1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Pimentel-Vera LN, Rodríguez-López A, Espejo-Mojica AJ, Ramírez AM, Cardona C, Reyes LH, Tomatsu S, Jaroentomeechai T, DeLisa MP, Sánchez OF, Alméciga-Díaz CJ. Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain. Heliyon 2024; 10:e32555. [PMID: 38952373 PMCID: PMC11215262 DOI: 10.1016/j.heliyon.2024.e32555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.
Collapse
Affiliation(s)
- Luisa N. Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, D.C., Colombia
| | - Luis H. Reyes
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19144, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| |
Collapse
|
3
|
Nørregaard KS, Jürgensen HJ, Heltberg SS, Gårdsvoll H, Bugge TH, Schoof EM, Engelholm LH, Behrendt N. A proteomics-based survey reveals thrombospondin-4 as a ligand regulated by the mannose receptor in the injured lung. J Biol Chem 2024; 300:107284. [PMID: 38614208 PMCID: PMC11107221 DOI: 10.1016/j.jbc.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.
Collapse
Affiliation(s)
- Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Signe S Heltberg
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Erwin M Schoof
- Section for Protein Science and Biotherapeutics, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1. Matrix Biol 2022; 111:307-328. [PMID: 35878760 DOI: 10.1016/j.matbio.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.
Collapse
|
5
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
6
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
7
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
8
|
Serum Glycoproteomics and Identification of Potential Mechanisms Underlying Alzheimer’s Disease. Behav Neurol 2021; 2021:1434076. [PMID: 34931130 PMCID: PMC8684523 DOI: 10.1155/2021/1434076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives. This study compares glycoproteomes in Thai Alzheimer’s disease (AD) patients with those of cognitively normal individuals. Methods. Study participants included outpatients with clinically diagnosed AD (
) and healthy controls without cognitive impairment (
). Blood samples were collected from all participants for biochemical analysis and for
(APOE) genotyping by real-time TaqMan PCR assays. Comparative serum glycoproteomic profiling by liquid chromatography-tandem mass spectrometry was then performed to identify differentially abundant proteins with functional relevance. Results. Statistical differences in age, educational level, and APOE ɛ3/ɛ4 and ɛ4/ɛ4 haplotype frequencies were found between the AD and control groups. The frequency of the APOE ɛ4 allele was significantly higher in the AD group than in the control group. In total, 871 glycoproteins were identified, including 266 and 259 unique proteins in control and AD groups, respectively. There were 49 and 297 upregulated and downregulated glycoproteins, respectively, in AD samples compared with the controls. Unique AD glycoproteins were associated with numerous pathways, including Alzheimer’s disease-presenilin pathway (16.6%), inflammation pathway mediated by chemokine and cytokine signaling (9.2%), Wnt signaling pathway (8.2%), and apoptosis signaling pathway (6.7%). Conclusion. Functions and pathways associated with protein-protein interactions were identified in AD. Significant changes in these proteins can indicate the molecular mechanisms involved in the pathogenesis of AD, and they have the potential to serve as AD biomarkers. Such findings could allow us to better understand AD pathology.
Collapse
|
9
|
Caza TN, Al-Rabadi LF, Beck LH. How Times Have Changed! A Cornucopia of Antigens for Membranous Nephropathy. Front Immunol 2021; 12:800242. [PMID: 34899763 PMCID: PMC8662735 DOI: 10.3389/fimmu.2021.800242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the majority of primary (idiopathic) cases of membranous nephropathy (MN) has been followed by the rapid identification of numerous minor antigens that appear to define phenotypically distinct forms of disease. This article serves to review all the known antigens that have been shown to localize to subepithelial deposits in MN, as well as the distinctive characteristics associated with each subtype of MN. We will also shed light on the novel proteomic approaches that have allowed identification of the most recent antigens. The paradigm of an antigen normally expressed on the podocyte cell surface leading to in-situ immune complex formation, complement activation, and subsequent podocyte injury will be discussed and challenged in light of the current repertoire of multiple MN antigens. Since disease phenotypes associated with each individual target antigens can often blur the distinction between primary and secondary disease, we encourage the use of antigen-based classification of membranous nephropathy.
Collapse
Affiliation(s)
| | - Laith F. Al-Rabadi
- Department of Internal Medicine (Nephrology & Hypertension), University of Utah, Salt Lake City, UT, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
10
|
Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun 2021; 12:3516. [PMID: 34112782 PMCID: PMC8192501 DOI: 10.1038/s41467-021-23583-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Profiling studies have revealed considerable phenotypic heterogeneity in cancer-associated fibroblasts (CAFs) present within the tumour microenvironment, however, functional characterisation of different CAF subsets is hampered by the lack of specific markers defining these populations. Here we show that genetic deletion of the Endo180 (MRC2) receptor, predominantly expressed by a population of matrix-remodelling CAFs, profoundly limits tumour growth and metastasis; effects that can be recapitulated in 3D co-culture assays. This impairment results from a CAF-intrinsic contractility defect and reduced CAF viability, which coupled with the lack of phenotype in the normal mouse, demonstrates that upregulated Endo180 expression by a specific, potentially targetable CAF subset is required to generate a supportive tumour microenvironment. Further, characterisation of a tumour subline selected via serial in vivo passage for its ability to overcome these stromal defects provides important insight into, how tumour cells adapt to a non-activated stroma in the early stages of metastatic colonisation. Endo180, a collagen binding receptor, is highly expressed in a subset of cancer-associated fibroblasts. The authors show, using knockout mice and 3D in vitro assays, that Endo180 depletion impairs tumour fibroblast contractility and viability resulting in reduced tumour growth and metastasis.
Collapse
|
11
|
Xie YH, Tang CQ, Huang ZZ, Zhou SC, Yang YW, Yin Z, Heng BC, Chen WS, Chen X, Shen WL. ECM remodeling in stem cell culture: a potential target for regulating stem cell function. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:542-554. [PMID: 34082581 DOI: 10.1089/ten.teb.2021.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells (SCs) hold great potential for regenerative medicine, tissue engineering and cell therapy. The clinical applications of SCs require both high quality and quantity of transplantable cells. However, during conventional in vitro expansion, SCs tend to lose properties that make them amenable for cell therapies. Extracellular matrix (ECM) serves an essential regulatory part in the growth, differentiation and homeostasis of all cells in vivo. when signals transmitted to cells, they do not respond passively. Many cell types can remodel pericellular matrix to meet their specific needs. This reciprocal cell-ECM interaction is crucial for the conservation of cell and tissue functions and homeostasis. In vitro ECM remodeling also plays a key role in regulating the lineage fate of SCs. A deeper understanding of in vitro ECM remodeling may provide new perspectives for the maintenance of SC function. In this review, we critically examined three ways that cells can be used to influence the pericellular matrix: (i) exerting tensile force on the ECM, (ii) secreting a variety of ECM proteins, and (iii) degrading the surrounding matrix, and its impact on SC lineage fate. Finally, we describe the deficiencies of current studies and what needs to be done next to further understand the role of ECM remodeling in ex vivo SC cultures.
Collapse
Affiliation(s)
- Yuan-Hao Xie
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Chen-Qi Tang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Zi-Zhan Huang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Si-Cheng Zhou
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, Zhejiang, China;
| | - Yu-Wei Yang
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Zi Yin
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Boon Chin Heng
- Peking University School of Stomatology, 159460, Beijing, Beijing, China;
| | - Wei-Shan Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| | - Xiao Chen
- Zhejiang University School of Medicine, 26441, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Hangzhou, Zhejiang, China;
| | - Wei-Liang Shen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Orthopedic Surgery, Hangzhou, Zhejiang, China;
| |
Collapse
|
12
|
Zhao Q, Dai H, Liu X, Jiang H, Liu W, Feng Z, Zhang N, Gao Y, Dong Z, Zhou X, Du J, Zhang N, Rui H, Yuan L, Liu B. Helper T Cells in Idiopathic Membranous Nephropathy. Front Immunol 2021; 12:665629. [PMID: 34093559 PMCID: PMC8173183 DOI: 10.3389/fimmu.2021.665629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the immune system produces an antibody response to its own antigens due to impaired immune tolerance. Although antibodies are derived from plasma cells differentiated by B cells, the T-B cells also contribute a lot to the immune system. In particular, the subsets of helper T (Th) cells, including the dominant subsets such as Th2, Th17, and follicular helper T (Tfh) cells and the inferior subsets such as regulatory T (Treg) cells, shape the immune imbalance of IMN and promote the incidence and development of autoimmune responses. After reviewing the physiological knowledge of various subpopulations of Th cells and combining the existing studies on Th cells in IMN, the role model of Th cells in IMN was explained in this review. Finally, the existing clinical treatment regimens for IMN were reviewed, and the importance of the therapy for Th cells was highlighted.
Collapse
Affiliation(s)
- Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Xianli Liu
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Lutz J. Pathophysiology, diagnosis, and treatment of membranous nephropathy. Nephrol Ther 2021; 17S:S1-S10. [PMID: 33910688 DOI: 10.1016/j.nephro.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Nephrotic syndrome is in adult patients mainly due to membranous nephropathy (MN) characterized by thickening of the glomerular basement membrane (GBM) and immune complex formation between podocytes and the GBM. Autoantibodies directed against the M-type phospholipase A2 receptor (PLA2R) and thrombospondin 1 domain-containing 7 A (THSD7A) can be used as diagnostic biomarkers. THSD7A seems to be of direct pathogenic significance as is suggested by experimental models and plasmapheresis in humans. Recently, further antigens like NELL-1 (neural tissue encoding protein with EGF-like repeats-1), exostosin 1 and 2 have been discovered. Thus, MN should be classified into antibody positive and antibody negative MN. More specific immunosuppressive treatments directed against B-cells and antibody production like rituximab have been introduced in addition to already existing immunosuppressive protocols including steroids, chlorambucil, cyclophosphamide, and calcineurin inhibitors. Antibody removal using immunoadsorption or plasmapheresis leads to short-term reduction in proteinuria and might be indicated only in patients with very severe proteinuria and complications. Studies are needed to identify a more specific immunosuppression directed against the production and effects of autoantibodies in order to protect the kidneys from autoimmune mediated tissue damage and to identify patients who require an immunosuppressive treatment, as the remission rate is high in patients with MN.
Collapse
Affiliation(s)
- Jens Lutz
- Medical Clinic, Nephrology-Infectious Diseases, Central Rhine hospital group, Gemeinschaftsklinikum Mittelrhein, Koblenzer Straße 115-155, 56073 Koblenz, Germany.
| |
Collapse
|
14
|
Wang H, Liu W, Yu B, Yu X, Chen B. Identification of Key Modules and Hub Genes of Annulus Fibrosus in Intervertebral Disc Degeneration. Front Genet 2021; 11:596174. [PMID: 33584795 PMCID: PMC7875098 DOI: 10.3389/fgene.2020.596174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Intervertebral disc degeneration impairs the quality of patients lives. Even though there has been development of many therapeutic strategies, most of them remain unsatisfactory due to the limited understanding of the mechanisms that underlie the intervertebral disc degeneration. Questions/purposes: This study is meant to identify the key modules and hub genes related to the annulus fibrosus in intervertebral disc degeneration (IDD) through: (1) constructing a weighted gene co-expression network; (2) identifying key modules and hub genes; (3) verifying the relationships of key modules and hub genes with IDD; and (4) confirming the expression pattern of hub genes in clinical samples. Methods: The Gene Expression Omnibus provided 24 sets of annulus fibrosus microarray data. Differentially expressed genes between the annulus fibrosus of degenerative and non-degenerative intervertebral disc samples have gone through the Gene Ontology (GO) and pathway analysis. The construction of a gene network and classification of genes into different modules were conducted through performing Weighted Gene Co-expression Network Analysis. The identification of modules and hub genes that were most related to intervertebral disc degeneration was proceeded. In order to verify the relationships of the module and hub genes with intervertebral disc degeneration, Ingenuity Pathway Analysis was operated. Clinical samples were adopted to help verify the hub gene expression profile. Results: One thousand one hundred ninety differentially expressed genes were identified. Terms and pathways associated with intervertebral disc degeneration were presented by GO and pathway analysis. The construction of a Weighted Gene Coexpression Network was completed and clustering differentially expressed genes into four modules was also achieved. The module with the lowest P-value and the highest absolute correlation coefficient was selected and its relationship with intervertebral disc degeneration was confirmed by Ingenuity Pathway Analysis. The identification of hub genes and the confirmation of their expression profile were also realized. Conclusions: This study generated a comprehensive overview of the gene networks underlying annulus fibrosus in intervertebral disc degeneration. Clinical Relevance: Modules and hub genes identified in this study are highly associated with intervertebral disc degeneration, and may serve as potential therapeutic targets for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY, United States
| | - Xiaosheng Yu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Jürgensen HJ, van Putten S, Nørregaard KS, Bugge TH, Engelholm LH, Behrendt N, Madsen DH. Cellular uptake of collagens and implications for immune cell regulation in disease. Cell Mol Life Sci 2020; 77:3161-3176. [PMID: 32100084 PMCID: PMC11105017 DOI: 10.1007/s00018-020-03481-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark.
| | - Sander van Putten
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Ole Maaloesvej 5, 2200, Copenhagen N, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730, Herlev, Denmark.
| |
Collapse
|
17
|
Nørregaard KS, Krigslund O, Behrendt N, Engelholm LH, Jürgensen HJ. The collagen receptor uPARAP/Endo180 regulates collectins through unique structural elements in its FNII domain. J Biol Chem 2020; 295:9157-9170. [PMID: 32424040 PMCID: PMC7335807 DOI: 10.1074/jbc.ra120.013710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.
Collapse
Affiliation(s)
- Kirstine Sandal Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Oliver Krigslund
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Jessen Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
18
|
Ronco P, Debiec H. Molecular Pathogenesis of Membranous Nephropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:287-313. [PMID: 31622560 DOI: 10.1146/annurev-pathol-020117-043811] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membranous nephropathy is a noninflammatory autoimmune disease of the kidney glomerulus, characterized by the formation of immune deposits, complement-mediated proteinuria, and risk of renal failure. Considerable advances in understanding the molecular pathogenesis have occurred with the identification of several antigens [neutral endopeptidase, phospholipase A2 receptor (PLA2R), thrombospondin domain-containing 7A (THSD7A)] in cases arising from the neonatal period to adulthood and the characterization of antibody-binding domains (that is, epitopes). Immunization against PLA2R occurs in 70% to 80% of adult cases. The development of highly specific and sensitive assays of circulating antibodies has induced a paradigm shift in diagnosis and treatment monitoring. In addition, several interacting loci in HLA-DQ, HLA-DR, and PLA2R1, as well as classical human leukocyte antigen (HLA)-D alleles have been identified as being risk factors, depending on a patient's ethnicity. Additionally, mechanisms of antibody pathogenicity and pathways of complement activation are now better understood. Further research is mandatory for designing new therapeutic strategies, including the identifying triggering events, the molecular bases of remission and progression, and the T cell epitopes involved.
Collapse
Affiliation(s)
- Pierre Ronco
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| | - Hanna Debiec
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Despite major advances in since the discovery of the phospholipase A2 receptor (PLA2R) as the major autoantigen on podocytes in primary membranous nephropathy, there are still several unanswered questions as highlighted here. RECENT FINDINGS A substantial body of literature, included in more than 680 articles since 2009, has documented genetic susceptibility to primary membranous nephropathy involving PLA2R1 and class II MHC alleles, the clinical value of anti-PLA2R assays, the significance of epitope spreading of the anti-PLA2R response, discovery of thrombospondin type I domain-containing 7A (THSD7A) as a minor antigen in primary membranous nephropathy, and the ability to transfer disease into mice by infusion of anti-THSD7A sera. However, the normal physiology and pathophysiology of PLA2R and THSD7A in podocytes is still unknown and the genetic influence on disease susceptibility is unexplained. We still do not know what causes loss of self-tolerance to PLA2R and THSD7A or how the autoantibodies, which are predominantly of the IgG4 subclass, cause podocyte injury and proteinuria. Complement deposits are prominent in membranous nephropathy but we are still uncertain how the complement system is activated and whether or not it plays a role in podocyte damage. Notwithstanding the advances over the past decade, our treatments have not changed substantially. SUMMARY This review identifies opportunities to extend the advances that have been made to better understand the immunopathogenesis and genetic basis of primary membranous nephropathy and apply the knowledge to design more specific therapies.
Collapse
|
20
|
Fibroblasts stimulate macrophage migration in interconnected extracellular matrices through tunnel formation and fiber alignment. Biomaterials 2019; 209:88-102. [PMID: 31030083 DOI: 10.1016/j.biomaterials.2019.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
In vivo, macrophages and fibroblasts navigate through and remodel the three-dimensional (3D) extra-cellular matrix (ECM). The orientation of fibers, the porosity, and degree of cross-linking can change the interconnectivity of the ECM and affect cell migration. In turn, migrating cells can alter their microenvironment. To study the relationships between ECM interconnectivity and migration of cells, we assembled collagen hydrogels with dense (DCN) or with loosely interconnected networks (LCN). We find that in DCNs, RAW 264.7 macrophages in monocultures were virtually stationary. In DCN co-cultures, Balb/c 3T3 fibroblasts created tunnels that provided conduits for macrophage migration. In LCNs, fibroblasts aligned fibers up to a distance of 100 μm, which provided tracks for macrophages. Intra-cellular and extra-cellular fluorescent fragments of internalized and degraded collagen were detected inside both cell types as well as around their cell peripheries. Macrophages expressed higher levels of urokinase-type plasminogen activator receptor associated protein (uPARAP)/mannose receptor 1 (CD206) compared to α2β1 indicating that collagen internalization in these cells occurred primarily via integrin-independent mechanisms. Network remodeling indicated by higher Young's modulus was observed in fibroblast monocultures as a result of TGF-β secretion. This work unveils new roles for fibroblasts in forming tunnels in networked ECM to modulate macrophage migration.
Collapse
|
21
|
Temme S, Baran P, Bouvain P, Grapentin C, Krämer W, Knebel B, Al-Hasani H, Moll JM, Floss D, Schrader J, Schubert R, Flögel U, Scheller J. Synthetic Cargo Internalization Receptor System for Nanoparticle Tracking of Individual Cell Populations by Fluorine Magnetic Resonance Imaging. ACS NANO 2018; 12:11178-11192. [PMID: 30372619 DOI: 10.1021/acsnano.8b05698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific detection of target structures or cells lacking particular surface epitopes still poses a serious problem for all imaging modalities. Here, we demonstrate the capability of synthetic "cargo internalization receptors" (CIRs) for tracking of individual cell populations by 1H/19F magnetic resonance imaging (MRI). To this end, a nanobody for green fluorescent protein (GFP) was used to engineer cell-surface-expressed CIRs which undergo rapid internalization after GFP binding. For 19F MR visibility, the GFP carrier was equipped with "contrast cargo", in that GFP was coupled to perfluorocarbon nanoemulsions (PFCs). To explore the suitability of different uptake mechanisms for this approach, CIRs were constructed by combination of the GFP nanobody and three different cytoplasmic tails that contained individual internalization motifs for endocytosis of the contrast cargo (CIR1-3). Exposure of CIR+ cells to GFP-PFCs resulted in highly specific binding and internalization as confirmed by fluorescence microscopy as well as flow cytometry and enabled visualization by 1H/19F MRI. In particular, expression of CIR2/3 resulted in substantial incorporation of 19F cargo and readily enabled in vivo visualization of GFP-PFC recruitment to transplanted CIR+ cells by 1H/19F MRI in mice. Competition experiments with blood immune cells revealed that CIR+ cells are predominantly loaded with GFP-PFCs even in the presence of cells with strong phagocytotic capacity. Importantly, binding and internalization of GFP-PFCs did not result in the activation of signaling cascades and therefore does not alter cell physiology. Overall, this approach represents a versatile in vivo imaging platform for tracking of individual cell populations by making use of cell-type-specific CIR+ mice.
Collapse
Affiliation(s)
- Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Paul Baran
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center , Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jens Mark Moll
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Doreen Floss
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy , Albert Ludwig University Freiburg , 79104 Freiburg im Breisgau , Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | - Jürgen Scheller
- Institute for Biochemistry and Molecular Biology II, Medical Faculty , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| |
Collapse
|
22
|
Liu D, Liu F, Wang X, Qiao Y, Pan S, Yang Y, Hu Y, Zhang Y, Tian F, Liu Z. MiR-130a-5p prevents angiotensin II-induced podocyte apoptosis by modulating M-type phospholipase A2 receptor. Cell Cycle 2018; 17:2484-2495. [PMID: 30394845 DOI: 10.1080/15384101.2018.1542901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Podocyte apoptosis is considered as the important element that promotes the development and progress of membranous nephropathy (MN). Unfortunately, the underlying mechanism of podocytes apoptosis in MN remains elusive. We compared the renal expressions of miR-130a-5p and M-type phospholipase A2 receptor (PLA2R) between MN patients (n = 30) and 30 controls by qRT-PCR and western blot, respectively. The podocyte damage model in vitro was established by angiotensin II (Ang II, 100 nmol/L) exposure for 24 h. Interaction between miR-130a-5p and PLA2R was determined using dual-luciferase reporter gene assay. MN mice were induced by intravenous injection of cBSA. In this study, miR-130a-5p expression was significantly decreased both in the renal biopsy specimens from MN patients and podocyte cell line AB8/13 following stimulation of Ang II. Overexpressed miR-130a-5p in AB8/13 cells significantly attenuated the Ang II induced-apoptosis in vitro. In contrast, down-regulated miR-130a-5p induced podocyte apoptosis. PLA2R was identified as the target of miR-130a-5p in AB8/13 cells. And up-regulated or down-regulated PLA2R could obviously attenuate the effect of miR-130a-5p overexpression or knockdown on the apoptosis of AB8/13 cells. Furthermore, it was also observed that overexpressed miR-130a-5p by miR-130a-5p agomir could obviously alleviate renal injury in MN mice. In conclusion, decreased miR-130a-5p was contributed to the pathological mechanism of MN through increasing PLA2R expression, which induced podocyte apoptosis.
Collapse
Affiliation(s)
- Dongwei Liu
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Fengxun Liu
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Xutong Wang
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yingjin Qiao
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Shaokang Pan
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yang Yang
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yifang Hu
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Yilin Zhang
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Fei Tian
- b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| | - Zhangsuo Liu
- a Department of Nephrology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou China.,b Research Institute of Nephrology , Zhengzhou University , Zhengzhou China.,c Key laboratory of precision diagnosis and treatment for chronic kidney disease in Henan province , Zhengzhou China.,d Core unit of national clinical medical research center of kidney disease , Zhengzhou China
| |
Collapse
|
23
|
Jürgensen HJ, Nørregaard KS, Sibree MM, Santoni-Rugiu E, Madsen DH, Wassilew K, Krustrup D, Garred P, Bugge TH, Engelholm LH, Behrendt N. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol 2018; 218:333-349. [PMID: 30366943 PMCID: PMC6314555 DOI: 10.1083/jcb.201802148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022] Open
Abstract
Collectins such as mannose-binding lectin (MBL) and surfactant protein D (SP-D) become temporarily deposited in extravascular compartments after tissue injury and perform immune-stimulatory or inflammation-limiting functions. However, their turnover mechanisms, necessary to prevent excessive tissue damage, are virtually unknown. In this study, we show that fibroblasts in injured tissues undertake the clearance of collectins by using the endocytic collagen receptor uPARAP. In cellular assays, several types of collectins were endocytosed in a highly specific uPARAP-dependent process, not shared by the closely related receptor MR/CD206. When introduced into dermis or bleomycin-injured lungs of mice, collectins MBL and SP-D were endocytosed and routed for lysosomal degradation by uPARAP-positive fibroblasts. Fibroblast-specific expression of uPARAP governed endogenous SP-D levels and overall survival after lung injury. In lung tissue from idiopathic pulmonary fibrosis patients, a strong up-regulation of uPARAP was observed in fibroblasts adjacent to regions with SP-D secretion. This study demonstrates a novel immune-regulatory function of fibroblasts and identifies uPARAP as an endocytic receptor in immunity.
Collapse
Affiliation(s)
- Henrik J Jürgensen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kirstine S Nørregaard
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Megan M Sibree
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Eric Santoni-Rugiu
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel H Madsen
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Center for Cancer Immune Therapy, Department of Haematology, Copenhagen University Hospital, Herlev, Denmark.,Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Katharina Wassilew
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dorrit Krustrup
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Nielsen CF, van Putten SM, Lund IK, Melander MC, Nørregaard KS, Jürgensen HJ, Reckzeh K, Christensen KR, Ingvarsen SZ, Gårdsvoll H, Jensen KE, Hamerlik P, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget 2018; 8:44605-44624. [PMID: 28574834 PMCID: PMC5546505 DOI: 10.18632/oncotarget.17883] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.
Collapse
Affiliation(s)
- Christoffer Fagernæs Nielsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sander Maarten van Putten
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maria Carlsén Melander
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kirstine Sandal Nørregaard
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Jessen Jürgensen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kristine Rothaus Christensen
- Experimental Animal Models Section, Department of Veterinary Disease Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Signe Ziir Ingvarsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Petra Hamerlik
- Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Lars Henning Engelholm
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhao YL, Lu ZY, Zhang X, Liu WW, Yao GD, Liu XL, Liu W, Wu QJ, Hayashi T, Yamato M, Fujisaki H, Hattori S, Atsuzawa Y, Tashiro SI, Onodera S, Ikejima T. Gelatin promotes cell aggregation and pro-inflammatory cytokine production in PMA-stimulated U937 cells by augmenting endocytosis-autophagy pathway. Int J Biochem Cell Biol 2018; 95:132-142. [DOI: 10.1016/j.biocel.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 01/28/2023]
|
27
|
Ford AJ, Rajagopalan P. Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1503. [PMID: 29171177 DOI: 10.1002/wnan.1503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) plays a critical role in regulating cell behavior during tissue homeostasis and in disease progression. Through a combination of adhesion, contraction, alignment of ECM proteins and subsequent degradation, cells change the chemical, mechanical, and physical properties of their surrounding matrix. Other contributing factors to matrix remodeling are the de novo synthesis of ECM proteins, post-translational modifications and receptor-mediated internalization. In this review, we highlight how each of these processes contributes to the maintenance of homeostasis and in disease conditions such as cancer and liver fibrosis. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Andrew J Ford
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.,ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
28
|
PLA 2R binds to the annexin A2-S100A10 complex in human podocytes. Sci Rep 2017; 7:6876. [PMID: 28761153 PMCID: PMC5537237 DOI: 10.1038/s41598-017-07028-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/15/2017] [Indexed: 02/01/2023] Open
Abstract
Phospholipase A2 receptor (PLA2R) is a member of the mannose receptor family found in podocytes in human kidney. PLA2R is the target of the autoimmune disease, membranous nephropathy, characterised by production of anti-PLA2R autoantibodies which bind to the podocyte. However the function of PLA2R in health and in disease remains unclear. To gain insight into the molecular mechanisms of PLA2R function, we searched for its endogenous binding partners. Proteomic analysis identified annexinA2 as a potential interactor with the extracellular domains of PLA2R. We confirmed that PLA2R binds to annexinA2-S100A10 (A2t) complex with specific high affinity to the S100A10 component. The binding occured within the PLA2R NC3 fragment and was increased in acidic pH. Furthermore Ca2+ promoted the association of the PLA2R-A2t complex with phospholipid membranes in vitro. Within the podocyte, all three proteins were enriched in the plasma membrane and organelle membrane compartments. PLA2R co-localised with S100A10 at the cell surface and in extracellular vesicles. This novel interaction between PLA2R and the A2t complex offers insights into the role of PLA2R in podocytes and how autoantibodies might disrupt PLA2R function. The ability of podocytes to secrete vesicles containing PLA2R provides a route for engagement of PLA2R with the immune system.
Collapse
|
29
|
Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochem Soc Trans 2017; 44:1347-1354. [PMID: 27911717 DOI: 10.1042/bst20160159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a network of secreted proteins that, beyond providing support for tissues and organs, is involved in the regulation of a variety of cell functions, including cell proliferation, polarity, migration and oncogenic transformation. ECM homeostasis is maintained through a tightly controlled balance between synthesis, deposition and degradation. While the role of metalloproteases in ECM degradation is widely recognised, the contribution of ECM internalisation and intracellular degradation to ECM maintenance has been mostly overlooked. In this review, I will summarise what is known about the molecular mechanisms mediating ECM endocytosis and how this process impacts on diseases, such as fibrosis and cancer.
Collapse
|
30
|
Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun 2017; 8:16031. [PMID: 28685754 PMCID: PMC5504351 DOI: 10.1038/ncomms16031] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Tissue architecture contributes to pancreatic ductal adenocarcinoma (PDAC) phenotypes. Cancer cells within PDAC form gland-like structures embedded in a collagen-rich meshwork where nutrients and oxygen are scarce. Altered metabolism is needed for tumour cells to survive in this environment, but the metabolic modifications that allow PDAC cells to endure these conditions are incompletely understood. Here we demonstrate that collagen serves as a proline reservoir for PDAC cells to use as a nutrient source when other fuels are limited. We show PDAC cells are able to take up collagen fragments, which can promote PDAC cell survival under nutrient limited conditions, and that collagen-derived proline contributes to PDAC cell metabolism. Finally, we show that proline oxidase (PRODH1) is required for PDAC cell proliferation in vitro and in vivo. Collectively, our results indicate that PDAC extracellular matrix represents a nutrient reservoir for tumour cells highlighting the metabolic flexibility of this cancer. Cancer cells adapt their metabolism to survive limited nutrient availability. Here, the authors show that in conditions of limited glucose or glutamine availability, pancreatic ductal adenocarcinoma cells can use collagen-derived proline to foster the TCA cycle and allow cell survival both in vitro and in vivo.
Collapse
|
31
|
Abstract
The phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major autoantigens in primary membranous nephropathy (MN), and define two molecular subclasses of this disease. Both proteins are large transmembrane glycoproteins expressed by the podocyte, and both induce IgG4-predominant humoral immune responses that produce circulating autoantibodies that can be used clinically for diagnostic and monitoring purposes. The biologic roles of these proteins remain speculative, although several features of THSD7A suggest a role in adhesion. PLA2R-associated MN was initially found to associate with risk alleles within HLA-DQA1, but subsequent studies have shifted the focus to the HLA-DRB locus. Three distinct humoral epitope-containing regions have been defined within the extracellular portion of PLA2R, and it appears that the number of targeted epitopes may determine disease severity. Although similar information is not yet available for THSD7A-associated MN, this form of MN may have a unique association with malignancy. Finally, it appears likely that other autoantigens in primary MN exist. Although protocols similar to those that identified PLA2R and THSD7A may be successful in the identification of novel antigenic targets in MN, newer techniques such as laser-capture mass spectrometry or protein arrays may be helpful as well.
Collapse
Affiliation(s)
- Laurence H Beck
- Renal Section, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
32
|
Cattran DC, Brenchley PE. Membranous nephropathy: integrating basic science into improved clinical management. Kidney Int 2017; 91:566-574. [PMID: 28065518 DOI: 10.1016/j.kint.2016.09.048] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
Abstract
Idiopathic membranous nephropathy (INM) remains a common cause of the nephrotic syndrome in adults. The autoimmune nature of IMN was clearly delineated in 2009 with the identification of the glomerular-deposited IgG to be a podocyte receptor, phospholipase A2 receptor (PLA2R) in 70% to 75% of cases. This anti-PLA2R autoantibody, predominantly the IgG4 subclass, has been quantitated in serum using an enzyme-linked immunosorbent assay and has been used to aid diagnosis and monitor response to immunosuppressive therapy. In 2014, a second autoantigen, thrombospondin type 1 domain-containing 7A (THSD7A), was identified. Immunostaining of biopsy specimens has further detected either PLA2R or THSD7A antigen in the deposited immune complexes in 5% to 10% of cases autoantibody seronegative at the time of biopsy. Therefore, the term IMN should now be superseded by the term primary or autoimmune MN (AMN) (anti-PLA2R or anti-THSD7A positive) classifying ∼80% to 90% of cases previously designated IMN. Cases of secondary MN associated with other diseases show much lower association with these autoantibodies, but their true incidence in secondary cases still needs to be defined. How knowledge of the autoimmune mechanism and the sequential measurement of these autoantibodies is likely to change the clinical management and trajectory of AMN by more precisely defining its diagnosis, prognosis, and treatment is discussed. Their application early in the disease course to new and old therapies will provide additional precision to AMN management. We also review innovative therapeutic approaches on the horizon that are expected to lead to our ultimate goal of improved patient care in A(I)MN.
Collapse
Affiliation(s)
- Daniel C Cattran
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Paul E Brenchley
- Renal Research Labs, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Internalization of Collagen: An Important Matrix Turnover Pathway in Cancer. EXTRACELLULAR MATRIX IN TUMOR BIOLOGY 2017. [DOI: 10.1007/978-3-319-60907-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
35
|
Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205. Proc Natl Acad Sci U S A 2016; 113:13438-13443. [PMID: 27821726 DOI: 10.1073/pnas.1609331113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation. It has been shown that human DEC205 recognizes apoptotic and necrotic cells in a pH-dependent fashion. However, the natural ligand(s) of DEC205 remains unknown. Here we find that keratins are the cellular ligands of human DEC205. DEC205 binds to keratins specifically at acidic, but not basic, pH through its N-terminal domains. Keratins form intermediate filaments and are important for maintaining the strength of cells and tissues. Our results suggest that keratins also function as cell markers of apoptotic and necrotic cells and mediate a pH-dependent pathway for the immune recognition of dead cells.
Collapse
|
36
|
Crystal structures of the ligand-binding region of uPARAP: effect of calcium ion binding. Biochem J 2016; 473:2359-68. [PMID: 27247422 DOI: 10.1042/bcj20160276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain (cysteine-rich or CysR domain) folds into a new and unique conformation different from the β-trefoil fold of typical CysR domains. The so-called long loop regions (LLRs) of the C-type lectin-like domain (CTLD) 1 and 2 (the third and fourth domain) mediate the direct contacts between these domains. These LLRs undergo a Ca(2+)-dependent conformational change, and this is likely to be the key structural determinant affecting the overall conformation of uPARAP. Our results provide a molecular mechanism to support the structural flexibility of uPARAP, and shed light on the structural flexibility of other members of the MR family.
Collapse
|
37
|
Motley MP, Madsen DH, Jürgensen HJ, Spencer DE, Szabo R, Holmbeck K, Flick MJ, Lawrence DA, Castellino FJ, Weigert R, Bugge TH. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood 2016; 127:1085-96. [PMID: 26647393 PMCID: PMC4778161 DOI: 10.1182/blood-2015-05-644260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.
Collapse
Affiliation(s)
- Michael P Motley
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Daniel H Madsen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Center for Cancer Immune Therapy, Department of Haematology, Herlev University Hospital, Herlev, Denmark; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik J Jürgensen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David E Spencer
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; and
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Roberto Weigert
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Thomas H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
38
|
Engelholm LH, Melander MC, Hald A, Persson M, Madsen DH, Jürgensen HJ, Johansson K, Nielsen C, Nørregaard KS, Ingvarsen SZ, Kjaer A, Trovik CS, Laerum OD, Bugge TH, Eide J, Behrendt N. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol 2015; 238:120-33. [PMID: 26466547 DOI: 10.1002/path.4661] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022]
Abstract
In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.
Collapse
Affiliation(s)
- Lars H Engelholm
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Maria C Melander
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Andreas Hald
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Morten Persson
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | - Daniel H Madsen
- Proteases and Tissue Remodelling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Henrik J Jürgensen
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Kristina Johansson
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Christoffer Nielsen
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Kirstine S Nørregaard
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Signe Z Ingvarsen
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | - Clement S Trovik
- Department of Oncology/Orthopaedics, Haukeland University Hospital, Bergen, Norway
| | - Ole D Laerum
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark.,Department of Clinical Medicine, Gade Laboratory of Pathology, University of Bergen, Norway
| | - Thomas H Bugge
- Proteases and Tissue Remodelling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Johan Eide
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Niels Behrendt
- Finsen Laboratory/Biotech Research and Innovation Centre (BRIC), Rigshospitalet and University of Copenhagen, Denmark
| |
Collapse
|
39
|
Yuan C, Huang JH, Liu M, Huang M. Expression and crystallographic studies of the ligand-binding region of the human endocytic collagen receptor uPARAP. Acta Crystallogr F Struct Biol Commun 2015; 71:1442-7. [PMID: 26527274 PMCID: PMC4631596 DOI: 10.1107/s2053230x15018944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022] Open
Abstract
Urokinase plasminogen activator receptor-associated protein (uPARAP) is an endocytic receptor that internalizes collagen for lysosomal degradation and plays an important role in matrix remodelling. Previous recombinant protein production of uPARAP in Pichia pastoris generated protein with highly heterogeneous glycans that was prone to proteolytic degradation, resulting in highly twinned crystals. In this study, the uPARAP ligand-binding region was expressed in stably transfected Drosophila S2 insect cells. The recombinant protein was homogeneous after purification by metal-affinity and anion-exchange chromatography. Crystals were obtained at two different pH values (5.3 and 7.4) and diffracted to 2.44 and 3.13 Å resolution, respectively. A model of the ligand-binding region of uPARAP was obtained by molecular replacement combined with autobuilding. As the first multidomain crystal structure of the mannose receptor family, structural characterization of the uPARAP ligand-binding region will provide insight into the pH-induced conformational rearrangements of the mannose receptor family.
Collapse
Affiliation(s)
- Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Joy He Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
40
|
Insights into Collagen Uptake by C-type Mannose Receptors from the Crystal Structure of Endo180 Domains 1-4. Structure 2015; 23:2133-42. [PMID: 26481812 PMCID: PMC4635314 DOI: 10.1016/j.str.2015.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023]
Abstract
The C-type mannose receptor and its homolog Endo180 (or uPARAP, for urokinase plasminogen activator receptor-associated protein) mediate the endocytic uptake of collagen by macrophages and fibroblasts. This process is required for normal tissue remodeling, but also facilitates the growth and dissemination of tumors. We have determined the crystal structure at 2.5 Å resolution of the N-terminal region of Endo180, consisting of a ricin-like domain, a fibronectin type II (FN2) domain, and two C-type lectin (CTL) domains. The L-shaped arrangement of these domains creates a shallow trench spanning the FN2 and CTL1 domains, which was shown by mutagenesis to bind triple-helical and denatured collagen. Small-angle X-ray scattering showed that the L-shaped structure is maintained in solution at neutral and acidic pH, irrespective of calcium ion loading. Collagen binding was equally unaffected by acidic pH, suggesting that collagen release in endosomes is not regulated by changes within the Endo180 N-terminal region. Domains 1–4 of the endocytic receptor Endo180 form an L-shaped structure The fibronectin type II domain (domain 2) is crucial for collagen/gelatin binding The first C-type lectin domain (domain 3) also contributes to collagen binding Collagen binding to Endo180 domains 1–4 is not reduced by low pH or Ca2+ depletion
Collapse
|
41
|
Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review). Int J Oncol 2015; 47:1177-88. [PMID: 26316068 PMCID: PMC4583827 DOI: 10.3892/ijo.2015.3120] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Maria C Melander
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik J Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Madsen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Lars H Engelholm
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
42
|
Takahashi S, Watanabe K, Watanabe Y, Fujioka D, Nakamura T, Nakamura K, Obata JE, Kugiyama K. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A(2) receptor 1 modulate binding and migratory responses to collagen. FEBS Lett 2015; 589:829-35. [PMID: 25724334 DOI: 10.1016/j.febslet.2015.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/20/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Phospholipase A2 receptor 1 (PLA2R) mediates collagen-dependent migration. The mechanisms by which PLA2R interacts with collagen remain unclear. We produced HEK293 cells expressing full-length wild-type PLA2R or a truncated PLA2R that lacks fibronectin-like type II (FNII) domains or several regions of C-type lectin-like domain (CTLD). We show that the CTLD1-2 as well as the FNII domain of PLA2R are responsible for binding to collagen and for collagen-dependent migration. Thus, multiple regions and domains of the extracellular portion of PLA2R participate in the responses to collagen. These data suggest a potentially new mechanism for PLA2R-mediated biological response beyond that of a receptor for secretory PLA2.
Collapse
Affiliation(s)
- Soichiro Takahashi
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Yosuke Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Daisuke Fujioka
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Takamitsu Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuto Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Jun-ei Obata
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan; CREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|