1
|
Long Y, Liu J, Wang Y, Guo H, Cui G. The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. Neural Regen Res 2025; 20:1309-1323. [PMID: 39075895 PMCID: PMC11624861 DOI: 10.4103/nrr.nrr-d-23-01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Yunfan Long
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
3
|
Qiu S, Dai H, Wang Y, Lv Y, Yu B, Yao C. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination. Front Cell Neurosci 2024; 18:1404463. [PMID: 38812792 PMCID: PMC11135050 DOI: 10.3389/fncel.2024.1404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause loss of sensory and motor function below the level of injury, posing a serious threat to human health and quality of life. One significant characteristic feature of pathological changes following injury in the nervous system is demyelination, which partially contributes to the long-term deficits in neural function after injury. The remyelination in the central nervous system (CNS) is mainly mediated by oligodendrocyte progenitor cells (OPCs). Numerous complex intracellular signaling and transcriptional factors regulate the differentiation process from OPCs to mature oligodendrocytes (OLs) and myelination. Studies have shown the importance of microRNA (miRNA) in regulating OPC functions. In this review, we focus on the demyelination and remyelination after SCI, and summarize the progress of miRNAs on OPC functions and remyelination, which might provide a potential therapeutic target for SCI treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
4
|
Wang J, Zhen Y, Yang J, Yang S, Zhu G. Recognizing Alzheimer's disease from perspective of oligodendrocytes: Phenomena or pathogenesis? CNS Neurosci Ther 2024; 30:e14688. [PMID: 38516808 PMCID: PMC10958408 DOI: 10.1111/cns.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Accumulation of amyloid beta, tau hyperphosphorylation, and microglia activation are the three highly acknowledged pathological factors of Alzheimer's disease (AD). However, oligodendrocytes (OLs) were also widely investigated in the pathogenesis and treatment for AD. AIMS We aimed to update the regulatory targets of the differentiation and maturation of OLs, and emphasized the key role of OLs in the occurrence and treatment of AD. METHODS This review first concluded the targets of OL differentiation and maturation with AD pathogenesis, and then advanced the key role of OLs in the pathogenesis of AD based on both clinic and basic experiments. Later, we extensively discussed the possible application of the current progress in the diagnosis and treatment of this complex disease. RESULTS Molecules involving in OLs' differentiation or maturation, including various transcriptional factors, cholesterol homeostasis regulators, and microRNAs could also participate in the pathogenesis of AD. Clinical data point towards the impairment of OLs in AD patients. Basic research further supports the central role of OLs in the regulation of AD pathologies. Additionally, classic drugs, including donepezil, edaravone, fluoxetine, and clemastine demonstrate their potential in remedying OL impairment in AD models, and new therapeutics from the perspective of OLs is constantly being developed. CONCLUSIONS We believe that OL dysfunction is one important pathogenesis of AD. Factors regulating OLs might be biomarkers for early diagnosis and agents stimulating OLs warrant the development of anti-AD drugs.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui ProvinceThe Second Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Jun Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- The First Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
5
|
Ying Y, Tao N, Zhang F, Wen X, Zhou M, Gao J. Thymosin β4 Regulates the Differentiation of Thymocytes by Controlling the Cytoskeletal Rearrangement and Mitochondrial Transfer of Thymus Epithelial Cells. Int J Mol Sci 2024; 25:1088. [PMID: 38256161 PMCID: PMC10816181 DOI: 10.3390/ijms25021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin β4 (Tβ4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tβ4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tβ4 on TECs' skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tβ4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4-CD8-) and CD4 single-positive cells (CD3+TCRβ+CD4+CD8-) thymocytes. This study suggests that Tβ4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tβ4's impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Y.); (N.T.); (F.Z.); (X.W.); (M.Z.)
| |
Collapse
|
6
|
Gudi V, Grieb P, Linker RA, Skripuletz T. CDP-choline to promote remyelination in multiple sclerosis: the need for a clinical trial. Neural Regen Res 2023; 18:2599-2605. [PMID: 37449595 DOI: 10.4103/1673-5374.373671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
7
|
Ghaiad HR, A Abd-Elmawla M, Gad ES, A Ahmed K, Abdelmonem M. Modulating miR-146a Expression by Hydrogen Sulfide Ameliorates Motor Dysfunction and Axonal Demyelination in Cuprizone-Induced Multiple Sclerosis. ACS Chem Neurosci 2023; 14:3047-3058. [PMID: 37585620 DOI: 10.1021/acschemneuro.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neuro-inflammatory and neuro-autoimmune disease. Although hydrogen sulfide has recently shown potential therapeutic impacts in different neurological diseases, its effects on MS are still obscure. MiR-146a is considered a vital target for different therapeutic approaches in treating MS. The present study is directed to explore the therapeutic effects of NaHS (hydrogen sulfide donor) on cuprizone-induced MS and to explore whether NaHS can mediate its effects via regulating miR-146a expression. A total of 28 male C57Bl/6 mice were divided into 4 groups; control, cuprizone-intoxicated, NaHS control (100 μmol/kg/day, i.p), and NaHS-treated groups. Intriguingly, NaHS treatment managed to improve locomotor coordination and curb neuronal inflammation and demyelination as evidenced by hematoxylin & eosin, and Luxol fast blue staining and the increased myelin basic protein (MBP) content. Additionally, NaHS reduced interleukin-1 receptor-associated kinase-1 (IRAK-1), nuclear transcription factor kappa B (NF-κB), interleukin (IL)-17, and IL-1β brain levels along with downregulation of miR-146a expression compared with the untreated cuprizone-intoxicated group. Furthermore, NaHS-treated animals revealed much less oxidative stress compared to the untreated animals as evidenced by elevated glutathione and reduced malondialdehyde contents. Altogether, the current work reported that NaHS could improve motor dysfunction and reduce axonal demyelination, oxidative stress, as well as neuro-inflammation in mice with MS. Thus, using H2S-releasing compounds could be a promising approach in MS treatment strategies. The mechanism of these beneficial effects may involve the regulation of miR-146a/NF-κB/IL-1β axis.
Collapse
Affiliation(s)
- Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Enas S Gad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia 45511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
9
|
Dubey H, Sharma RK, Krishnan S, Knickmeyer R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front Neurosci 2022; 16:1021721. [PMID: 36590303 PMCID: PMC9800937 DOI: 10.3389/fnins.2022.1021721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pregnant women constitute one of the most vulnerable populations to be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2 infection during pregnancy could negatively impact fetal brain development via multiple mechanisms. Accumulating evidence indicates that mother to fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does occur, there is a potential for neuroinvasion via immune cells, retrograde axonal transport, and olfactory bulb and lymphatic pathways. In the absence of maternal to fetal transmission, there is still the potential for negative neurodevelopmental outcomes as a consequence of disrupted placental development and function leading to preeclampsia, preterm birth, and intrauterine growth restriction. In addition, maternal immune activation may lead to hypomyelination, microglial activation, white matter damage, and reduced neurogenesis in the developing fetus. Moreover, maternal immune activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal (HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory cytokines can potentially alter epigenetic processes within the developing brain. In this review, we address each of these potential mechanisms. We propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a subset of pregnant women and that long-term studies are warranted.
Collapse
Affiliation(s)
- Harikesh Dubey
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suraj Krishnan
- Jacobi Medical Center, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Rebecca Knickmeyer
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States,Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States,*Correspondence: Rebecca Knickmeyer,
| |
Collapse
|
10
|
Ngo C, Kothary R. MicroRNAs in oligodendrocyte development and remyelination. J Neurochem 2022; 162:310-321. [PMID: 35536759 DOI: 10.1111/jnc.15618] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Oligodendrocytes are the glial cells responsible for the formation of myelin around axons of the central nervous system (CNS). Myelin is an insulating layer that allows electrical impulses to transmit quickly and efficiently along neurons. If myelin is damaged, as in chronic demyelinating disorders such as multiple sclerosis (MS), these impulses slow down. Remyelination by oligodendrocytes is often ineffective in MS, in part because of the failure of oligodendrocyte precursor cells (OPCs) to differentiate into mature, myelinating oligodendrocytes. The process of oligodendrocyte differentiation is tightly controlled by several regulatory networks involving transcription factors, intracellular signaling pathways, and extrinsic cues. Understanding the factors that regulate oligodendrocyte development is essential for the discovery of new therapeutic strategies capable of enhancing remyelination. Over the past decade, microRNAs (miRNAs) have emerged as key regulators of oligodendrocyte development, exerting effects on cell specification, proliferation, differentiation, and myelination. This article will review the role of miRNAs on oligodendrocyte biology and discuss their potential as promising therapeutic tools for remyelination.
Collapse
Affiliation(s)
- Clarissa Ngo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Program in Biomedical Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
12
|
Zhang J, Buller BA, Zhang ZG, Zhang Y, Lu M, Rosene DL, Medalla M, Moore TL, Chopp M. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol 2022; 347:113895. [PMID: 34653510 DOI: 10.1016/j.expneurol.2021.113895] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Injury of oligodendrocytes (OLs) induces demyelination, and patients with neurodegenerative diseases exhibit demyelination concomitantly with neurological deficit and cognitive impairment. Oligodendrocyte progenitor cells (OPCs) are present in the adult central nervous system (CNS), and they can proliferate, differentiate, and remyelinate axons after damage. However, remyelination therapies are not in clinical use. Multiple sclerosis (MS) is a major demyelinating disease in the CNS. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic promise in animal models and in clinical trials of MS. Exosomes are nanoparticles generated by nearly all cells and they mediate cell-cell communication by transferring cargo biomaterials. Here, we hypothesize that exosomes harvested from MSCs have a similar therapeutic effect on enhancement of remyelination as that of MSCs. In the present study we employed exosomes derived from rhesus monkey MSCs (MSC-Exo). Two mouse models of demyelination were employed: 1) experimental autoimmune encephalomyelitis (EAE), an animal model of MS; and 2) cuprizone (CPZ) diet model, a toxic demyelination model. MSC-Exo or PBS were intravenously injected twice a week for 4 weeks, starting on day 10 post immunization in EAE mice, or once a week for 2 weeks starting on the day of CPZ diet withdrawal. Neurological and cognitive function were tested, OPC differentiation and remyelination, neuroinflammation and the potential underlying mechanisms were investigated using immunofluorescent staining, transmission electron microscopy and Western blot. Data generated from the EAE model revealed that MSC-Exo cross the blood brain barrier (BBB) and target neural cells. Compared with the controls (p < 0.05), treatment with MSC-Exo: 1) significantly improved neurological outcome; 2) significantly increased the numbers of newly generated OLs (BrdU+/APC+) and mature OLs (APC+), and the level of myelin basic protein (MBP); 3) decreased amyloid-β precursor protein (APP)+ density; 4) decreased neuroinflammation by increasing the M2 phenotype and decreasing the M1 phenotype of microglia, as well as their related cytokines; 5) inhibited the TLR2/IRAK1/NFκB pathway. Furthermore, we confirmed that the MSC-Exo treatment significantly improved cognitive function, promoted remyelination, increased polarization of M2 phenotype and blocked TLR2 signaling in the CPZ model. Collectively, MSC-Exo treatment promotes remyelination by both directly acting on OPCs and indirectly by acting on microglia in the demyelinating CNS. This study provides the cellular and molecular basis for this cell-free exosome therapy on remyelination and modulation of neuroinflammation in the CNS, with great potential for treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America.
| | - Benjamin A Buller
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Tara L Moore
- Department of Anatomy and Neurobiology, Boston University, Boston, Massachusetts, United States of America; Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America; Department of Physics, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
13
|
Wang P, Ma K, Yang L, Zhang G, Ye M, Wang S, Wei S, Chen Z, Gu J, Zhang L, Niu J, Tao S. Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study. Int J Biol Macromol 2021; 193:1457-1470. [PMID: 34742844 DOI: 10.1016/j.ijbiomac.2021.10.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy are unclear. Here, we predicted the molecular mechanisms regulating demyelination in a rat model of lithium-pilocarpine hydrochloride-induced epilepsy. We identified DGKA/Mboat2/Inpp5j and NOS/Keratin 28 as the main target molecules that regulate demyelination via glycerolipid and glycerophospholipid metabolism, phosphatidylinositol signaling, and estrogen signaling in demyelinated forebrain slice cultures (FSCs). In seizure-like FCSs, the actin cytoskeleton was regulated by Cnp and MBP via Pak4/Tmsb4x (also known as Tβ4) and Kif5c/Kntc1. Tβ4 possibly prevented OPC differentiation and maturation and inhibited MBP phosphorylation via the p38MAPK/ERK1/JNK1 pathway. The MAPK signaling pathway was more likely activated in seizure-like FCSs than in demyelinated FCSs. pMBP expression was decreased in the hippocampus of lithium-pilocarpine hydrochloride-induced acute epilepsy rats. The expression of remyelination-related factors was suppressed in the hippocampus and corpus callosum in lithium-pilocarpine hydrochloride-induced epilepsy rats. These findings suggest that the actin cytoskeleton, Tβ4, and MAPK signaling pathways regulate the decrease in pMBP in the hippocampus in a rat model of epilepsy. Our results indicate that regulating the actin cytoskeleton, Tβ4, and MAPK signaling pathways may facilitate the prevention of demyelination in IE.
Collapse
Affiliation(s)
- Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China.
| | - Kang Ma
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Guodong Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Mengyi Ye
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan 750004, Ningxia, China
| | - Siqi Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuangshuang Wei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zhangping Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Jinghai Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Lianxiang Zhang
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China.
| | - Sun Tao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
14
|
Yoon HJ, Oh YL, Ko EJ, Kang A, Eo WK, Kim KH, Lee JY, Kim A, Chun S, Kim H, Ock MS, Cha HJ. Effects of thymosin β4-derived peptides on migration and invasion of ovarian cancer cells. Genes Genomics 2021; 43:987-993. [PMID: 34170491 DOI: 10.1007/s13258-021-01127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Thymosin β4 (Tβ4) is a highly conserved actin binding protein associated with the metastatic potential of tumor cells by stimulating cell migration. The role of Tβ4 and its derived fragment peptides in migration of ovarian cancer cells has not been studied. OBJECTIVE To analyze the effects of Tβ4 and its derived fragment peptides on ovarian cancer cell migration and invasion, we applied Tβ4 and three Tβ4-derived synthetic peptides to SKOV3 ovarian cancer cells. METHOD The migration and invasion of SKOV3 cells treated with Tβ4(1-43), Tβ4(1-15), Tβ4(12-26), Tβ4(23-), and untreated control were analyzed by in vitro migration and invasion assay with transwell plate. Cell proliferation assay was conducted to identify the effect of Tβ4 and its derived peptide on SKOV3 cell proliferation. The expression of Tβ4 related proteins related with cell proliferation was analyzed by Western blot after treatment with Tβ4 and its derived peptides. RESULTS Cell migration and invasion were significantly increased in Tβ4 peptide-treated SKOV3 cells compared with untreated control. All three Tβ4-derived fragment peptides including those without an actin binding site significantly stimulated migration and invasion of SKOV3 cells. Tβ4 and its derived peptide significantly stimulated SKOV3 cell proliferation and up-regulated the expression of RACK-1 protein. CONCLUSIONS The Tβ4 peptide and all of its derived fragment peptides including those without an actin binding motif stimulate migration and invasion of SKOV3 ovarian cancer cells. All peptides significantly increased RACK-1 expression and cell proliferation of SKOV3 cells. These results suggest that Tβ4 stimulates migration and invasion of SKOV3 cells by stimulation of cell proliferation through up-regulation of RACK-1 protein.
Collapse
Affiliation(s)
- Hyung Joon Yoon
- Department of Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, South Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, South Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Ahyun Kang
- Department of Biochemistry, Kosin University College of Medicine, Busan, South Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan, South Korea
| | - Ji Young Lee
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, South Korea
| | - Ari Kim
- Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, North Chicago, IL, USA
| | - Sungwook Chun
- Department of Obstetrics and Gynecology, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Hallym University Medical Center, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|
15
|
Feng T, Yamashita T, Sasaki R, Tadokoro K, Matsumoto N, Hishikawa N, Abe K. Protective effects of edaravone on white matter pathology in a novel mouse model of Alzheimer's disease with chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2021; 41:1437-1448. [PMID: 33106078 PMCID: PMC8142121 DOI: 10.1177/0271678x20968927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White matter lesions (WMLs) caused by cerebral chronic hypoperfusion (CCH) may contribute to the pathophysiology of Alzheimer's disease (AD). However, the underlying mechanisms and therapeutic approaches have yet to be totally identified. In the present study, we investigated a potential therapeutic effect of the free radical scavenger edaravone (EDA) on WMLs in our previously reported novel mouse model of AD (APP23) plus CCH with motor and cognitive deficits. Relative to AD with CCH mice at 12 months (M) of age, EDA strongly improved CCH-induced WMLs in the corpus callosum of APP23 mice at 12 M by improving the disruption of white matter integrity, enhancing the proliferation of oligodendrocyte progenitor cells, attenuating endothelium/astrocyte unit dysfunction, and reducing neuroinflammation and oxidative stress. The present study demonstrates that the long-term administration of EDA may provide a promising therapeutic approach for WMLs in AD plus CCH disease with cognitive deficits.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Ectopic Expression of Human Thymosin β4 Confers Resistance to Legionella pneumophila during Pulmonary and Systemic Infection in Mice. Infect Immun 2021; 89:IAI.00735-20. [PMID: 33468581 DOI: 10.1128/iai.00735-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tβ4-overexpressing transgenic (Tg) mice to investigate the role of Tβ4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tβ4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tβ4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tβ4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tβ4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1β and TNF-α proteins was also reduced in Tβ4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tβ4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tβ4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tβ4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tβ4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.
Collapse
|
18
|
Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep 2021; 11:2149. [PMID: 33495500 PMCID: PMC7835236 DOI: 10.1038/s41598-020-77881-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The myxozoan parasite, Tetracapsuloidesbryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T.bryosalmonae-host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T.bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
Collapse
|
19
|
Zhang GH, Murthy KD, Binti Pare R, Qian YH. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gui-hong Zhang
- School of Medicine, Xi’an International University, Xi’an, China
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Krishna Dilip Murthy
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Yi-hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
20
|
Fan W, Liang C, Ou M, Zou T, Sun F, Zhou H, Cui L. MicroRNA-146a Is a Wide-Reaching Neuroinflammatory Regulator and Potential Treatment Target in Neurological Diseases. Front Mol Neurosci 2020; 13:90. [PMID: 32581706 PMCID: PMC7291868 DOI: 10.3389/fnmol.2020.00090] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Progressive functional deterioration and loss of neurons underlies neurological diseases and constitutes an important cause of disability and death worldwide. The causes of various types of neurological diseases often share several critical nerve-related cellular mechanisms and pathological features, particularly the neuroinflammatory response in the nervous system. A rapidly growing body of evidence indicates that various microRNAs play pivotal roles in these processes in neurological diseases and might be viable therapeutic targets. Among these microRNAs, microRNA-146a (miR-146a) stands out due to the rapid increase in recent literature on its mechanistic involvement in neurological diseases. In this review, we summarize and highlight the critical role of miR-146a in neurological diseases. MiR-146a polymorphisms are associated with the risk of neurological disease. Alterations in miR-146a expression levels are crucial events in the pathogenesis of numerous neurological diseases that are spatially and temporally diverse. Additionally, the target genes of miR-146a are involved in the regulation of pathophysiological processes in neurological diseases, particularly the neuroinflammatory response. In summary, miR-146a mainly plays a critical role in neuroinflammation during the progression of neurological diseases and might be a prospective biomarker and therapeutic target. Understanding the mechanisms by which miR-146a affects the neuroinflammatory response in different neurological injuries, different cell types, and even different stages of certain neurological diseases will pave the way for its use as a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Zou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Yuan F, Zhang S, Xie W, Yang S, Lin T, Chen X. Effect and mechanism of miR-146a on malignant biological behaviors of lung adenocarcinoma cell line. Oncol Lett 2020; 19:3643-3652. [PMID: 32382320 PMCID: PMC7202298 DOI: 10.3892/ol.2020.11474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to assess the expression of microRNA-146a (miR-146a) in human lung adenocarcinoma cells, its effect on cellular behaviors, and the underlying molecular mechanisms. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure miR-146a expression in the human normal lung epithelial cell line, BEAS-2B, and human lung adenocarcinoma cell lines, A549, PC-9 and H1299, to determine whether miR-146a acts as an oncogene or anti-oncogene. miR-146a mimics were transfected into target cells to observe the proliferation, apoptosis, invasion and migration of human lung adenocarcinoma cells. The target genes of miR-146a were predicted using bioinformatics analysis, and binding sites were validated by dual-luciferase reporter assay. Target gene expression at the mRNA and protein levels was measured by RT-qPCR and western blot analysis, respectively. The expression levels of miR-146a in human lung adenocarcinoma cell lines were lower than its expression in BEAS-2B (P<0.01). A549 cell line is a EGFR wild-type lung adenocarcinoma cell line, which is also the most widely studied in NSCLC, and therefore this was chosen as the target cell line for further investigation. Overexpression of miR-146a in A549 cells can inhibit cell proliferation (P<0.05), promote apoptosis (P<0.05), and reduce the cells' migratory ability (P<0.01). Bioinformatics prediction indicated that interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) are the target genes of miR-146a. Dual-luciferase reporter assay showed that miR-146a could specifically bind to 3′-untranslated regions of IRAK1 and TRAF6. The protein and mRNA levels of IRAK1 and TRAF6 were significantly downregulated after miR-146a overexpression in A549 cells (P<0.01). The results of this study demonstrated that the expression of miR-146a in human lung adenocarcinoma cells was significantly lower than in normal lung epithelial cells, indicating that miR-146a acts as an anti-oncogene. miR-146a suppresses the proliferation and migration of human lung adenocarcinoma cells by downregulating the expression of IRAK1 and TRAF6.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Department of Respiratory, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, P.R. China
| | - Suyun Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wenying Xie
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
22
|
Shomali N, Baradaran B, Deljavanghodrati M, Akbari M, Hemmatzadeh M, Mohammadi H, Jang Y, Xu H, Sandoghchian Shotorbani S. A new insight into thymosin β4, a promising therapeutic approach for neurodegenerative disorders. J Cell Physiol 2019; 235:3270-3279. [PMID: 31612500 DOI: 10.1002/jcp.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Thymosin β4 (Tβ4), a G-actin-sequestering secreted peptide, improves neurovascular remodeling and central nervous system plasticity, which leads to neurological recovery in many neurological diseases. Inflammatory response adjustment and tissue inflammation consequences from neurological injury are vital for neurological recovery. The innate or nonspecific immune system is made of different components. The Toll-like receptor pro-inflammatory signaling pathway, which is one of these components, regulates tissue injury. The main component of the Toll-like/IL-1 receptor signaling pathway, which is known as IRAK1, can be regulated by miR-146a and regulates NF-κB expression. Due to the significant role of Tβ4 in oligodendrocytes, neurons, and microglial cells in neurological recovery, it is suggested that Tβ4 regulates the Toll-like receptor (TLR) pro-inflammatory signaling pathway by upregulating miR-146a in neurological disorders. However, further investigations on the role of Tβ4 in regulating the expression of miR146a and TLR signaling pathway in the immune response adjustment in neurological disorders provides an insight into mechanisms of action and the possibility of Tβ4 therapeutic effect enhancement.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Yue Jang
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Göttle P, Förster M, Weyers V, Küry P, Rejdak K, Hartung HP, Kremer D. An unmet clinical need: roads to remyelination in MS. Neurol Res Pract 2019; 1:21. [PMID: 33324887 PMCID: PMC7650135 DOI: 10.1186/s42466-019-0026-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background In the central nervous system (CNS) myelin sheaths stabilize, protect, and electrically insulate axons. However, in demyelinating autoimmune CNS diseases such as multiple sclerosis (MS) these sheaths are destroyed which ultimately leads to neurodegeneration. The currently available immunomodulatory drugs for MS effectively control the (auto)inflammatory facets of the disease but are unable to regenerate myelin by stimulating remyelination via oligodendroglial precursor cells (OPCs). Accordingly, there is broad consensus that the implementation of new regenerative approaches constitutes the prime goal for future MS pharmacotherapy. Main text Of note, recent years have seen several promising clinical studies investigating the potential of substances and monoclonal antibodies such as, for instance, clemastine, opicinumab, biotin, simvastatin, quetiapin and anti-GNbAC1. However, beyond these agents which have often been re-purposed from other medical indications there is a multitude of further molecules influencing OPC homeostasis. Here, we therefore discuss these possibly beneficial regulators of OPC differentiation and assess their potential as new pharmacological targets for myelin repair in MS. Conclusion Remyelination remains the most important therapeutic treatment goal in MS in order to improve clinical deficits and to avert neurodegeneration. The promising molecules presented in this review have the potential to promote remyelination and therefore warrant further translational and clinical research.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Zhang J, Zhang ZG, Lu M, Zhang Y, Shang X, Chopp M. MiR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis. Neurobiol Dis 2019; 125:154-162. [DOI: 10.1016/j.nbd.2019.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
|
25
|
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol 2019; 10:227. [PMID: 30984006 PMCID: PMC6447777 DOI: 10.3389/fphys.2019.00227] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
In human beings the immature brain is highly plastic and depending on the stage of gestation is particularly vulnerable to a range of insults that if sufficiently severe, can result in long-term motor, cognitive and behavioral impairment. With improved neonatal care, the incidence of major motor deficits such as cerebral palsy has declined with prematurity. Unfortunately, however, milder forms of injury characterized by diffuse non-cystic white matter lesions within the periventricular region and surrounding white matter, involving loss of oligodendrocyte progenitors and subsequent axonal hypomyelination as the brain matures have not. Existing therapeutic options for treatment of preterm infants have proved inadequate, partly owing to an incomplete understanding of underlying post-injury cellular and molecular changes that lead to poor neurodevelopmental outcomes. This has reinforced the need to improve our understanding of brain plasticity, explore novel solutions for the development of protective strategies, and identify biomarkers. Compelling evidence exists supporting the involvement of microRNAs (miRNAs), a class of small non-coding RNAs, as important post-transcriptional regulators of gene expression with functions including cell fate specification and plasticity of synaptic connections. Importantly, miRNAs are differentially expressed following brain injury, and can be packaged within exosomes/extracellular vesicles, which play a pivotal role in assuring their intercellular communication and passage across the blood-brain barrier. Indeed, an increasing number of investigations have examined the roles of specific miRNAs following injury and regeneration and it is apparent that this field of research could potentially identify protective therapeutic strategies to ameliorate perinatal brain injury. In this review, we discuss the most recent findings of some important miRNAs in relation to the development of the brain, their dysregulation, functions and regulatory roles following brain injury, and discuss how these can be targeted either as biomarkers of injury or neuroprotective agents.
Collapse
Affiliation(s)
- Kenta Hyeon Tae Cho
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Departments of Molecular Medicine and Pathology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends Neurosci 2019; 42:263-277. [PMID: 30770136 DOI: 10.1016/j.tins.2019.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin.
Collapse
Affiliation(s)
- Benayahu Elbaz
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Brian Popko
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Morris DC, Zhang ZG, Chopp M. Thymosin β4 for the treatment of acute stroke: neurorestorative or neuroprotective? Expert Opin Biol Ther 2019; 18:149-158. [PMID: 30063858 DOI: 10.1080/14712598.2018.1484100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Thymosin β4 (Tβ4) is a 5K peptide which influences cellular migration by inhibiting organization of the actin-cytoskeleton. Treatment of acute stroke presently involves use of rt-PA and/or endovascular treatment with thrombectomy, both of which have time limitations. Therefore, development of a treatment beyond these times is necessary as most stroke patients present beyond these time limits. A drug which could be administered within 24 h from symptom onset would provide substantial benefit. AREAS COVERED This review summarizes the data and results of two in-vivo studies testing Tβ4 in an embolic stroke model of young and aged rats. In addition, we describe in-vitro investigations of the neurorestorative and neuroprotective properties of Tβ4 in a variety of neuroprogenitor and oligoprogenitor cell models. EXPERT OPINION Tβ4 acts as a neurorestorative agent when employed in a young male rat model of embolic stroke while in an aged model it acts a neuroprotectant. However evaluation of Tβ4 as a treatment of stroke requires further preclinical evaluation in females and in males and females with comorbidities such as, hypertension and diabetes in models of embolic stroke to further define the mechanism of action and potential as a treatment of stroke in humans.
Collapse
Affiliation(s)
- Daniel C Morris
- a Department of Emergency Medicine , Henry Ford Health Systems , Detroit , MI , USA
| | - Zheng G Zhang
- b Department of Neurology , Henry Ford Health Systems , Detroit , MI , USA
| | - Michael Chopp
- b Department of Neurology , Henry Ford Health Systems , Detroit , MI , USA.,c Department of Physics , Oakland University , Rochester , MI , USA
| |
Collapse
|
28
|
Pardon MC. Anti-inflammatory potential of thymosin β4 in the central nervous system: implications for progressive neurodegenerative diseases. Expert Opin Biol Ther 2019; 18:165-169. [PMID: 30063850 DOI: 10.1080/14712598.2018.1486817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The actin-sequestering thymosin beta4 (Tβ4) is the most abundant member of the β-thymosins, and is widely expressed in the central nervous system (CNS), but its functions in the healthy and diseased brain are poorly understood. The expression of Tβ4 in neurons and microglia, the resident immune cells of the brain, suggests that it can play a role in modulating behavioral processes and immunological mechanisms in the brain. The purpose of this review is to shed lights on the role of Tβ4 in CNS function and diseases without antecedent autoimmune inflammation or injury, and to question its therapeutic potential for neurodegenerative disorders such as Alzheimer's disease. AREAS COVERED This review presents the evidence supporting a role for Tβ4 in behaviors that are affected in CNS disorders, as well as studies linking Tβ4 upregulation in microglia to neuroinflammatory processes associated with these disorders. Finally, the implication of Tβ4 in the process of microglial activation and the mechanisms underlying its ability to suppress pro-inflammatory signaling in microglia are discussed. EXPERT OPINION Tβ4 has the potential to control inflammatory processes in the brain, opening avenues for new therapeutic applications to a range of neurodegenerative conditions.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- a School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Queens Medical Centre , The University of Nottingham Medical School , Nottingham , UK
| |
Collapse
|
29
|
Severa M, Zhang J, Giacomini E, Rizzo F, Etna MP, Cruciani M, Garaci E, Chopp M, Coccia EM. Thymosins in multiple sclerosis and its experimental models: moving from basic to clinical application. Mult Scler Relat Disord 2019; 27:52-60. [PMID: 30317071 PMCID: PMC7104151 DOI: 10.1016/j.msard.2018.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) afflicts more than 2.5 million individuals worldwide and this number is increasing over time. Within the past years, a great number of disease-modifying treatments have emerged; however, efficacious treatments and a cure for MS await discovery. Thymosins, soluble hormone-like peptides produced by the thymus gland, can mediate immune and non-immune physiological processes and have gained interest in recent years as therapeutics in inflammatory and autoimmune diseases. METHODS Pubmed was searched with no time constraints for articles using a combination of the keywords "thymosin/s" or "thymus factor/s" AND "multiple sclerosis", mesh terms with no language restriction. RESULTS Here, we review the state-of-the-art on the effects of thymosins on MS and its experimental models. In particular, we describe what is known in this field on the roles of thymosin-α1 (Tα1) and -β4 (Tβ4) as potential anti-inflammatory as well as neuroprotective and remyelinating molecules and their mechanisms of action. CONCLUSION Based on the data that Tα1 and Tβ4 act as anti-inflammatory molecules and as inducers of myelin repair and neuronal protection, respectively, a possible therapeutic application in MS for Tα1 and Tβ4 alone or combined with other approved drugs may be envisaged. This approach is reasonable in light of the current clinical usage of Tα1 and data demonstrating the safety, tolerability and efficacy of Tβ4 in clinical practice.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jing Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena Paola Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Garaci
- University San Raffaele and IRCCS San Raffaele, Rome, Italy
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA,Department of Physics, Oakland University, Rochester, MI, USA
| | | |
Collapse
|
30
|
Wang L, Chopp M, Lu X, Szalad A, Jia L, Liu XS, Wu KH, Lu M, Zhang ZG. miR-146a mediates thymosin β4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice. Brain Res 2018; 1707:198-207. [PMID: 30500399 DOI: 10.1016/j.brainres.2018.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Diabetes induces neurovascular dysfunction leading to peripheral neuropathy. MicroRNAs (miRNAs) affect many biological processes and the development of diabetic peripheral neuropathy. In the present study, we investigated whether thymosin-β4 (Tβ4) ameliorates diabetic peripheral neuropathy and whether miR-146a mediates the effect of Tβ4 on improved neurovascular function. Male Type II diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice at age 20 weeks were treated with Tβ4 for 8 consecutive weeks, and db/db mice treated with saline were used as a control group. Compared to non-diabetic mice, diabetic mice exhibited substantially reduced miR-146a expression, and increased IL-1R-associated kinase-1 (IRAK1), tumor necrosis factor (TNFR)-associated factor 6 (TRAF6) levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activity in sciatic nerve tissues. Treatment of diabetic mice with Tβ4 significantly elevated miR-146a levels and overcame the effect of diabetes on these proteins. Tβ4 treatment substantially improved motor and sensory conduction velocity of the sciatic nerve, which was associated with improvements in sensory function. Tβ4 treatment significantly increased intraepidermal nerve fiber density and augmented local blood flow and the density of fluorescein isothiocyanate (FITC)-dextran perfused vessels in the sciatic nerve tissue. In vitro, treatment of dorsal root ganglion (DRG) neurons and mouse dermal endothelial cells (MDEs) with Tβ4 significantly increased axonal outgrowth and capillary-like tube formation, whereas blocking miR-146a attenuated Tβ4-induced axonal outgrowth and capillary tube formation, respectively. Our data indicate that miR-146a may mediate Tβ4-induced neurovascular remodeling in diabetic mice, by suppressing pro-inflammatory signals.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States; Department of Physics, Oakland University, Rochester, MI 48309, United States
| | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - LongFei Jia
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Kuan-Han Wu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| |
Collapse
|
31
|
Abstract
Moonlighting proteins exhibit multiple activities in different cellular compartments, and their abnormal regulation could play an important role in many diseases. To date, many proteins have been identified with moonlighting activity, and more such proteins are being gradually identified. Among the proteins that possess moonlighting activity, several secreted proteins exhibit multiple activities in different cellular locations, such as the extracellular matrix, nucleus, and cytoplasm. While acute inflammation starts rapidly and generally disappears in a few days, chronic inflammation can last for months or years. This is generally because of the failure to eliminate the cause of inflammation, along with repeated exposure to the inflammatory agent. Chronic inflammation is now considered as an overwhelming burden to the general wellbeing of patients and noted as an underlying cause of several diseases. Moonlighting proteins can contribute to the process of chronic inflammation; therefore, it is imperative to overview some proteins that exhibit multiple functions in inflammatory diseases. In this review, we will focus on inflammation, particularly unravelling several well-known secreted proteins with multiple functions in different cellular locations.
Collapse
Affiliation(s)
- Joo Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
32
|
Inhibition of acetaminophen-induced hepatotoxicity in mice by exogenous thymosinβ4 treatment. Int Immunopharmacol 2018; 61:20-28. [PMID: 29793165 DOI: 10.1016/j.intimp.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/12/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To study the effects of exogenous thymosinβ4 (Tβ4) treatment in acetaminophen (APAP)-induced hepatotoxicity. METHODS Liver injury was induced in mice by a single intraperitoneal injection of APAP (500 mg/kg). Exogenous Tβ4 was intraperitoneally administrated at 0 h, 2 h and 4 h after APAP injection. Chloroquine (CQ) (60 mg/kg) was intraperitoneally injected 2 h before APAP administration to inhibit autophagy. Six hours after APAP injection liver injury was evaluated by histological examinations, biochemical measurements and enzyme linked immunosorbent assay (ELISAs). Western blots were performed to detect proteins expression. RESULTS Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly increased 6 h after APAP administration, but were significantly reduced by co-administration of Tβ4. Histological examinations demonstrated that Tβ4 reduced necrosis and inflammation induced by APAP. Immunofluorescence showed that Tβ4 suppressed APAP-induced translocation of high mobility group box-1 protein (HMGB1) from the nucleus to cytosol and intercellular space. Hepatic glutathione (GSH) depletion, malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) activities induced by APAP were all attenuated by Tβ4. APAP-induced increases in hepatic nuclear factor-κB (NF-κB) p65 protein expression and inflammatory cytokines production including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were reduced by Tβ4 treatment. Increased LC3 and p62 proteins in the liver tissues of APAP-treated mice were decreased by Tβ4 treatment, which indicated the enhancement of autophagy flux by Tβ4. Furthermore, inhibiting autophagy by CQ abrogated the protective effects of Tβ4 against APAP hepatotoxicity. CONCLUSION Exogenous Tβ4 treatment exerts protective effects against APAP-induced hepatotoxicity in mice. The underneath molecular mechanisms may involve autophagy enhancement and inhibition of oxidative stress by Tβ4.
Collapse
|
33
|
Vasilopoulou E, Riley PR, Long DA. Thymosin-β4: A key modifier of renal disease. Expert Opin Biol Ther 2018; 18:185-192. [DOI: 10.1080/14712598.2018.1473371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Elisavet Vasilopoulou
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A. Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
34
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
35
|
Martin NA, Molnar V, Szilagyi GT, Elkjaer ML, Nawrocki A, Okarmus J, Wlodarczyk A, Thygesen EK, Palkovits M, Gallyas F, Larsen MR, Lassmann H, Benedikz E, Owens T, Svenningsen AF, Illes Z. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice. Front Immunol 2018; 9:490. [PMID: 29593734 PMCID: PMC5857529 DOI: 10.3389/fimmu.2018.00490] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
Background The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. Methods MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. Results miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and Iba1+ macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice. Conclusion During demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination.
Collapse
Affiliation(s)
- Nellie A Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Gabor T Szilagyi
- Department of Biochemistry and Clinical Chemistry, University of Pécs, Pécs, Hungary
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Justyna Okarmus
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Eva K Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank, Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Clinical Chemistry, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eirikur Benedikz
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Asa F Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Xiao D, Qu Y, Pan L, Li X, Mu D. MicroRNAs participate in the regulation of oligodendrocytes development in white matter injury. Rev Neurosci 2018; 29:151-160. [DOI: 10.1515/revneuro-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
AbstractWhite matter injury (WMI) often results in cognitive impairment, behavioral disorders, and cerebral palsy and thus imposes a tremendous burden on society. The cells in brain white matter mainly comprise oligodendrocytes (OLs), astrocytes, and microglia. The dysregulation of OLs development is the pathological hallmark of WMI. Recent studies have demonstrated that microRNAs (miRNAs or miRs) participate in the regulation of OLs development, and the dysregulation of this process represents the pathogenesis of WMI. This review summarizes the progress made in this field that will help clinicians and researchers understand the molecular etiology of WMI and develop miRNAs as new agents for the prevention and treatment of WMI.
Collapse
|
37
|
Jiang Y, Han T, Zhang ZG, Li M, Qi FX, Zhang Y, Ji YL. Potential role of thymosin beta 4 in the treatment of nonalcoholic fatty liver disease. Chronic Dis Transl Med 2017; 3:165-168. [PMID: 29063072 PMCID: PMC5643779 DOI: 10.1016/j.cdtm.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
As a result of increased prevalence of obesity worldwide, non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic liver disease. Although most NAFLD cases remain benign, some progress to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Therefore, treatment should be considered for NAFLD patients who are likely to progress to nonalcoholic steatohepatitis (NASH) or fibrosis. Thymosin beta 4 (Tβ4), a G-actin sequestering peptide, regulates actin polymerization in mammalian cells. In addition, studies have reported anti-inflammatory, insulin-sensitizing, and anti-fibrotic effects of Tβ4. However, no research has been done to investigate the effects of Tβ4 on NAFLD. Based on the findings above mentioned, we hypothesize that Tβ4 may represent an effective treatment for NAFLD.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.,Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Zhi-Guang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Feng-Xiang Qi
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying-Lan Ji
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
38
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
39
|
Zhang J, Zhang ZG, Lu M, Wang X, Shang X, Elias SB, Chopp M. MiR-146a promotes remyelination in a cuprizone model of demyelinating injury. Neuroscience 2017; 348:252-263. [PMID: 28237816 DOI: 10.1016/j.neuroscience.2017.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
The death of mature oligodendrocytes (OLs) which are the sole myelinating cells of the central nervous system (CNS), leads to demyelination and functional deficits. Currently, there is lack of effective remyelination therapies for patients with demyelinating diseases. MicroRNAs (miRNAs) mediate OL function. We hypothesized that miR-146a, by inactivating interleukin-1 receptor-associated kinase 1 (IRAK1), promotes differentiation of oligodendrocyte progenitor cells (OPCs) and thereby enhances remyelination. To test this hypothesis, a demyelination model induced by a cuprizone (CPZ) diet was employed, in which C57BL/6J mice were fed with a CPZ diet for 5weeks. After termination of CPZ diet, the mice were randomly treated with continuous infusion of miR-146a mimics or mimic controls into the corpus callosum for 7days. Compared to the mimic control, infusion of miR-146a mimics facilitated remyelination assessed by increased myelin basic proteins in the corpus callosum, which was associated with augmentation of newly generated mature OLs. Infusion of miR-146a mimics also substantially elevated miR-146a levels in the corpus callosum and fluorescently tagged miR-146a mimics were mainly detected in OPCs. Western blot and double immmunofluorescent staining analysis showed that the miR-146a treatment considerably reduced IRAK1 protein levels and the number of IRAK1-positive cells, respectively. Collectively, these data indicate that exogenous miR-146a enhances remyelination, possibly by promoting OPCs to differentiate into myelinated OLs via targeting IRAK1.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States.
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Mei Lu
- Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Xia Shang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Stanton B Elias
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States; Department of Physics, Oakland University, Rochester, MI 48309, United States
| |
Collapse
|
40
|
Zhang X, Ye ZH, Liang HW, Ren FH, Li P, Dang YW, Chen G. Down-regulation of miR-146a-5p and its potential targets in hepatocellular carcinoma validated by a TCGA- and GEO-based study. FEBS Open Bio 2017; 7:504-521. [PMID: 28396836 PMCID: PMC5377416 DOI: 10.1002/2211-5463.12198] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Our previous research has demonstrated that miR‐146a‐5p is down‐regulated in hepatocellular carcinoma (HCC) and might play a tumor‐suppressive role. In this study, we sought to validate the decreased expression with a larger cohort and to explore potential molecular mechanisms. GEO and TCGA databases were used to gather miR‐146a‐5p expression data in HCC, which included 762 HCC and 454 noncancerous liver tissues. A meta‐analysis of the GEO‐based microarrays, TCGA‐based RNA‐seq data, and additional qRT‐PCR data validated the down‐regulation of miR‐146a‐5p in HCC and no publication bias was observed. Integrated genes were generated by overlapping miR‐146a‐5p‐related genes from predicted and formerly reported HCC‐related genes using natural language processing. The overlaps were comprehensively analyzed to discover the potential gene signatures, regulatory pathways, and networks of miR‐146a‐5p in HCC. A total of 251 miR‐146a‐5p potential target genes were predicted by bioinformatics platforms and 104 genes were considered as both HCC‐ and miR‐146a‐5p‐related overlaps. RAC1 was the most connected hub gene for miR‐146a‐5p and four pathways with high enrichment (VEGF signaling pathway, adherens junction, toll‐like receptor signaling pathway, and neurotrophin signaling pathway) were denoted for the overlapped genes. The down‐regulation of miR‐146a‐5p in HCC has been validated with the most complete data possible. The potential gene signatures, regulatory pathways, and networks identified for miR‐146a‐5p in HCC could prove useful for molecular‐targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Zhi-Hua Ye
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hai-Wei Liang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Fang-Hui Ren
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Ping Li
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Yi-Wu Dang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
41
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
42
|
Kiba A, Banno K, Yanokura M, Asada M, Nakayama Y, Aoki D, Watanabe T. Differential micro ribonucleic acid expression profiling in ovarian endometrioma with leuprolide acetate treatment. J Obstet Gynaecol Res 2016; 42:1734-1743. [PMID: 27709720 DOI: 10.1111/jog.13137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/17/2016] [Indexed: 01/27/2023]
Abstract
AIM Micro ribonucleic acids (miRNAs) play an important pathological role in endometriosis. Leuprolide acetate, an analog of gonadotropin-releasing hormone, is widely used to treat endometriosis; however, the molecular mechanisms involved in endometriotic tissue regression remain unclear. We performed miRNA expression profiling of clinical ovarian endometrioma to obtain insight into the effects of leuprolide acetate treatment. METHODS We obtained clinical samples from nine normal eutopic endometrium, eight ovarian endometriotic, and 12 leuprolide acetate-treated endometriotic tissues. We compared the miRNA expression profiles of the three groups by performing TaqMan Array MicroRNA Card and bioinformatic analysis. RESULTS Two miRNAs, miR-939 and miR-154, were upregulated in endometriotic tissue and downregulated in leuprolide acetate-treated endometriotic tissue. Five miRNAs (miR-146a, miR-142-3p, miR-136*, miR-125b-1* and miR-15b*) were unchanged in endometriotic tissue but were upregulated under leuprolide acetate treatment. Ingenuity pathway analysis using predicted target genes for the seven identified miRNAs suggested the involvement of a range of pathways, including axonal guidance, bone morphogenetic protein, phosphatase and tensin homolog and nitric oxide signaling; molecular mechanisms of cancer; and the adipogenesis and signal transducer and activator of transcription 3 (STAT3) pathways. CONCLUSIONS To our knowledge, this is the first report profiling the miRNAs of endometrioma under leuprolide acetate treatment. The expression of seven miRNAs was modulated, concomitant with the disease state. This result gives new insight into the effects of leuprolide acetate treatment. Further investigation using quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry will allow us to validate the results of this study and to explore new therapeutic targets and biomarkers of endometriosis.
Collapse
Affiliation(s)
- Atsushi Kiba
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Asada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yusuke Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Tatsuya Watanabe
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
43
|
Liu Y, Liu M, Shi Y, Liu Y. Serum Thymosin β4 Concentrations in Obstructive Sleep Apnea Syndrome Patients. J Clin Lab Anal 2016; 30:736-40. [PMID: 27086675 DOI: 10.1002/jcla.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/09/2015] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Inflammation is a potential mechanism of obstructive sleep apnea syndrome (OSAS). Thymosin β4, a member of thymic protein family, exhibits an anti-inflammatory effect. We determine to investigate whether serum thymosin β4 concentrations is correlated with the occurrence and disease severity of OSAS. METHODS Serum thymosin β4 concentrations were examined in a cross-sectional population including 158 patients with OSAS and 94 healthy subjects. RESULTS Elevated serum thymosin β4 concentrations were found in OSAS patients than the controls. Multivariable logistic regression analysis indicated a significant association between serum thymosin β4 concentrations and OSAS development. Severe OSAS patients showed increased serum thymosin β4 concentrations compared with mild and moderate patients. Spearman correlation analysis suggested that serum thymosin β4 concentrations were correlated with the severity of OSAS. Simple linear regression analyses showed that serum thymosin β4 in OSAS patients was correlated with homeostasis model assessment of insulin resistance, apnea hypopnea index, disease severity, and osteoarthritis development. Then multiple stepwise regression analysis showed that only disease severity remained to be associated with serum thymosin β4. CONCLUSIONS Serum thymosin β4 concentrations were correlated with the occurrence and severity of OSAS.
Collapse
Affiliation(s)
- Yongquan Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, PR China
| | - Meijuan Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, PR China.
| | - Youkui Shi
- Department of Emergency, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, PR China
| | - Yuan Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, PR China
| |
Collapse
|
44
|
Regulation of oligodendrocyte differentiation: Insights and approaches for the management of neurodegenerative disease. PATHOPHYSIOLOGY 2016; 23:203-10. [DOI: 10.1016/j.pathophys.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
|
45
|
Loss of endogenous thymosin β 4 accelerates glomerular disease. Kidney Int 2016; 90:1056-1070. [PMID: 27575556 PMCID: PMC5073078 DOI: 10.1016/j.kint.2016.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
Abstract
Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin β4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin β4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin β4 in the kidney is unknown. We demonstrate that thymosin β4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin β4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin β4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin β4 in the migration of these cells. Thymosin β4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin β4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression.
Collapse
|
46
|
Thymosin β4 inhibits microglia activation through microRNA 146a in neonatal rats following hypoxia injury. Neuroreport 2016; 26:1032-8. [PMID: 26457369 DOI: 10.1097/wnr.0000000000000463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroinflammation mediated by activated microglia plays a pivotal role in the pathogenesis of neurological disorders, including hypoxic injury of the developing brain. Thymosin β4 (Tβ4), the major G-actin-sequestering molecule, has an anti-inflammatory effect and has been used to treat various neurological diseases. However, the effect of Tβ4 on hypoxia-induced microglia activation in the developing brain remains unclear. We investigate here the effect of Tβ4 on microglia activation of neonatal rats after hypoxia exposure. Tβ4 treatment was carried out on 1-day-old rats and BV-2 cells. Tβ4 expression in microglia was determined by quantitative real time-PCR, western blotting, and immunofluorescence staining. Secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nitric oxide (NO) was assessed by enzyme-linked immunosorbent assay and colorimetric assay. mRNA expression of TNF-α and IL-1β, and microRNA 146a expression was determined by quantitative real time-PCR. We showed that Tβ4 treatment significantly inhibited secretion of inflammatory mediators in the cerebellum of neonatal rats following hypoxia injury. Increased expression of endogenous Tβ4 in microglia was observed both in hypoxic rats and in BV-2 cells. Tβ4 treatment significantly inhibited the expression and secretion of hypoxia-induced TNF-α, IL-1β, and NO. Remarkably, microRNA 146a expression was found to have increased in Tβ4-treated BV-2 cells. We demonstrated the anti-inflammatory effect of Tβ4 in neonatal rats following hypoxic brain injury. More importantly, our data reveal, for the first time, that Tβ4 inhibits microglia activation in vitro. Therefore, this study contributes to understanding the role and mechanism of Tβ4 function in central nervous system diseases.
Collapse
|
47
|
Galloway DA, Moore CS. miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation. Front Cell Dev Biol 2016; 4:59. [PMID: 27379236 PMCID: PMC4911355 DOI: 10.3389/fcell.2016.00059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
48
|
Marks ED, Kumar A. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System. VITAMINS AND HORMONES 2016; 102:227-49. [PMID: 27450737 DOI: 10.1016/bs.vh.2016.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease.
Collapse
Affiliation(s)
- E D Marks
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States
| | - A Kumar
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States.
| |
Collapse
|
49
|
Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, Kassis H, Zhang RL, Zhang XM, Zhang ZG. MicroRNA-146a Promotes Oligodendrogenesis in Stroke. Mol Neurobiol 2016; 54:227-237. [PMID: 26738853 DOI: 10.1007/s12035-015-9655-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
Abstract
Stroke induces new myelinating oligodendrocytes that are involved in ischemic brain repair. Molecular mechanisms that regulate oligodendrogenesis have not been fully investigated. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression. MiR-146a has been reported to regulate immune response, but the role of miR-146a in oligodendrocyte progenitor cells (OPCs) remains unknown. Adult Wistar rats were subjected to the right middle cerebral artery occlusion (MCAo). In situ hybridization analysis with LNA probes against miR-146a revealed that stroke considerably increased miR-146a density in the corpus callosum and subventricular zone (SVZ) of the lateral ventricle of the ischemic hemisphere. In vitro, overexpression of miR-146a in neural progenitor cells (NPCs) significantly increased their differentiation into O4+ OPCs. Overexpression of miR-146a in primary OPCs increased their expression of myelin proteins, whereas attenuation of endogenous miR-146a suppressed generation of myelin proteins. MiR-146a also inversely regulated its target gene-IRAK1 expression in OPCs. Attenuation of IRAK1 in OPCs substantially increased myelin proteins and decreased OPC apoptosis. Collectively, our data suggest that miR-146a may mediate stroke-induced oligodendrogenesis.
Collapse
Affiliation(s)
- Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Wan Long Pan
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.,Medical Imaging Institute of North Sichuan Medical University, Nanchong, Sichuan, China, 637100
| | - Xin Li Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Bao Yan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Haifa Kassis
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Rui Lan Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Xiao Ming Zhang
- Medical Imaging Institute of North Sichuan Medical University, Nanchong, Sichuan, China, 637100
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| |
Collapse
|
50
|
Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 2015; 136:118-32. [PMID: 26466330 DOI: 10.1111/jnc.13394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Shivam Vyas
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|