1
|
Yang J, Gao J, Zhou D, Ye H, Huang G, Lian X, Zhang X. Comparing risk factors and neonatal outcomes in women with intrahepatic cholestasis of pregnancy between assisted reproductive technology and spontaneous conception. Int J Gynaecol Obstet 2025; 168:663-672. [PMID: 39175277 DOI: 10.1002/ijgo.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE The aim of the present study was to investigate the incidence of intrahepatic cholestasis of pregnancy (ICP) as well as neonatal outcomes between conception via in vitro fertilization (IVF) compared with spontaneous conception (SC) and screen the risk factors of ICP in IVF. METHODS This retrospective cohort study included 4467 puerperae who conceived via IVF, and 28 336 puerperae who conceived spontaneously and linked the information from neonates. The general linear model (GLM), multivariate logistic regression analysis, a forest plot, and nomogram were used to assess impact factors and risk prediction. RESULTS Logistic analysis adjusted for confounders revealed significant differences in the ICP rate of singleton delivery (4.24% vs 3.41%, adjusted OR [aOR] = 1.26; 95% confidence interval [CI] 1.03-1.53, P = 0.025) and in groups with total bile acids (TBA) ≥40 and <100 μmol/L (14.77% vs 10.39%, aOR = 1.31; 95% CI: 1.06-1.63, P = 0.023) between IVF and SC. When we divided newborns into singleton and twins delivery, the GLM revealed a higher rate with Apgar score <7 (13.44% vs 3.87%, aOR = 3.85; 95% CI: 2.07-7.17, P < 0.001) and fetal distress for IVF in comparison with SC (19.32% vs 5.55%, OR = 3.48; 95% CI: 2.39-6.95, P < 0.001) in the singleton group. In multivariate logistic regression analysis, body mass index (BMI) (aOR = 1.29; P = 0.031), number of embryo transfers (ET) (single ET vs double ET, aOR = 2.82; P < 0.001), E2 level on the ET day (aOR = 2.79; P = 0.011), fresh ET which compared with frozen ET (FET) (aOR = 1.45; P = 0.014), embryo stage (cleavage embryo vs blastocyst, aOR = 1.75; P = 0.009) and severe ovarian hyperstimulation syndrome (OHSS) which compared with non-OHSS (aOR = 3.73; P = 0.006) were independent predictors of ICP. These predictive factors in the logistic regression model were integrated into the nomogram (C-index = 0.735; 95% CI: 0.702-0.764); for each patient, higher total points indicated a higher risk of ICP. CONCLUSION We observed that the ICP rate of singleton delivery was higher in IVF than in SC. In ICP patients, there were higher rates of neonatal Apgar score <7 and fetal distress in IVF than SC and found the predictors of ICP in IVF.
Collapse
Affiliation(s)
- Jingwei Yang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jing Gao
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danni Zhou
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Hong Ye
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xuemei Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
2
|
Zhao Y, Vary JC, Yadav AS, Czuba LC, Shum S, LaFrance J, Huang W, Isoherranen N, Hebert MF. Effect of isotretinoin on CYP2D6 and CYP3A activity in patients with severe acne. Br J Clin Pharmacol 2024; 90:759-768. [PMID: 37864393 PMCID: PMC10922942 DOI: 10.1111/bcp.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Previously, retinoids have decreased CYP2D6 mRNA expression in vitro and induced CYP3A4 in vitro and in vivo. This study aimed to determine whether isotretinoin administration changes CYP2D6 and CYP3A activities in patients with severe acne. METHODS Thirty-three patients (22 females and 11 males, 23.5 ± 6.0 years old) expected to receive isotretinoin treatment completed the study. All participants were genotyped for CYP2D6 and CYP3A5. Participants received dextromethorphan (DM) 30 mg orally as a dual-probe substrate of CYP2D6 and CYP3A activity at two study timepoints: pre-isotretinoin treatment and with isotretinoin for at least 1 week. The concentrations of isotretinoin, DM and their metabolites were measured in 2-h postdose plasma samples and in cumulative 0-4-h urine collections using liquid chromatography-mass spectrometry. RESULTS In CYP2D6 extensive metabolizers, the urinary dextrorphan (DX)/DM metabolic ratio (MR) (CYP2D6 activity marker) was numerically, but not significantly, lower with isotretinoin administration compared to pre-isotretinoin (geometric mean ratio [GMR] [90% confidence interval (CI)] 0.78 [0.55, 1.11]). The urinary 3-hydroxymorphinan (3HM)/DX MR (CYP3A activity marker) was increased (GMR 1.18 [1.03, 1.35]) and the urinary DX-O-glucuronide/DX MR (proposed UGT2B marker) was increased (GMR 1.22 [1.06, 1.39]) with isotretinoin administration compared to pre-isotretinoin. CONCLUSIONS Administration of isotretinoin did not significantly reduce CYP2D6 activity in extensive metabolizers, suggesting that the predicted downregulation of CYP2D6 based on in vitro data does not translate into humans. We observed a modest increase in CYP3A activity (predominantly CYP3A4) with isotretinoin treatment. The data also suggest that DX glucuronidation is increased following isotretinoin administration.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jay C. Vary
- Department of Medicine, Division of Dermatology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Smith D, He B, Shi J, Zhu HJ, Wang X. Novel Independent Trans- and Cis-Genetic Variants Associated with CYP2D6 Expression and Activity in Human Livers. Drug Metab Dispos 2024; 52:143-152. [PMID: 38050015 PMCID: PMC10801631 DOI: 10.1124/dmd.123.001548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a P value threshold of 5.0 × 10-7 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.
Collapse
Affiliation(s)
- Dylan Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Bing He
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| |
Collapse
|
4
|
Czuba LC, Malhotra K, Enthoven L, Fay EE, Moreni SL, Mao J, Shi Y, Huang W, Totah RA, Isoherranen N, Hebert MF. CYP2D6 Activity Is Correlated with Changes in Plasma Concentrations of Taurocholic Acid during Pregnancy and Postpartum in CYP2D6 Extensive Metabolizers. Drug Metab Dispos 2023; 51:1474-1482. [PMID: 37550070 PMCID: PMC10586507 DOI: 10.1124/dmd.123.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Karan Malhotra
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Luke Enthoven
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Emily E Fay
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Sue L Moreni
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Jennie Mao
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Yuanyuan Shi
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Mary F Hebert
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Amaeze OU, Czuba LC, Yadav AS, Fay EE, LaFrance J, Shum S, Moreni SL, Mao J, Huang W, Isoherranen N, Hebert MF. Impact of Pregnancy and Vitamin A Supplementation on CYP2D6 Activity. J Clin Pharmacol 2023; 63:363-372. [PMID: 36309846 PMCID: PMC9931631 DOI: 10.1002/jcph.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
The mechanism of cytochrome P450 2D6 (CYP2D6) induction during pregnancy has not been evaluated in humans. This study assessed the changes in CYP2D6 and CYP3A activities during pregnancy and postpartum, and the effect of vitamin A administration on CYP2D6 activity. Forty-seven pregnant CYP2D6 extensive metabolizers (with CYP2D6 activity scores of 1 to 2) received dextromethorphan (DM) 30 mg orally as a single dose during 3 study windows (at 25 to 28 weeks of gestation, study day 1; at 28 to 32 weeks of gestation, study day 2; and at ≥3 months postpartum, study day 3). Participants were randomly assigned to groups with no supplemental vitamin A (control) or with supplemental vitamin A (10 000 IU/day orally for 3 to 4 weeks) after study day 1. Concentrations of DM and its metabolites, dextrorphan (DX) and 3-hydroxymorphinan (3HM), were determined from a 2-hour post-dose plasma sample and cumulative 4-hour urine sample using liquid chromatography-mass spectrometry. Change in CYP2D6 activity was assessed using DX/DM plasma and urine metabolic ratios. The activity change in CYP3A was also assessed using the 3HM/DM urine metabolic ratio. The DX/DM urine ratio was significantly higher (43%) in pregnancy compared with postpartum (P = .03), indicating increased CYP2D6 activity. The DX/DM plasma ratio was substantially higher in the participants, with an activity score of 1.0 during pregnancy (P = .04) compared with postpartum. The 3HM/DM urinary ratio was significantly higher (92%) during pregnancy, reflecting increased CYP3A activity (P = .02). Vitamin A supplementation did not change CYP2D6 activity during pregnancy; however, plasma all-trans retinoic acid (atRA) concentrations were positively correlated with increased CYP2D6 activity during pregnancy and postpartum. Further research is needed to elucidate the mechanisms of increased CYP2D6 activity during pregnancy.
Collapse
Affiliation(s)
- Ogochukwu U Amaeze
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Aprajita S. Yadav
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Jeffrey LaFrance
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Sue L. Moreni
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Jennie Mao
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
| | - Weize Huang
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
- Milo Gibaldi Endowed Chair of Pharmaceutics, Department of Pharmaceutics, University of Washington, School of Pharmacy, Seattle, Washington, United States
| | - Mary F. Hebert
- Department of Obstetrics and Gynecology, University of Washington, School of Medicine, Seattle, Washington, United States
- Department of Pharmacy, University of Washington, School of Pharmacy, Seattle, Washington, United States
| |
Collapse
|
6
|
Leeder JS, Gaedigk A, Wright KJ, Staggs VS, Soden SE, Lin YS, Pearce RE. A longitudinal study of cytochrome P450 2D6 (CYP2D6) activity during adolescence. Clin Transl Sci 2022; 15:2514-2527. [PMID: 35997001 PMCID: PMC9579386 DOI: 10.1111/cts.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
CYP2D6 substrates are among the most highly prescribed medications in teenagers and also commonly associated with serious adverse events. To investigate the relative contributions of genetic variation, growth, and development on CYP2D6 activity during puberty, healthy children and adolescents 7-15 years of age at enrollment participated in a longitudinal phenotyping study involving administration of 0.3 mg/kg dextromethorphan (DM) and 4-h urine collection every 6 months for 3 years (7 total visits). At each visit, height, weight, and sexual maturity were recorded, and CYP2D6 activity was determined as the urinary molar ratio of DM to its metabolite dextrorphan (DX). A total of 188 participants completed at least one visit, and 102 completed all seven study visits. Following univariate analysis, only CYP2D6 activity score (p < 0.001), urinary pH (p < 0.001), weight (p = 0.018), and attention-deficit/hyperactivity disorder (ADHD) diagnosis (p < 0.001) were significantly correlated with log(DM/DX). Results of linear mixed model analysis with random intercept, random slope covariance structure revealed that CYP2D6 activity score had the strongest effect on log(DM/DX), with model-estimated average log(DM/DX) being 3.8 SDs higher for poor metabolizers than for patients with activity score 3. A moderate effect on log(DM/DX) was observed for sex, and smaller effects were observed for ADHD diagnosis and urinary pH. The log(DM/DX) did not change meaningfully with age or pubertal development. CYP2D6 genotype remains the single, largest determinant of variability in CYP2D6 activity during puberty. Incorporation of genotype-based dosing guidelines should be considered for CYP2D6 substrates given the prevalent use of these agents in this pediatric age group.
Collapse
Affiliation(s)
- J. Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA,School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA,School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Krista J. Wright
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Vincent S. Staggs
- School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA,Biostatistics & Epidemiology Core, Division of Health Services and Outcomes Research, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA,Division of Developmental and Behavioral Sciences, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA
| | - Sarah E. Soden
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA,School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Yvonne S. Lin
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Robin E. Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of PediatricsChildren's Mercy Kansas CityKansas CityMissouriUSA,School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| |
Collapse
|
7
|
Yadav AS, Stevison F, Kosaka M, Wong S, Kenny JR, Amory JK, Isoherranen N. Isotretinoin and its Metabolites Alter mRNA of Multiple Enzyme and Transporter Genes In Vitro, but Downregulation of Organic Anion Transporting Polypeptide Does Not Translate to the Clinic. Drug Metab Dispos 2022; 50:1042-1052. [PMID: 35545255 PMCID: PMC11022860 DOI: 10.1124/dmd.122.000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Isotretinoin [13-cis-retinoic acid (13cisRA)] is widely used for the treatment of neuroblastoma and acne. It acts via regulating gene transcription through binding to retinoic acid receptors. Yet, the potential for isotretinoin to cause transcriptionally mediated drug-drug interactions (DDIs) has not been fully explored. We hypothesized that isotretinoin and its active metabolites all-trans-retinoic acid (atRA) and 4-oxo-13cisRA would alter the transcription of enzymes and transporters in the human liver via binding to nuclear receptors. The goal of this study was to define the DDI potential of isotretinoin and its metabolites resulting from transcriptional regulation of cytochrome P450 and transporter mRNAs. In human hepatocytes (n = 3), 13cisRA, atRA, and 4-oxo-13cisRA decreased OATP1B1, CYP1A2, CYP2C9, and CYP2D6 mRNA and increased CYP2B6 and CYP3A4 mRNA in a concentration-dependent manner. The EC50 values for OATP1B1 mRNA downregulation ranged from 2 to 110 nM, with maximum effect (Emax ) ranging from 0.17- to 0.54-fold. Based on the EC50 and Emax values and the known circulating concentrations of 13cisRA and its metabolites after isotretinoin dosing, a 55% decrease in OATP1B1 activity was predicted in vivo. In vivo DDI potential was evaluated clinically in participants dosed with isotretinoin for up to 32 weeks using coproporphyrin-I (CP-I) as an OATP1B1 biomarker. CP-I steady-state serum concentrations were unaltered following 2, 8, or 16 weeks of isotretinoin treatment. These data show that isotretinoin and its metabolites alter transcription of multiple enzymes and transporters in vitro, but translation of these changes to in vivo drug-drug interactions requires clinical evaluation for each enzyme. SIGNIFICANCE STATEMENT: Isotretinoin and its metabolites alter the mRNA expression of multiple cytochrome P450s (CYPs) and transporters in human hepatocytes, suggesting that isotretinoin may cause clinically significant drug-drug interactions (DDIs). Despite the observed changes in organic anion transporting polypeptide 1B1 (OATP1B1) mRNA in human hepatocytes, no clinical DDI was observed when measuring a biomarker, coproporphyrin-I. Further work is needed to determine whether these findings can be extrapolated to a lack of a DDI with CYP1A2, CYP2B6, and CYP2C9 substrates.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Mika Kosaka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Susan Wong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Jane R Kenny
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - John K Amory
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| |
Collapse
|
8
|
van Hoogdalem MW, Wexelblatt SL, Akinbi HT, Vinks AA, Mizuno T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol Ther 2021; 234:108045. [PMID: 34813863 DOI: 10.1016/j.pharmthera.2021.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to study pharmacokinetics (PK) in special populations, such as pregnant women, fetuses, and newborns, where practical hurdles severely limit the study of drug behavior. PK in pregnant women is variable and everchanging, differing greatly from that in their nonpregnant female and male counterparts typically enrolled in clinical trials. PBPK models can accommodate pregnancy-induced physiological and metabolic changes, thereby providing mechanistic insights into maternal drug disposition and fetal exposure. Fueled by the soaring opioid epidemic in the United States, opioid use during pregnancy continues to rise, leading to an increased incidence of neonatal opioid withdrawal syndrome (NOWS). The severity of NOWS is influenced by a complex interplay of extrinsic and intrinsic factors, and varies substantially between newborns, but the extent of prenatal opioid exposure is likely the primary driver. Fetomaternal PBPK modeling is an attractive approach to predict in utero opioid exposure. To facilitate the development of fetomaternal PBPK models of opioids, this review provides a detailed overview of pregnancy-induced changes affecting the PK of commonly used opioids during gestation. Moreover, the placental transfer of these opioids is described, along with their disposition in the fetus. Lastly, the implementation of these factors into PBPK models is discussed. Fetomaternal PBPK modeling of opioids is expected to provide improved insights in fetal opioid exposure, which allows for prediction of postnatal NOWS severity, thereby opening the way for precision postnatal treatment of these vulnerable infants.
Collapse
Affiliation(s)
- Matthijs W van Hoogdalem
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Scott L Wexelblatt
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Rodrigues AD, van Dyk M, Sorich MJ, Fahmy A, Useckaite Z, Newman LA, Kapetas AJ, Mounzer R, Wood LS, Johnson JG, Rowland A. Exploring the Use of Serum-Derived Small Extracellular Vesicles as Liquid Biopsy to Study the Induction of Hepatic Cytochromes P450 and Organic Anion Transporting Polypeptides. Clin Pharmacol Ther 2021; 110:248-258. [PMID: 33792897 DOI: 10.1002/cpt.2244] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Liver-derived small extracellular vesicles (sEVs), prepared from small sets of banked serum samples using a novel two-step protocol, were deployed as liquid biopsy to study the induction of cytochromes P450 (CYP3A4, CYP3A5, and CYP2D6) and organic anion transporting polypeptides (OATP1B1 and OATP1B3) during pregnancy (nonpregnant (T0), first, second, and third (T3) trimester women; N = 3 each) and after administration of rifampicin (RIF) to healthy male subjects. Proteomic analysis revealed induction (mean fold-increase, 90% confidence interval) of sEV CYP3A4 after RIF 300 mg × 7 days (3.5, 95% CI = 2.5-4.5, N = 4, P = 0.029) and 600 mg × 14 days (3.7, 95% CI = 2.1-6.0, N = 5, P = 0.018) consistent with the mean oral midazolam area under the plasma concentration time curve (AUC) ratio in the same subjects (0.28, 95% CI = 0.22-0.34, P < 0.0001; and 0.17, 95% CI = 0.13-0.22, P < 0.0001). Compared with CYP3A4, liver sEV CYP3A5 protein (subjects genotyped CYP3A5*1/*3) was weakly induced (≤ 1.5-fold). It was also possible to measure liver sEV-catalyzed dextromethorphan (DEX) O-demethylation to dextrorphan (DXO), correlated with sEV CYP2D6 expression (r = 0.917, P = 0.0001; N = 10) and 3-hour plasma DXO-to-DEX concentration ratio (r = 0.843, P = 0.002, N = 10), and show that CYP2D6 was not induced by RIF. Nonparametric analysis of liver sEV revealed significantly higher CYP3A4 (3.2-fold, P = 0.003) and CYP2D6 (3.7-fold, P = 0.03) protein expression in T3 vs. T0 women. In contrast, expression of both OATPs in liver sEV was unaltered by RIF administration and pregnancy.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alia Fahmy
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Asha J Kapetas
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Reham Mounzer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Linda S Wood
- Pharmacogenomics, Precision Medicine, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Jillian G Johnson
- Pharmacogenomics, Precision Medicine, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel) 2020; 11:E1295. [PMID: 33143137 PMCID: PMC7692531 DOI: 10.3390/genes11111295] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical pharmacogene involved in the metabolism of ~20% of commonly used drugs across a broad spectrum of medical disciplines including psychiatry, pain management, oncology and cardiology. Nevertheless, CYP2D6 is highly polymorphic with single-nucleotide polymorphisms, small insertions/deletions and larger structural variants including multiplications, deletions, tandem arrangements, and hybridisations with non-functional CYP2D7 pseudogenes. The frequency of these variants differs across populations, and they significantly influence the drug-metabolising enzymatic function of CYP2D6. Importantly, altered CYP2D6 function has been associated with both adverse drug reactions and reduced drug efficacy, and there is growing recognition of the clinical and economic burdens associated with suboptimal drug utilisation. To date, pharmacogenomic clinical guidelines for at least 48 CYP2D6-substrate drugs have been developed by prominent pharmacogenomics societies, which contain therapeutic recommendations based on CYP2D6-predicted categories of metaboliser phenotype. Novel algorithms to interpret CYP2D6 function from sequencing data that consider structural variants, and machine learning approaches to characterise the functional impact of novel variants, are being developed. However, CYP2D6 genotyping is yet to be implemented broadly into clinical practice, and so further effort and initiatives are required to overcome the implementation challenges and deliver the potential benefits to the bedside.
Collapse
Affiliation(s)
- Christopher Taylor
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Ian Crosby
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Vincent Yip
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Peter Maguire
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Richard M. Turner
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| |
Collapse
|
11
|
Abstract
Hepatic drug metabolism is a major route of drug elimination, mediated by multiple drug-metabolizing enzymes. Any changes in the rate and extent of hepatic drug metabolism can lead to altered drug efficacy or toxicity. Accumulating clinical evidence indicates that pregnancy is accompanied by changes in hepatic drug metabolism. In this article, we discuss in vitro and in vivo tools used to study the mechanisms underlying the altered drug metabolism during pregnancy, focusing on primary hepatocyte culture, transgenic animal models, and use of probe drugs to assess change in enzymatic activity. The information obtained from these studies has enabled prediction of clinical PK changes for a given drug in pregnant women.
Collapse
Affiliation(s)
- Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, United States.
| | - Catherine S. Stika
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
12
|
Storelli F, Desmeules J, Daali Y. Physiologically-Based Pharmacokinetic Modeling for the Prediction of CYP2D6-Mediated Gene-Drug-Drug Interactions. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:567-576. [PMID: 31268632 PMCID: PMC6709421 DOI: 10.1002/psp4.12411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
The aim of this work was to predict the extent of Cytochrome P450 2D6 (CYP2D6)‐mediated drug–drug interactions (DDIs) in different CYP2D6 genotypes using physiologically‐based pharmacokinetic (PBPK) modeling. Following the development of a new duloxetine model and optimization of a paroxetine model, the effect of genetic polymorphisms on CYP2D6‐mediated intrinsic clearances of dextromethorphan, duloxetine, and paroxetine was estimated from rich pharmacokinetic profiles in activity score (AS)1 and AS2 subjects. We obtained good predictions for the dextromethorphan–duloxetine interaction (Ratio of predicted over observed area under the curve (AUC) ratio (Rpred/obs) 1.38–1.43). Similarly, the effect of genotype was well predicted, with an increase of area under the curve ratio of 28% in AS2 subjects when compared with AS1 (observed, 33%). Despite an approximately twofold underprediction of the dextromethorphan–paroxetine interaction, an Rpred/obs of 0.71 was obtained for the effect of genotype on the area under the curve ratio. Therefore, PBPK modeling can be successfully used to predict gene–drug–drug interactions (GDDIs). Based on these promising results, a workflow is suggested for the generic evaluation of GDDIs and DDIs that can be applied in other situations.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, Geneva University, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, Geneva University, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland.,Swiss Center of Applied Human Toxicology, Basel, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, Geneva University, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland.,Swiss Center of Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
13
|
Ning M, Duarte JD, Stevison F, Isoherranen N, Rubin LH, Jeong H. Determinants of Cytochrome P450 2D6 mRNA Levels in Healthy Human Liver Tissue. Clin Transl Sci 2019; 12:416-423. [PMID: 30821899 PMCID: PMC6618095 DOI: 10.1111/cts.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug‐metabolizing enzyme that exhibits large interindividual variability. Recent studies suggest that differential transcriptional regulation of CYP2D6 in part may be responsible for the variability. In this study, we characterized potential determinants of CYP 2D6 transcript levels in healthy human liver tissue samples (n = 115), including genetic polymorphisms in CYP2D6 and the genes encoding transcription regulators for CYP2D6 expression; mRNA expression of the transcription factors and their known target genes; and hepatic levels of bile acids and retinoids, agents that modulate the expression/activity of the transcription factors. Their associations with CYP2D6 mRNA levels in the tissues were examined. Results from multivariable linear regression analysis revealed CYP8B1 mRNA level and rs3892097, the single‐ nucleotide polymorphism defining the nonfunctional CYP2D6*4 allele, as the two most significant predictors of CYP2D6 mRNA levels in the liver tissue samples, explaining 30% of the variability.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Neurology, Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Stevison F, Kosaka M, Kenny JR, Wong S, Hogarth C, Amory JK, Isoherranen N. Does In Vitro Cytochrome P450 Downregulation Translate to In Vivo Drug-Drug Interactions? Preclinical and Clinical Studies With 13-cis-Retinoic Acid. Clin Transl Sci 2019; 12:350-360. [PMID: 30681285 PMCID: PMC6617839 DOI: 10.1111/cts.12616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022] Open
Abstract
All‐trans‐retinoic acid (atRA) downregulates cytochrome P450 (CYP)2D6 in several model systems. The aim of this study was to determine whether all active retinoids downregulate CYP2D6 and whether in vitro downregulation translates to in vivo drug–drug interactions (DDIs). The retinoids atRA, 13cisRA, and 4‐oxo‐13cisRA all decreased CYP2D6 mRNA in human hepatocytes in a concentration‐dependent manner. The in vitro data predicted ~ 50% decrease in CYP2D6 activity in humans after dosing with 13cisRA. However, the geometric mean area under plasma concentration‐time curve (AUC) ratio for dextromethorphan between treatment and control was 0.822, indicating a weak induction of dextromethorphan clearance following 13cisRA treatment. Similarly, in mice treatment with 4‐oxo‐13cisRA–induced mRNA expression of multiple mouse Cyp2d genes. In comparison, a weak induction of CYP3A4 in human hepatocytes translated to a weak in vivo induction of CYP3A4. These data suggest that in vitro CYP downregulation may not translate to in vivo DDIs, and better understanding of the mechanisms of CYP downregulation is needed.
Collapse
Affiliation(s)
- Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mika Kosaka
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Susan Wong
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Cathryn Hogarth
- The Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Ning M, Duarte JD, Rubin LH, Jeong H. CYP2D6 Protein Level Is the Major Contributor to Interindividual Variability in CYP2D6-Mediated Drug Metabolism in Healthy Human Liver Tissue. Clin Pharmacol Ther 2018; 104:974-982. [PMID: 29349771 PMCID: PMC6053340 DOI: 10.1002/cpt.1032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/12/2022]
Abstract
CYP2D6 genetic polymorphisms are considered a major contributor to the large interindividual variability in CYP2D6-mediated drug metabolism, but fail to explain a significant portion of the variability. The aim of this study was to assess the ability of the CYP2D6 activity score (AS) estimated from CYP2D6 genotype to predict CYP2D6 expression and enzyme activity. The CYP2D6 gene region was sequenced in 115 healthy human liver tissue samples to determine their CYP2D6 AS. Additionally, CYP2D6 enzyme activity, protein, and mRNA levels were estimated. CYP2D6 AS explained 23% of the interindividual variability in CYP2D6 activity, but only 7.5% in tissues assigned AS 1-2. The CYP2D6 protein level was found to be the major determinant of CYP2D6 activity, explaining 59% of variability. These findings suggest that while CYP2D6 AS is a good predictor of poor metabolizer phenotype, additional nongenetic factors may govern the rate of CYP2D6-mediated metabolism in those without the poor metabolizer phenotype.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio D Duarte
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
17
|
Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. Biotransformation and bioactivation reactions - 2017 literature highlights *. Drug Metab Rev 2018; 50:221-255. [PMID: 29954222 DOI: 10.1080/03602532.2018.1473875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This annual review is the third one to highlight recent advances in the study and assessment of biotransformations and bioactivations ( Table 1 ). We followed the same format as the previous years with selection and authoring each section (see Baillie et al. 2016 ; Khojasteh et al. 2017 ). We acknowledge that many universities no longer train students in mechanistic biotransformation studies reflecting a decline in the investment for those efforts by public funded granting institutions. We hope this work serves as a resource to appreciate the knowledge gained each year to understand and hopefully anticipate toxicological outcomes dependent on biotransformations and bioactivations. This effort itself also continues to evolve. I am pleased that Drs. Rietjens and Miller have again contributed to this annual review. We would like to welcome Kaushik Mitra as an author for this year's issue, and we thank Deepak Dalvie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. As always, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | - Grover P Miller
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- c Department of Safety Assessment and Laboratory Animal Resources , Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | |
Collapse
|
18
|
Ten Years' Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. J Pers Med 2018; 8:jpm8020015. [PMID: 29673183 PMCID: PMC6023391 DOI: 10.3390/jpm8020015] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The seminal paper on the CYP2D6 Activity Score (AS) was first published ten years ago and, since its introduction in 2008, it has been widely accepted in the field of pharmacogenetics. This scoring system facilitates the translation of highly complex CYP2D6 diplotype data into a patient’s phenotype to guide drug therapy and is at the core of all CYP2D6 gene/drug pair guidelines issued by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The AS, however, only explains a portion of the variability observed among individuals and ethnicities. In this review, we provide an overview of sources in addition to CYP2D6 genotype that contribute to the variability in CYP2D6-mediated drug metabolism and discuss other factors, genetic and non-genetic, that likely contribute to the observed variability in CYP2D6 enzymatic activity.
Collapse
|
19
|
Morgan ET, Dempsey JL, Mimche SM, Lamb TJ, Kulkarni S, Cui JY, Jeong H, Slitt AL. Physiological Regulation of Drug Metabolism and Transport: Pregnancy, Microbiome, Inflammation, Infection, and Fasting. Drug Metab Dispos 2018. [PMID: 29514828 DOI: 10.1124/dmd.117.079905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article is a report on a symposium entitled "Physiological Regulation of Drug Metabolism and Transport" sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2017 meeting in Chicago, IL. The contributions of physiologic and pathophysiological regulation of drug-metabolizing enzymes and transporters to interindividual variability in drug metabolism are increasingly recognized but in many cases are not well understood. The presentations herein discuss the phenomenology, consequences, and mechanism of such regulation. CYP2D6 transgenic mice were used to provide insights into the mechanism of regulation of this enzyme in pregnancy, via hepatocyte nuclear factor 4α, small heterodimer partner, and retinoids. Regulation of intestinal and hepatic drug-processing enzymes by the intestinal microbiota via tryptophan and its metabolites was investigated. The potential impact of parasitic infections on human drug metabolism and clearance was assessed in mice infected with Schistosoma mansoni or Plasmodium chabaudi chabaudi AS, both of which produced widespread and profound effects on murine hepatic drug-metabolizing enzymes. Finally, the induction of Abcc drug efflux transporters by fasting was investigated. This was demonstrated to occur via a cAMP, protein kinase A/nuclear factor-E2-related factor 2/Sirtuin 1 pathway via antioxidant response elements on the Abcc genes.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Joseph L Dempsey
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Sylvie M Mimche
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Tracey J Lamb
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Supriya Kulkarni
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Julia Yue Cui
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Hyunyoung Jeong
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Angela L Slitt
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| |
Collapse
|
20
|
Stevison F, Hogarth C, Tripathy S, Kent T, Isoherranen N. Inhibition of the all-trans Retinoic Acid ( atRA) Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous atRA Signaling. Drug Metab Dispos 2017; 45:846-854. [PMID: 28446509 DOI: 10.1124/dmd.117.075341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
All-trans retinoic acid (atRA), the active metabolite of vitamin A, is a ligand for several nuclear receptors and acts as a critical regulator of many physiologic processes. The cytochrome P450 family 26 (CYP26) enzymes are responsible for atRA clearance, and are potential drug targets to increase concentrations of endogenous atRA in a tissue-specific manner. Talarozole is a potent inhibitor of CYP26A1 and CYP26B1, and has shown some success in clinical trials. However, it is not known what magnitude of change is needed in tissue atRA concentrations to promote atRA signaling changes. The aim of this study was to quantify the increase in endogenous atRA concentrations necessary to alter atRA signaling in target organs, and to establish the relationship between CYP26 inhibition and altered atRA concentrations in tissues. Following a single 2.5-mg/kg dose of talarozole to mice, atRA concentrations increased up to 5.7-, 2.7-, and 2.5-fold in serum, liver, and testis, respectively, resulting in induction of Cyp26a1 in the liver and testis and Rar β and Pgc 1β in liver. The increase in atRA concentrations was well predicted from talarozole pharmacokinetics and in vitro data of CYP26 inhibition. After multiple doses of talarozole, a significant increase in atRA concentrations was observed in serum but not in liver or testis. This lack of increase in atRA concentrations correlated with an increase in CYP26A1 expression in the liver. The increased atRA concentrations in serum without a change in liver suggest that CYP26B1 in extrahepatic sites plays a key role in regulating systemic atRA exposure.
Collapse
Affiliation(s)
- Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Cathryn Hogarth
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Travis Kent
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.)
| |
Collapse
|
21
|
Ning M, Jeong H. High-Fat Diet Feeding Alters Expression of Hepatic Drug-Metabolizing Enzymes in Mice. Drug Metab Dispos 2017; 45:707-711. [PMID: 28442500 DOI: 10.1124/dmd.117.075655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/01/2023] Open
Abstract
Medical conditions accompanying obesity often require drug therapy, but whether and how obesity alters the expression of drug-metabolizing enzymes and thus drug pharmacokinetics is poorly defined. Previous studies have shown that high-fat diet (HFD) feeding and subsequent obesity in mice lead to altered expression of transcriptional regulators for cytochrome P450 CYP2D6, including hepatocyte nuclear factor 4α (HNF4α, a transcriptional activator of CYP2D6) and small heterodimer partner (SHP, a transcriptional repressor of CYP2D6). The objective of this study was to examine whether diet-induced obesity alters CYP2D6 expression by modulating HNF4α and SHP expression. Male CYP2D6-humanized transgenic (Tg-CYP2D6) mice were fed with HFD or matching control diet for 18 weeks. Hepatic mRNA expression of CYP2D6 decreased to a small extent in the HFD group (by 31%), but the differences in CYP2D6 protein and activity levels in hepatic S9 fractions were found insignificant between the groups. Although hepatic SHP expression did not differ between the groups, HNF4α mRNA and protein levels decreased by ∼30% in the HFD group. Among major mouse endogenous cytochrome P450 genes, Cyp1a2 and Cyp2c37 showed significant decreases in the HFD group, whereas Cyp2e1 expression did not differ between groups. Cyp2b10 and Cyp3a11 expression was higher in the HFD group, with corresponding 2.9-fold increases in hepatic CYP3A activities in HFD-fed mice. Together, these results suggest that obesity has minimal effects on CYP2D6-mediated drug metabolism, although it modulates the expression of mouse endogenous P450s in a gene-specific manner.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Pan X, Kent R, Won KJ, Jeong H. Cholic Acid Feeding Leads to Increased CYP2D6 Expression in CYP2D6-Humanized Mice. Drug Metab Dispos 2017; 45:346-352. [PMID: 28153841 DOI: 10.1124/dmd.116.074013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme, but the factors governing transcriptional regulation of its expression remain poorly understood. Based on previous reports of small heterodimer partner (SHP) playing an important role as a transcriptional repressor of CYP2D6 expression, here we investigated how a known upstream regulator of SHP expression, namely cholestasis triggered by cholic acid (CA) feeding in mice, can lead to altered CYP2D6 expression. To this end, CYP2D6-humanized (Tg-CYP2D6) mice were fed with a CA-supplemented or control diet for 14 days, and hepatic expression of multiple genes was examined. Unexpectedly, CA feeding led to insignificant changes in SHP mRNA but also to significant (2.8-fold) decreases in SHP protein levels. In silico analysis of the SHP gene regulatory region revealed a putative binding site for a microRNA, miR-142-3p. Results from luciferase reporter assays suggest that miR-142-3p targets the SHP gene. Hepatic expression of miR-142-3p was significantly increased in CA-fed mice (∼5-fold), suggesting a potential role of miR-142-3p in the regulation of SHP expression in cholestasis. The decreased SHP protein levels were accompanied by increased expression and activity of CYP2D6 in the liver of CA-fed mice. These results suggest potential roles of differential hepatic levels of bile acids in the transcriptional regulation of CYP2D6 expression.
Collapse
Affiliation(s)
- Xian Pan
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Rebecca Kent
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Kyoung-Jae Won
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Giri P, Delvadia P, Gupta L, Patel N, Trivedi P, Lad K, Patel HM, Srinivas NR. Consequences of daily corticosteroid dosing with or without pre-treatment with quinidine on the in vivo cytochrome P450 2D (CYP2D) enzyme in rats: effect on O-demethylation activity of dextromethorphan and expression levels of CYP2D1 mRNA. Xenobiotica 2017; 48:1-10. [DOI: 10.1080/00498254.2016.1275064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Prashant Delvadia
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Laxmikant Gupta
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Nirmal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Priyal Trivedi
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Krishna Lad
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| | - Hiren M. Patel
- Department of Molecular Pharmacology, Zydus Research Centre, Ahmedabad, India
| | - Nuggehally R. Srinivas
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, India and
| |
Collapse
|
24
|
Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Isoherranen N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 2016; 123:85-96. [PMID: 27836670 DOI: 10.1016/j.bcp.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Justine Chang
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Pan X, Ning M, Jeong H. Transcriptional Regulation of CYP2D6 Expression. Drug Metab Dispos 2016; 45:42-48. [PMID: 27698228 DOI: 10.1124/dmd.116.072249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023] Open
Abstract
CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism.
Collapse
Affiliation(s)
- Xian Pan
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Miaoran Ning
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Farooq M, Kelly EJ, Unadkat JD. CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids. Drug Metab Dispos 2016; 44:750-7. [PMID: 26965986 PMCID: PMC4851303 DOI: 10.1124/dmd.115.069229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Although cytochrome P450 (CYP) 2D6 has been widely considered to be noninducible on the basis of human hepatocyte studies, in vivo data suggests that it is inducible by endo- and xenobiotics. Therefore, we investigated if the experimental conditions routinely used in human hepatocyte studies may be a confounding factor in the lack of in vitro induction of CYP2D6. Sandwich cultured human hepatocytes (SCHH) were preincubated with or without dexamethasone (100 nM) for 72 hours before incubation with 1μM endogenous (cortisol or corticosterone) or exogenous (dexamethasone or prednisolone) corticosteroids. At 72 hours, CYP2D6 mRNA, protein, and activity were quantified by real-time quantitative polymerase chain reaction, quantitative proteomics, and formation of dextrorphan from dextromethorphan, respectively. In the absence of supplemental dexamethasone, CYP2D6 activity, mRNA, and protein were significantly and robustly (>10-fold) induced by all four corticosteroids. However, this CYP2D6 induction was abolished in cells preincubated with supplemental dexamethasone. These data show, for the first time, that CYP2D6 is inducible in vitro but the routine presence of 100 nM dexamethasone in the culture medium masks this induction. Our cortisol data are in agreement with the clinical observation that CYP2D6 is inducible during the third trimester of pregnancy when the plasma concentrations of cortisol increase to ∼1μM. These findings, if confirmed in vivo, have implications for predicting CYP2D6-mediated drug-drug interactions and call for re-evaluation of regulatory guidelines on screening for CYP2D6 induction by xenobiotics. Our findings also suggest that cortisol may be a causative factor in the in vivo induction of CYP2D6 during pregnancy.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, Tien YC, Jeong H, Pan X, Shireman LM, Tay-Sontheimer J, Lin YS. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab Dispos 2016; 44:343-51. [PMID: 26681736 PMCID: PMC4767386 DOI: 10.1124/dmd.115.067900] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals.
Collapse
Affiliation(s)
- Timothy S Tracy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yun-Chen Tien
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xian Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Laura M Shireman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Jessica Tay-Sontheimer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| |
Collapse
|
28
|
Tripathy S, Chapman JD, Han CY, Hogarth CA, Arnold SLM, Onken J, Kent T, Goodlett DR, Isoherranen N. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver. Mol Pharmacol 2016; 89:560-74. [PMID: 26921399 DOI: 10.1124/mol.116.103697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialβ-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1βand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedβ-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδrevealed that the enhancement of mitochondrial biogenesis andβ-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidβ-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sasmita Tripathy
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - John D Chapman
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Chang Y Han
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Cathryn A Hogarth
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Samuel L M Arnold
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Jennifer Onken
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Travis Kent
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - David R Goodlett
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| | - Nina Isoherranen
- Departments of Pharmaceutics (S.T., S.L.M.A., N.I.), Medicinal Chemistry (J.D.C., D.R.G.), and Diabetes Obesity Center for Excellence and the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (C.Y.H.), University of Washington, Seattle, Washington; School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington (C.A.H., J.O., T.K.); and School of Pharmacy, University of Maryland, Baltimore, Maryland (D.R.G.)
| |
Collapse
|
29
|
Ryu RJ, Eyal S, Easterling TR, Caritis SN, Venkataraman R, Hankins G, Rytting E, Thummel K, Kelly EJ, Risler L, Phillips B, Honaker MT, Shen DD, Hebert MF. Pharmacokinetics of metoprolol during pregnancy and lactation. J Clin Pharmacol 2015; 56:581-9. [PMID: 26461463 DOI: 10.1002/jcph.631] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023]
Abstract
The objective of this study was to evaluate the steady-state pharmacokinetics of metoprolol during pregnancy and lactation. Serial plasma, urine, and breast milk concentrations of metoprolol and its metabolite, α-hydroxymetoprolol, were measured over 1 dosing interval in women treated with metoprolol (25-750 mg/day) during early pregnancy (n = 4), mid-pregnancy (n = 14), and late pregnancy (n = 15), as well as postpartum (n = 9) with (n = 4) and without (n = 5) lactation. Subjects were genotyped for CYP2D6 loss-of-function allelic variants. Using paired analysis, mean metoprolol apparent oral clearance was significantly higher in mid-pregnancy (361 ± 223 L/h, n = 5, P < .05) and late pregnancy (568 ± 273 L/h, n = 8, P < .05) compared with ≥3 months postpartum (200 ± 131 and 192 ± 98 L/h, respectively). When the comparison was limited to extensive metabolizers (EMs), metoprolol apparent oral clearance was significantly higher during both mid- and late pregnancy (P < .05). Relative infant exposure to metoprolol through breast milk was <1.0% of maternal weight-adjusted dose (n = 3). Because of the large, pregnancy-induced changes in metoprolol pharmacokinetics, if inadequate clinical responses are encountered, clinicians who prescribe metoprolol during pregnancy should be prepared to make aggressive changes in dosage (dose and frequency) or consider using an alternate beta-blocker.
Collapse
Affiliation(s)
- Rachel J Ryu
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas R Easterling
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Steve N Caritis
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raman Venkataraman
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Hankins
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Linda Risler
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Brian Phillips
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Matthew T Honaker
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Danny D Shen
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
31
|
Zou A, Lehn S, Magee N, Zhang Y. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26504773 PMCID: PMC4618403 DOI: 10.11131/2015/101162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- An Zou
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah Lehn
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
32
|
Efectos de los inductores antiepilépticos en la neuropsicofarmacología: una cuestión ignorada. Parte II: cuestiones farmacológicas y comprensión adicional. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2015; 8:167-88. [DOI: 10.1016/j.rpsm.2014.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
33
|
Pan X, Jeong H. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice. Mol Pharmacol 2015; 88:106-12. [PMID: 25943116 DOI: 10.1124/mol.115.098822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.
Collapse
Affiliation(s)
- Xian Pan
- Departments of Pharmacy Practice (H.J.) and Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice (H.J.) and Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, University of Illinois, Chicago, Illinois
| |
Collapse
|
34
|
Zhang S, Pan X, Jeong H. GW4064, an agonist of farnesoid X receptor, represses CYP3A4 expression in human hepatocytes by inducing small heterodimer partner expression. Drug Metab Dispos 2015; 43:743-8. [PMID: 25725071 PMCID: PMC4407707 DOI: 10.1124/dmd.114.062836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (S.Z., X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Xian Pan
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (S.Z., X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (S.Z., X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Pan X, Lee YK, Jeong H. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner. Drug Metab Dispos 2015; 43:1002-7. [PMID: 25926433 DOI: 10.1124/dmd.115.064758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(-/-);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064.
Collapse
Affiliation(s)
- Xian Pan
- Departments of Pharmacy Practice (H.J.) and Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (Y.K.L.)
| | - Yoon-Kwang Lee
- Departments of Pharmacy Practice (H.J.) and Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (Y.K.L.)
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice (H.J.) and Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (Y.K.L.)
| |
Collapse
|
36
|
The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part I: A summary of the current state for clinicians. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.rpsmen.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part I: A summary of the current state for clinicians. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2015; 8:97-115. [PMID: 25745819 DOI: 10.1016/j.rpsm.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 12/18/2022]
Abstract
The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. This is part i of a comprehensive review on antiepileptic drug (AED) inducers using both mechanistic pharmacological and evidence-based medicine to provide practical recommendations to neurologists and psychiatrists concerning how to control for them. Carbamazepine, phenobarbital and phenytoin, are clinically relevant AED inducers; correction factors were calculated for studied induced drugs. These correction factors are rough simplifications for orienting clinicians, since there is great variability in the population regarding inductive effects. As new information is published, the correction factors may need to be modified. Some of the correction factors are so high that the drugs (e.g., bupropion, quetiapine or lurasidone) should not co-prescribed with potent inducers. Clobazam, eslicarbazepine, felbamate, lamotrigine, oxcarbazepine, rufinamide, topiramate, vigabatrin and valproic acid are grouped as mild inducers which may (i)be inducers only in high doses; (ii)frequently combine with inhibitory properties; and (iii)take months to reach maximum effects or de-induction, definitively longer than the potent inducers. Potent inducers, definitively, and mild inducers, possibly, have relevant effects in the endogenous metabolism of (i)sexual hormones, (ii) vitamin D, (iii)thyroid hormones, (iv)lipid metabolism, and (v)folic acid.
Collapse
|
38
|
Ning M, Koh KH, Pan X, Jeong H. Hepatocyte nuclear factor (HNF) 4α transactivation of cytochrome P450 (Cyp) 2d40 promoter is enhanced during pregnancy in mice. Biochem Pharmacol 2015; 94:46-52. [PMID: 25598084 DOI: 10.1016/j.bcp.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Abstract
We have recently reported that transactivation of cytochrome P450 (CYP) 2D6 promoter by hepatocyte nuclear factor (HNF) 4α is enhanced during pregnancy, and this is triggered in part by altered expression of small heterodimer partner (SHP) and Krüppel-like factor 9 (KLF9). The objective of this study is to determine whether this is conserved for mouse endogenous Cyp2d gene(s). Among the eight Cyp2d homologs of mouse we examined, only Cyp2d40 expression was found induced (by 6-fold) at term pregnancy as compared to pre-pregnancy level. In mice where hepatic Hnf4α was knocked-down, the pregnancy-mediated increase in Cyp2d40 expression was abrogated. Results from transient transfection, promoter reporter assays, and electrophoretic mobility shift assays indicated that HNF4α transactivates Cyp2d40 promoter via direct binding to -117/-105 of the gene. Chromatin immunoprecipitation assay showed a 2.3-fold increase in HNF4α recruitment to Cyp2d40 promoter during pregnancy. Results from mice treated with an SHP inducer (i.e., GW4064) and HepG2 cells co-transfected with KLF9 suggest that neither SHP nor KLF9 is involved in the increased HNF4α transactivation of Cyp2d40 promoter during pregnancy. Together, our results indicate that while the underlying molecular mechanism is different from that for CYP2D6, Cyp2d40 is induced during pregnancy through enhanced transactivation by HNF4α.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (MC 865), Chicago, IL 60612, USA.
| | - Kwi Hye Koh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (MC 886), Chicago, IL 60612, USA.
| | - Xian Pan
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (MC 865), Chicago, IL 60612, USA.
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (MC 865), Chicago, IL 60612, USA; Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (MC 886), Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Koh KH, Pan X, Zhang W, McLachlan A, Urrutia R, Jeong H. Krüppel-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice. Mol Pharmacol 2014; 86:727-35. [PMID: 25217496 DOI: 10.1124/mol.114.093666] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6), a major drug-metabolizing enzyme, is responsible for metabolism of approximately 25% of marketed drugs. Clinical evidence indicates that metabolism of CYP2D6 substrates is increased during pregnancy, but the underlying mechanisms remain unclear. To identify transcription factors potentially responsible for CYP2D6 induction during pregnancy, a panel of genes differentially expressed in the livers of pregnant versus nonpregnant CYP2D6-humanized (tg-CYP2D6) mice was compiled via microarray experiments followed by real-time quantitative reverse-transcription polymerase chain reaction(qRT-PCR) verification. As a result, seven transcription factors-activating transcription factor 5 (ATF5), early growth response 1 (EGR1), forkhead box protein A3 (FOXA3), JUNB, Krüppel-like factor 9 (KLF9), KLF10, and REV-ERBα-were found to be up-regulated in liver during pregnancy. Results from transient transfection and promoter reporter gene assays indicate that KLF9 itself is a weak transactivator of CYP2D6 promoter but significantly enhances CYP2D6 promoter transactivation by hepatocyte nuclear factor 4 (HNF4α), a known transcriptional activator of CYP2D6 expression. The results from deletion and mutation analysis of CYP2D6 promoter activity identified a KLF9 putative binding motif at -22/-14 region to be critical in the potentiation of HNF4α-induced transactivation of CYP2D6. Electrophoretic mobility shift assays revealed a direct binding of KLF9 to the putative KLF binding motif. Results from chromatin immunoprecipitation assay showed increased recruitment of KLF9 to CYP2D6 promoter in the livers of tg-CYP2D6 mice during pregnancy. Taken together, our data suggest that increased KLF9 expression is in part responsible for CYP2D6 induction during pregnancy via the potentiation of HNF4α transactivation of CYP2D6.
Collapse
Affiliation(s)
- Kwi Hye Koh
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| | - Xian Pan
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| | - Wei Zhang
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| | - Alan McLachlan
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| | - Raul Urrutia
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (K.H.K., H.J.), Department of Biopharmaceutical Sciences (X.P., H.J.), College of Pharmacy, and Department of Pediatrics (W.Z.) and Department of Microbiology and Immunology (A.M.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Laboratory of Epigenetics and Chromatin Dynamics, and Departments of Biology and Molecular Biology, Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota (R.U.)
| |
Collapse
|
40
|
Lee JK, Chung HJ, Fischer L, Fischer J, Gonzalez FJ, Jeong H. Human placental lactogen induces CYP2E1 expression via PI 3-kinase pathway in female human hepatocytes. Drug Metab Dispos 2014; 42:492-9. [PMID: 24408518 PMCID: PMC3965907 DOI: 10.1124/dmd.113.055384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/08/2014] [Indexed: 12/29/2022] Open
Abstract
The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes.
Collapse
Affiliation(s)
- Jin Kyung Lee
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois (J.K.L., H.J.C., L.F., J.F., H.J.); College of Pharmacy, Gyeongsang National University, Jinju, South Korea (H.J.C.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois (H.J.)
| | | | | | | | | | | |
Collapse
|