 Potsdam, Germany; Institute of Biophysics and Medical Physics of the Charité, Universitätsmedizin Berlin, Campus Berlin Mitte, 10117 Berlin, Germany; Max-Planck-Institute of Molecular Plant Physiology, Department 1 (Willmitzer), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Department 1 (Willmitzer), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Christian M T Spahn
- Institute of Biophysics and Medical Physics of the Charité, Universitätsmedizin Berlin, Campus Berlin Mitte, 10117 Berlin, Germany
| | - Martin Steup
- Institute for Biochemistry and Biology, Department of Plant Physiology, University of Potsdam, Building 20, Karl-Liebknecht-Str. 20, 14461 Potsdam, Germany.
| |
Collapse
|
14
|
Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 2017; 12:e0175488. [PMID: 28407006 PMCID: PMC5391026 DOI: 10.1371/journal.pone.0175488] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/27/2017] [Indexed: 12/03/2022] Open
Abstract
The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.
Collapse
|
15
|
Samaei-Daryan S, Goliaei B, Ebrahim-Habibi A. Characterization of surface binding sites in glycoside hydrolases: A computational study. J Mol Recognit 2017; 30. [PMID: 28295743 DOI: 10.1002/jmr.2624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/18/2017] [Indexed: 11/05/2022]
Abstract
Structural properties of carbohydrate surface binding sites (SBSs) were investigated with computational methods. Eighty-five SBSs of 44 enzymes in 119 Protein Data Bank (PDB) files were collected as a dataset. On the basis of SBSs shape, they were divided into 3 categories: flat surfaces, clefts, and cavities (types A, B, and C, respectively). Ligand varieties showed the correlation between shape of SBSs and ligands size. To reduce cut-off differences in each SBSs with different ligand size, molecular docking were performed. Molecular docking results were used to refine SBSs classification and binding sites cut-off. Docking results predicted putative ligands positions and displayed dependence of the ligands binding mode to the structural type of SBSs. Physicochemical properties of SBSs were calculated for all docking results with YASARA Structure. The results showed that all SBSs are hydrophilic, while their charges could vary and depended to ligand size and defined cut-off. Surface binding sites type B had highest average values of solvent accessible surface area. Analysis of interactions showed that hydrophobic interactions occur more than hydrogen bonds, which is related to the presence of aromatic residues and carbohydrates interactions.
Collapse
Affiliation(s)
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes. PLoS One 2016; 11:e0160112. [PMID: 27504624 PMCID: PMC4978508 DOI: 10.1371/journal.pone.0160112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Collapse
Affiliation(s)
- Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Adiphol Dilokpimol
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anna Lewińska
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
17
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
18
|
Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochem Soc Trans 2016; 44:159-65. [PMID: 26862201 PMCID: PMC4747157 DOI: 10.1042/bst20150222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Starch is a major energy store in plants. It provides most of the calories in the human diet and, as a bulk commodity, it is used across broad industry sectors. Starch synthesis and degradation are not fully understood, owing to challenging biochemistry at the liquid/solid interface and relatively limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se.
Collapse
|
19
|
Affinity purification of 4-α-glucanotransferase through formation of complex with insoluble amylose. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
O'Neill EC, Field RA. Underpinning Starch Biology with in vitro Studies on Carbohydrate-Active Enzymes and Biosynthetic Glycomaterials. Front Bioeng Biotechnol 2015; 3:136. [PMID: 26442250 PMCID: PMC4561517 DOI: 10.3389/fbioe.2015.00136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
Starch makes up more than half of the calories in the human diet and is also a valuable bulk commodity that is used across the food, brewing and distilling, medicines and renewable materials sectors. Despite its importance, our understanding of how plants make starch, and what controls the deposition of this insoluble, polymeric, liquid crystalline material, remains rather limited. Advances are hampered by the challenges inherent in analyzing enzymes that operate across the solid-liquid interface. Glyconanotechnology, in the form of glucan-coated sensor chips and metal nanoparticles, present novel opportunities to address this problem. Herein, we review recent developments aimed at the bottom-up generation and self-assembly of starch-like materials, in order to better understand which enzymes are required for starch granule biogenesis and metabolism.
Collapse
Affiliation(s)
- Ellis C O'Neill
- Department of Plant Sciences, University of Oxford , Oxford , UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park , Norwich , UK
| |
Collapse
|
21
|
Yousaf A, Qadir A, Anjum T, Ahmad A. Transcriptional modulation of squalene synthase genes in barley treated with PGPR. FRONTIERS IN PLANT SCIENCE 2015; 6:672. [PMID: 26388880 PMCID: PMC4555044 DOI: 10.3389/fpls.2015.00672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e., SSA, SS1, SS2, and SS3), the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43 and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes.
Collapse
Affiliation(s)
- Anam Yousaf
- College of Earth and Environmental Sciences, University of the Punjab, LahorePakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, LahorePakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the Punjab, LahorePakistan
| | - Aqeel Ahmad
- Institute of Agricultural Sciences, University of the Punjab, LahorePakistan
| |
Collapse
|
22
|
Fettke J, Fernie AR. Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. TRENDS IN PLANT SCIENCE 2015; 20:490-497. [PMID: 26008154 DOI: 10.1016/j.tplants.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances.
Collapse
Affiliation(s)
- Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
23
|
Weiss SC, Skerra A, Schiefner A. Structural Basis for the Interconversion of Maltodextrins by MalQ, the Amylomaltase of Escherichia coli. J Biol Chem 2015; 290:21352-64. [PMID: 26139606 DOI: 10.1074/jbc.m115.667337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Amylomaltase MalQ is essential for the metabolism of maltose and maltodextrins in Escherichia coli. It catalyzes transglycosylation/disproportionation reactions in which glycosyl or dextrinyl units are transferred among linear maltodextrins of various lengths. To elucidate the molecular basis of transglycosylation by MalQ, we have determined three crystal structures of this enzyme, i.e. the apo-form, its complex with maltose, and an inhibitor complex with the transition state analog acarviosine-glucose-acarbose, at resolutions down to 2.1 Å. MalQ represents the first example of a mesophilic bacterial amylomaltase with known structure and exhibits an N-terminal extension of about 140 residues, in contrast with previously described thermophilic enzymes. This moiety seems unique to amylomaltases from Enterobacteriaceae and folds into two distinct subdomains that associate with different parts of the catalytic core. Intriguingly, the three MalQ crystal structures appear to correspond to distinct states of this enzyme, revealing considerable conformational changes during the catalytic cycle. In particular, the inhibitor complex highlights the requirement of both a 3-OH group and a 4-OH group (or α1-4-glycosidic bond) at the acceptor subsite +1 for the catalytically competent orientation of the acid/base catalyst Glu-496. Using an HPLC-based MalQ enzyme assay, we could demonstrate that the equilibrium concentration of maltodextrin products depends on the length of the initial substrate; with increasing numbers of glycosidic bonds, less glucose is formed. Thus, both structural and enzymatic data are consistent with the extremely low hydrolysis rates observed for amylomaltases and underline the importance of MalQ for the metabolism of maltodextrins in E. coli.
Collapse
Affiliation(s)
- Simon C Weiss
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - André Schiefner
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
24
|
In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1260-8. [PMID: 26006747 DOI: 10.1016/j.bbapap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The CAZy glycoside hydrolase (GH) family GH77 is a monospecific family containing 4-α-glucanotransferases that if from prokaryotes are known as amylomaltases and if from plants including algae are known as disproportionating enzymes (DPE). The family GH77 is a member of the α-amylase clan GH-H. The main difference discriminating a GH77 4-α-glucanotransferase from the main GH13 α-amylase family members is the lack of domain C succeeding the catalytic (β/α)8-barrel. Of more than 2400 GH77 members, bacterial amylomaltases clearly dominate with more than 2300 sequences; the rest being approximately equally represented by Archaea and Eucarya. The main goal of the present study was to deliver a detailed bioinformatics study of family GH77 (416 collected sequences) focused on amylomaltases from borreliae (containing unique sequence substitutions in functionally important positions) and plant DPE2 representatives (possessing an insert of ~140 residues between catalytic nucleophile and proton donor). The in silico analysis reveals that within the genus of Borrelia a gradual evolutionary transition from typical bacterial Thermus-like amylomaltases may exist to family-GH77 amylomaltase versions that currently possess progressively mutated the most important and otherwise invariantly conserved positions. With regard to plant DPE2, a large group of bacterial amylomaltases represented by the amylomaltase from Escherichia coli with a longer N-terminus was identified as a probable intermediary connection between Thermus-like and DPE2-like (existing also among bacteria) family GH77 members. The presented results concerning both groups, i.e. amylomaltases from borreliae and plant DPE2 representatives (with their bacterial counterpart), may thus indicate the direction for future experimental studies.
Collapse
|
25
|
Wilkens C, Cockburn D, Andersen S, Ole Petersen B, Ruzanski C, A. Field R, Hindsgaul O, Nakai H, McCleary B, M. Smith A, Abou Hachem M, Svensson B. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Susan Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Bent Ole Petersen
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | | | | | - Ole Hindsgaul
- Carbohydrate Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | | | | | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark
| |
Collapse
|
26
|
Park KH. Roles of Enzymes in Glycogen Metabolism and Degradation in Escherichia coli. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Kwan-Hwa Park
- Department of Foodservice Management and Nutrition, Sangmyung University
- Department of Food Science and Biotechnology, Seoul National University
| |
Collapse
|
27
|
Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0373-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol 2014; 10:e1003483. [PMID: 24586134 PMCID: PMC3930492 DOI: 10.1371/journal.pcbi.1003483] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/08/2014] [Indexed: 12/05/2022] Open
Abstract
In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway chemistries that produce the same molecules. Given data about enzyme kinetics and reaction thermodynamics, traditional metabolic control analysis (MCA) can pinpoint the enzymes whose expression will have the largest effect on steady-state flux through the pathway. These analyses can aid experimentalists in tuning enzyme expression levels along a metabolic pathway. In this work, we offer a framework that is complementary to MCA. Rather than focusing on the relationship between enzyme levels and pathway flux, we examine a pathway's stoichiometry and thermodynamics and ask whether it is likely to support high flux in cellular conditions. Our framework calculates a single thermodynamically-derived metric (the MDF) for each pathway, which is convenient for selecting the promising pathways from a large collection. This approach has several advantages. First, enzyme kinetic properties are laborious to measure and differ between organisms and isozymes, but no kinetic data is required to calculate the MDF. Second, as our framework accounts for pH, ionic strength and allowed concentration ranges, it is simple to model the effect of these parameters on the MDF. Finally, as it can be difficult to control the exact expression level of enzymes within cells, the MDF helps identify alternative pathways that are less sensitive to the levels of their constituent enzymes.
Collapse
Affiliation(s)
- Elad Noor
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Arren Bar-Even
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Avi Flamholz
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular and Cellular Biology, University of California, Berkely, Berkely, California, United States of America
| | - Ed Reznik
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | - Ron Milo
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
29
|
Expression and characterization of 4-α-glucanotransferase genes from Manihot esculenta Crantz and Arabidopsis thaliana and their use for the production of cycloamyloses. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|