1
|
Guo X, Li H, Zhu B, Wang X, Xu Q, Aquino E, Koo M, Li Q, Cai J, Glaser S, Wu C. HFD feeding for seven months abolishes STING disruption-driven but not female sex-based protection against hepatic steatosis and inflammation in mice. J Nutr Biochem 2025; 135:109770. [PMID: 39284534 PMCID: PMC11620956 DOI: 10.1016/j.jnutbio.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Stimulator of interferon genes (STING) is positively correlated with the degrees of liver inflammation in human metabolic dysfunction-associated steatotic liver disease (MASLD). In addition, STING disruption alleviates MASLD in mice fed a high-fat diet (HFD) for 3 months (3-m-HFD). Here we investigated the role of the duration of dietary feeding in regulating MASLD in mice and explored the involvement of STING in sex differences in MASLD. Both male and female STING-disrupted (STINGgt) and wild-type C57BL/6J mice were fed an HFD for 3 or 7 months (7-m-HFD). Additionally, female STINGgt mice upon ovariectomy (OVX) and 3-m-HFD were analyzed for MASLD. Upon 3-m-HFD, STINGgt mice exhibited decreased severity of MASLD compared to control. However, upon 7-m-HFD, STINGgt mice were comparable with wild-type mice in body weight, fat mass, and MASLD. Regarding regulating the liver RNA transcriptome, 7-m-HFD increased the expression of genes indicating proinflammatory activation of various liver cells. Interestingly, the severity of MASLD in female mice was much lighter than in male mice, regardless of STING disruption. Upon OVX, female STINGgt mice showed significantly increased severity of MASLD relative to sham control but were comparable with male STINGgt mice. Upon treatment with 17-beta estradiol (E2), hepatocytes revealed decreased fat deposition while macrophages displayed decreases in lipopolysaccharide-induced phosphorylation of Nfkb p65 and Jnk p46 independent of STING. These results suggest that 7-m-HFD, without altering female sex-based protection, abolishes STING disruption-driven protection of MASLD, likely through causing proinflammatory activation of multiple types of liver cells to offset the effect of STING disruption.
Collapse
Affiliation(s)
- Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xiaoxiao Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Eduardo Aquino
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Minji Koo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Byran, Texas, USA.
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
2
|
Dobrovinskaya O, Alamilla J, Olivas-Aguirre M. Impact of Modern Lifestyle on Circadian Health and Its Contribution to Adipogenesis and Cancer Risk. Cancers (Basel) 2024; 16:3706. [PMID: 39518143 PMCID: PMC11545514 DOI: 10.3390/cancers16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recent research underscores a crucial connection between circadian rhythm disruption and cancer promotion, highlighting an urgent need for attention. OBJECTIVES Explore the molecular mechanisms by which modern lifestyle factors-such as artificial light exposure, shift work, and dietary patterns-affect cortisol/melatonin regulation and cancer risk. METHODS Employing a narrative review approach, we synthesized findings from Scopus, Google Scholar, and PubMed to analyze lifestyle impacts on circadian health, focusing on cortisol and melatonin chronobiology as molecular markers. We included studies that documented quantitative changes in these markers due to modern lifestyle habits, excluding those lacking quantitative data or presenting inconclusive results. Subsequent sections focused solely on articles that quantified the effects of circadian disruption on adipogenesis and tumor microenvironment modifications. RESULTS This review shows how modern habits lead to molecular changes in cortisol and melatonin, creating adipose microenvironments that support cancer development. These disruptions facilitate immune evasion, chemotherapy resistance, and tumor growth, highlighting the critical roles of cortisol dysregulation and melatonin imbalance. CONCLUSIONS Through the presented findings, we establish a causal link between circadian rhythm dysregulation and the promotion of certain cancer types. By elucidating this relationship, the study emphasizes the importance of addressing lifestyle factors that contribute to circadian misalignment, suggesting that targeted interventions could play a crucial role in mitigating cancer risk and improving overall health outcomes.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico;
| | - Javier Alamilla
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima 28040, Mexico
| | - Miguel Olivas-Aguirre
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Laboratory of Cancer Pathophysiology, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico
| |
Collapse
|
3
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Katoku-Kikyo N, Lim S, Yuan C, Koroth J, Nakagawa Y, Bradley EW, Kikyo N. The circadian regulator PER1 promotes cell reprogramming by inhibiting inflammatory signaling from macrophages. PLoS Biol 2023; 21:e3002419. [PMID: 38048364 PMCID: PMC10721173 DOI: 10.1371/journal.pbio.3002419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/14/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Circadian regulation of gene expression is prevalent and plays critical roles in cell differentiation. However, its roles in the reprogramming of differentiated cells remain largely unknown. Here, we found that one of the master circadian regulators PER1 promoted virus-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to induced neurons (iNs) and induced pluripotent stem cells (iPSCs). Unexpectedly, PER1 achieved this by repressing inflammatory activation of contaminating macrophages in the MEF culture, rather than by directly modulating the reprogrammability of MEFs. More specifically, we found that transduced viruses activated inflammatory genes in macrophages, such as Tnf encoding TNFα, one of the central inflammatory regulators and an autocrine activator of macrophages. TNFα inhibited iN reprogramming, whereas a TNFα inhibitor promoted iN reprogramming, connecting the inflammatory responses to iN reprogramming. In addition, macrophages were induced to proliferate and mature by non-macrophage cells serving as feeders, which also supported up-regulation of TNFα in macrophages without virus transduction. Furthermore, the 2 inflammatory responses were repressed by the circadian regulator PER1 in macrophages, making reprogrammability dependent on time-of-day of virus transduction. Similar results were obtained with iPSC reprogramming, suggesting a wide occurrence of macrophage-mediated inhibition of cell reprogramming. This study uncovers mechanistic links between cell reprogramming, bystander inflammatory macrophages, and circadian rhythms, which are particularly relevant to in vivo reprogramming and organoid formation incorporating immune cells.
Collapse
Affiliation(s)
- Nobuko Katoku-Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Seunghyun Lim
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ce Yuan
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jinsha Koroth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth W. Bradley
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Zhang L, Wang M, An R, Dai J, Liu S, Chen M, Ding H. Activation of NLRP3 Inflammasome via Drp1 Overexpression in Kupffer Cells Aggravates Ischemia-reperfusion Injury in Hepatic Steatosis. J Clin Transl Hepatol 2023; 11:1069-1078. [PMID: 37577223 PMCID: PMC10412692 DOI: 10.14218/jcth.2022.00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Donors with fatty livers are considered to address the shortage of livers for transplantation, but those livers are particularly sensitive to ischemia-reperfusion injury (IRI), and an increased incidence of graft failure is observed. Kupffer cells account for 20-35% of liver nonparenchymal cells, and have been shown to participate in the process of IRI and inflammatory reactions of hepatic steatosis. NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) is an intracellular sensor activated by Kupffer cells to promote generation and participates in IRI. Dynamics-associated protein 1 (Drp1) is one of the main proteins regulating mitochondrial division and exacerbates IRI by affecting mitochondrial dynamics. The mechanism of interaction of Kupffer cells with Drp1 and NLRP3 to aggravate IRI has not been clarified. Methods A mouse model of hepatic steatosis was established by feeding the mice with a high-fat diet. In vitro experiments were performed using AML12 normal mouse liver cells and RAW264.7 mononuclear macrophage cells cultured in medium with palmitate and oleic acid. Western blotting and immunohistochemical (IHC) staining were used to detect the expression of NLRPP3 and Drp1 in IRI in the control and high-fat diet groups. The expression of F4/80+ cells during IRI in hepatic steatosis was verified by IHC staining, and the role of NLRPP3 and Drp1 in Kupffer-cell mediated IRI was investigated by targeting Drp-1 inhibition. Results Drp1 and NLRP3 expression was increased during IRI in hepatic steatosis, and the expression of Drp1 and NLRP3 were decreased after the elimination of Kupffer cells. That indicated Kupffer cells were involved in the process of IRI in hepatic steatosis through the action of Drp1 and NLRP3. After Drp1 inhibition, liver function was restored and NLRP3 expression level was reduced. Conclusions Kupffer cells aggravated IRI in hepatic steatosis via NLRP3 and Drp1. Drp1 inhibitors might be useful as specific therapeutics to alleviate IRI in hepatic steatosis and may have promise in case of liver donor shortage.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingfu Wang
- Surgery Department I, Zhangjiagang Traditional Chinese Medicine Hospital, Suzhou, Jiangsu, China
| | - Ran An
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shujun Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haoran Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Wilantri S, Grasshoff H, Lange T, Gaber T, Besedovsky L, Buttgereit F. Detecting and exploiting the circadian clock in rheumatoid arthritis. Acta Physiol (Oxf) 2023; 239:e14028. [PMID: 37609862 DOI: 10.1111/apha.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.
Collapse
Affiliation(s)
- Siska Wilantri
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | | | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
7
|
Kikyo N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12307. [PMID: 37569682 PMCID: PMC10418470 DOI: 10.3390/ijms241512307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) represents one of the best examples of circadian fluctuations in disease severity. Patients with RA experience stiffness, pain, and swelling in afflicted joints in the early morning, which tends to become milder toward the afternoon. This has been primarily explained by the higher blood levels of pro-inflammatory hormones and cytokines, such as melatonin, TNFα, IL-1, and IL-6, in the early morning than in the afternoon as well as insufficient levels of anti-inflammatory cortisol, which rises later in the morning. Clinical importance of the circadian regulation of RA symptoms has been demonstrated by the effectiveness of time-of-day-dependent delivery of therapeutic agents in chronotherapy. The primary inflammatory site in RA is the synovium, where increased macrophages, T cells, and synovial fibroblasts play central roles by secreting pro-inflammatory cytokines, chemokines, and enzymes to stimulate each other, additional immune cells, and osteoclasts, ultimately leading to cartilage and bone erosion. Among these central players, macrophages have been one of the prime targets for the study of the link between circadian rhythms and inflammatory activities. Gene knockout experiments of various core circadian regulators have established that disruption of any core circadian regulators results in hyper- or hypoactivation of inflammatory responses by macrophages when challenged by lipopolysaccharide and bacteria. Although these stimulations are not directly linked to RA etiology, these findings serve as a foundation for further study by providing proof of principle. On the other hand, circadian regulation of osteoclasts, downstream effectors of macrophages, remain under-explored. Nonetheless, circadian expression of the inducers of osteoclastogenesis, such as TNFα, IL-1, and IL-6, as well as the knockout phenotypes of circadian regulators in osteoclasts suggest the significance of the circadian control of osteoclast activity in the pathogenesis of RA. More detailed mechanistic understanding of the circadian regulation of macrophages and osteoclasts in the afflicted joints could add novel local therapeutic options for RA.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Abstract
The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.
Collapse
Affiliation(s)
- Chelsea Hepler
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
9
|
Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, Gao D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14:1153915. [PMID: 37153549 PMCID: PMC10154623 DOI: 10.3389/fimmu.2023.1153915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Macrophage infiltration into adipose tissue is a key pathological factor inducing adipose tissue dysfunction and contributing to obesity-induced inflammation and metabolic disorders. In this review, we aim to present the most recent research on macrophage heterogeneity in adipose tissue, with a focus on the molecular targets applied to macrophages as potential therapeutics for metabolic diseases. We begin by discussing the recruitment of macrophages and their roles in adipose tissue. While resident adipose tissue macrophages display an anti-inflammatory phenotype and promote the development of metabolically favorable beige adipose tissue, an increase in pro-inflammatory macrophages in adipose tissue has negative effects on adipose tissue function, including inhibition of adipogenesis, promotion of inflammation, insulin resistance, and fibrosis. Then, we presented the identities of the newly discovered adipose tissue macrophage subtypes (e.g. metabolically activated macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+ macrophages, and MFehi macrophages), the majority of which are located in crown-like structures within adipose tissue during obesity. Finally, we discussed macrophage-targeting strategies to ameliorate obesity-related inflammation and metabolic abnormalities, with a focus on transcriptional factors such as PPARγ, KLF4, NFATc3, and HoxA5, which promote macrophage anti-inflammatory M2 polarization, as well as TLR4/NF-κB-mediated inflammatory pathways that activate pro-inflammatory M1 macrophages. In addition, a number of intracellular metabolic pathways closely associated with glucose metabolism, oxidative stress, nutrient sensing, and circadian clock regulation were examined. Understanding the complexities of macrophage plasticity and functionality may open up new avenues for the development of macrophage-based treatments for obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Xirong Li
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yakun Ren
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Kewei Chang
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Wenlong Wu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| |
Collapse
|
10
|
Bidirectional Regulation of Sodium Acetate on Macrophage Activity and Its Role in Lipid Metabolism of Hepatocytes. Int J Mol Sci 2023; 24:ijms24065536. [PMID: 36982619 PMCID: PMC10051801 DOI: 10.3390/ijms24065536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites of the intestinal flora that are closely related to the development of non-alcoholic fatty liver disease (NAFLD). Moreover, studies have shown that macrophages have an important role in the progression of NAFLD and that a dose effect of sodium acetate (NaA) on the regulation of macrophage activity alleviates NAFLD; however, the exact mechanism of action remains unclear. This study aimed to assess the effect and mechanism of NaA on regulating the activity of macrophages. RAW264.7 and Kupffer cells cell lines were treated with LPS and different concentrations of NaA (0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, and 5 mM). Low doses of NaA (0.1 mM, NaA-L) significantly increased the expression of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1 beta (IL-1β); it also increased the phosphorylation of inflammatory proteins nuclear factor-κB p65 (NF-κB p65) and c-Jun (p < 0.05), and the M1 polarization ratio of RAW264.7 or Kupffer cells. Contrary, a high concentration of NaA (2 mM, NaA-H) reduced the inflammatory responses of macrophages. Mechanistically, high doses of NaA increased intracellular acetate concentration in macrophages, while a low dose had the opposite effect, consisting of the trend of changes in regulated macrophage activity. Besides, GPR43 and/or HDACs were not involved in the regulation of macrophage activity by NaA. NaA significantly increased total intracellular cholesterol (TC), triglycerides (TG), and lipid synthesis gene expression levels in macrophages and hepatocytes at either high or low concentrations. Furthermore, NaA regulated the intracellular AMP/ATP ratio and AMPK activity, achieving a bidirectional regulation of macrophage activity, in which the PPARγ/UCP2/AMPK/iNOS/IκBα/NF-κB signaling pathway has an important role. In addition, NaA can regulate lipid accumulation in hepatocytes by NaA-driven macrophage factors through the above-mentioned mechanism. The results revealed that the mode of NaA bi-directionally regulating the macrophages further affects hepatocyte lipid accumulation.
Collapse
|
11
|
Li H, Guo X, Aquino E, Wu C. Mini review: STING activation during non-alcoholic fatty liver disease. Front Nutr 2023; 10:1139339. [PMID: 36937350 PMCID: PMC10014842 DOI: 10.3389/fnut.2023.1139339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases serving as a major threat to human health. While the pathogenesis of NAFLD is multi-factorial, inflammation is considered a critical factor driving the development and progression of NAFLD phenotype, including liver fibrosis. As an essential mediator of innate immunity, stimulator of interferon genes (STING) functions to promote anti-viral immunity. Accumulating evidence also indicates that STING functions to promote the proinflammatory activation of several types of liver cells, especially macrophages/Kupffer cells, in a manner independent of interferon production. Over the past several years, a significant body of literature has validated a detrimental role for STING in regulating the pathogenesis of hepatic steatosis and inflammation. In particular, the STING in macrophages/Kupffer cells has attracted much attention due to its importance in not only enhancing macrophage proinflammatory activation, but also generating macrophage-derived mediators to increase hepatocyte fat deposition and proinflammatory responses, and to activate hepatic stellate cell fibrogenic activation. Both intracellular and extracellular signals are participating in STING activation in macrophages, thereby critically contributing to NAFLD phenotype. This mini review summarizes recent advances on how STING is activated in macrophages in the context of NAFLD pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Ding Y, Wan S, Ma L, Wei K, Ye K. PER1 promotes functional recovery of mice with hindlimb ischemia by inducing anti-inflammatory macrophage polarization. Biochem Biophys Res Commun 2023; 644:62-69. [PMID: 36634583 DOI: 10.1016/j.bbrc.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Hindlimb ischemia (HLI) is an arterial occlusive disease that exposes the patients to the risk of limb gangrene and loss. Polarization of macrophages is related to HLI-induced inflammation. Period circadian regulator 1 (PER1) is a core component of the circadian clock. We first showed, based upon bioinformatics analysis of microarray data, that PER1 expression was reduced in monocytes from patients with critical limb ischemia. The proximal femoral artery in the left hindlimb of male mice was ligated and then the femoral artery and its collateral branches were removed to establish the HLI mouse model. After modeling, a single intramuscular injection of 1 × 109 pfu Ad-PER1 was performed at the adductor and gastrocnemius muscles. The gastrocnemius muscle tissues were collected at day 0, 3, 7, 14, 21 post-HLI. There was obvious pathological necrosis, accompanied with reduced expression of PER1 in the muscle tissues of HLI mice. Expression of CD68 and CD31 seemed to be corresponded to PER1 in gastrocnemius muscle, implying the potential of PER1 in regulating macrophage-related inflammation and angiogenesis. PER1 overexpression diminished myocyte damage, promoted blood flow restoration and improved behavioral scores of HLI mice. Immunostaining of CD31 and α-SMA revealed that PER1 upregulation reversed HLI-induced decreases in capillary and arteriole density. In vitro, RAW264.7 cells were cultured in hypoxia (1% O2) for 24 h. The percentage of pro-inflammatory CD86+ macrophages (M1 type) was decreased and that of anti-inflammatory CD206+ macrophages (M2 type) was increased when PER1 was overexpressed. Moreover, the expression levels of TNF-α, IL-6 and M1-type marker iNOS were decreased, and levels of IL-10 and M2-type marker Arg-1 were increased by PER1 in gastrocnemius muscle of HLI mice and hypoxia-treated RAW264.7 cells. PER1 might reduce M1 macrophage polarization and promote M2 macrophage polarization, and thus exert anti-inflammatory and pro-angiogenic actions. Our findings suggest that PER1 overexpression promotes functional recovery of mice with HLI through regulating macrophage polarization.
Collapse
Affiliation(s)
- Yang Ding
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Shengyun Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Long Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Kaikai Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Kun Ye
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
13
|
Knudsen-Clark AM, Cazarin J, Altman BJ. Do macrophages follow the beat of circadian rhythm in TIME (Tumor Immune Microenvironment)? F1000Res 2023; 12:101. [PMID: 37469718 PMCID: PMC10352629 DOI: 10.12688/f1000research.129863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 07/21/2023] Open
Abstract
Advances in cancer research have made clear the critical role of the immune response in clearing tumors. This breakthrough in scientific understanding was heralded by the success of immune checkpoint blockade (ICB) therapies such as anti-programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as well as the success of chimeric antigen receptor (CAR) T cells in treating liquid tumors. Thus, much effort has been made to further understand the role of the immune response in tumor progression, and how we may target it to treat cancer. Macrophages are a component of the tumor immune microenvironment (TIME) that can promote tumor growth both indirectly, by suppressing T cell responses necessary for tumor killing, as well as directly, through deposition of extracellular matrix and promotion of angiogenesis. Thus, understanding regulation of macrophages within the tumor microenvironment (TME) is key to targeting them for immunotherapy. However, circadian rhythms (24-hour cycles) are a fundamental aspect of macrophage biology that have yet to be investigated for their role in macrophage-mediated suppression of the anti-tumor immune response Circadian rhythms regulate macrophage-mediated immune responses through time-of-day-dependent regulation of macrophage function. A better understanding of the circadian biology of macrophages in the context of the TME may allow us to exploit synergy between existing and upcoming treatments and circadian regulation of immunity.
Collapse
Affiliation(s)
- Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14620, USA
| |
Collapse
|
14
|
CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ 2023; 30:992-1004. [PMID: 36681781 PMCID: PMC9864494 DOI: 10.1038/s41418-023-01116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
cGAS/DncV-like nucleotidyltransferase (CD-NTase) family members are immune sensors that synthesize diverse nucleotide signals to initiate antiviral response in bacteria and animals. As a founding member of CD-NTase enzyme, cGAS has been identified as a key sensor for cytoplasmic DNA and type I interferons (IFNs) signaling in metazoan. However, the functions of other metazoan CD-NTases remain enigmatic. Here, we showed that Mab-21 domain-containing protein 2 (MB21D2), another member of the CD-NTase family, plays a positive role in modulating the cGAS-STING signaling in myeloid cells. Deficiency of MB21D2 in THP-1 cells or mice macrophages led to impaired production of type I interferon upon DNA stimulation. Consistently, Mb21d2-/- mice showed more susceptible to infection with DNA virus and faster growth of melanoma, compared to its counterparts. Mechanistically, MB21D2 specially bound with the N-terminal of cGAS, facilitated its liquid phase condensation and DNA-binding activity, leading to the enhanced production of cGAMP and subsequent IFN-β production. Thus, our findings unveiled that the CD-NTase family member MB21D2 contributes to host antiviral and antitumor responses by enhancing cGAS activation.
Collapse
|
15
|
Petrecca S, Quail DF. Mouse Models of Obesity to Study the Tumor-Immune Microenvironment. Methods Mol Biol 2023; 2614:121-138. [PMID: 36587123 DOI: 10.1007/978-1-0716-2914-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity is associated with chronic, low-grade systemic inflammation and leads to changes in the immune microenvironment of various tissues. As a result, obesity is associated with increased risk of cancer and a worse prognosis in patients. Given the prevalence of obesity worldwide, understanding the fundamental biology governing the relationship between obesity and cancer is critical. In this chapter, we describe preclinical models of obesity that can be combined with standard tumor models and techniques to study the tumor-immune microenvironment. We also discuss important considerations when planning experiments involving these models.
Collapse
Affiliation(s)
- Sarah Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Earnest DJ, Burns S, Pandey S, Mani KK, Sohrabji F. Sex differences in the diathetic effects of shift work schedules on circulating cytokine levels and pathological outcomes of ischemic stroke during middle age. Neurobiol Sleep Circadian Rhythms 2022; 13:100079. [PMID: 35800977 PMCID: PMC9253906 DOI: 10.1016/j.nbscr.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022] Open
Abstract
Shift work is associated with increased risk for vascular disease, including stroke- and cardiovascular-related mortality. However, evidence from these studies is inadequate to distinguish the effect of altered circadian rhythms in isolation from other risk factors for stroke associated with shift work (e.g., smoking, poor diet, lower socioeconomic status). Thus, the present study examined the diathetic effects of exposure to shifted LD cycles during early adulthood on circadian rhythmicity, inflammatory signaling and ischemic stroke pathology during middle age, when stroke risk is high and outcomes are more severe. Entrainment of circadian activity was stable in all animals maintained on a fixed light:dark 12:12 cycle but was severely disrupted during exposure to shifted LD cycles (12hr advance/5d). Following treatment, circadian entrainment in the shifted LD group was distinguished by increased daytime activity and decreased rhythm amplitude that persisted into middle-age. Circadian rhythm desynchronization in shifted LD males and females was accompanied by significant elevations in circulating levels of the inflammatory cytokine IL-17A and gut-derived inflammatory mediator lipopolysaccharide (LPS) during the post-treatment period. Middle-cerebral artery occlusion, 3 months after exposure to shifted LD cycles, resulted in greater post-stroke mortality in shifted LD females. In surviving subjects, sensorimotor performance, assessed 2- and 5-days post-stroke, was impaired in males of both treatment groups, whereas in females, recovery of function was observed in fixed but not shifted LD rats. Overall, these results indicate that early exposure to shifted LD cycles promotes an inflammatory phenotype that amplifies stroke impairments, specifically in females, later in life. Early exposure to shifted LD cycles alters circadian entrainment of the activity rhythm that persists into middle age. In conjunction with circadian dysregulation, shift work-like schedules promote the induction of key inflammatory mediators. In females, exposure to shift work-like schedules amplifies functional impairments caused by strokes arising later in life. Circadian dysregulation during shift work is a hysteretic risk factor in the overall severity of ischemic strokes. Shift work-related circadian dysregulation affects stroke outcomes independent of lifestyle vascular disease risk factors.
Collapse
|
17
|
Huo M, Cao X, Zhang H, Lau CW, Hong H, Chen FM, Huang Y, Chawla A, Tian XY. Loss of myeloid Bmal1 exacerbates hypertensive vascular remodelling through interaction with STAT6 in mice. Cardiovasc Res 2022; 118:2859-2874. [PMID: 34726702 DOI: 10.1093/cvr/cvab336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/07/2021] [Indexed: 01/11/2023] Open
Abstract
AIMS In addition to its involvement of inflammatory responses, limited information is available on the phenotype and behaviour of vascular macrophages during hypertensive vascular remodelling. Here, we aim at studying the contribution of BMAL1 to the pro-fibrotic macrophage phenotype in the vasculature during hypertension, which leads to enhanced vascular remodelling and promoted blood pressure increase. METHODS AND RESULTS Wild type Bmal1f/f and myeloid cell selective Bmal1 knockout Bmal1f/f; LysMCre/+ mice were infused with AngII for 4 weeks to induce hypertension. AngII-induced blood pressure increase, vascular media thickness and vascular dysfunction were enhanced in Bmal1f/f; LysMCre/+ mice, accompanied with a pro-fibrotic M2 phenotype of the vascular macrophages. Bmal1f/f; LysMCre/+ mice also have more up-regulations of MMP9 and MMP13 expression in the vascular wall, accompanied by enhanced collagen deposition after AngII infusion. Loss of Bmal1 in bone marrow-derived macrophages enhanced STAT6 activation induced by IL4, and the subsequent MMP13 up-regulation and activity. In macrophages, loss of Bmal1 enhanced the phosphorylation and nuclear translocation of STAT6 triggered by IL4, through possibly a direct interaction between BMAL1 and STAT6. To further determine whether IL4-induced signalling in macrophage contributes to enhanced vascular remodelling in hypertensive mice, we showed that deletion of myeloid IL4Rα in Il4raf/f; LysMCre/+ mice attenuated blood pressure increase and hypertensive vascular remodelling after AngII infusion. CONCLUSIONS Our results suggested a tonic effect of BMAL1 deletion on hypertensive vascular remodelling. BMAL1 might inhibit IL4-STAT6 signalling in macrophages through the interaction with STAT6 to reduce STAT6 activation and target gene transcription, especially MMP9 and MMP13, contributing to vascular remodelling.
Collapse
Affiliation(s)
- Mingyu Huo
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
- Digestive Medicine Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Zhenyuan Rd, Guangming (New) Dist., Shenzhen, China, 518107
| | - Xiaoyun Cao
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| | - Hongsong Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Changle Rd, Qinhuai District, Nanjing, Jiangsu, China, 210029
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| | - Huiling Hong
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| | - Francis M Chen
- School of Life Sciences, MMW 505, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| | - Ajay Chawla
- Department of Physiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA 94143-0795
| | - Xiao Yu Tian
- School of Biomedical Sciences, Faculty of Medicine, CUHK Shenzhen Research Institute, Heart and Vascular Institute, Rm208, LIBSB, Chinese University of Hong Kong, Shatin, NT. Hong Kong SAR, China
| |
Collapse
|
18
|
Zhu B, Li H, Lu B, Guo X, Wu C, Wang F, Li Q, Xie L, Glaser S, Francis H, Alpini G, Wu C. Indole supplementation ameliorates MCD-induced NASH in mice. J Nutr Biochem 2022; 107:109041. [PMID: 35568098 DOI: 10.1016/j.jnutbio.2022.109041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/27/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Indole is a microbiota metabolite that functions to protect against obesity-associated non-alcoholic fatty liver disease. The present study examined the extent to which indole supplementation alleviates the severity of non-alcoholic steatohepatitis (NASH), which is the advanced form of non-alcoholic fatty liver disease. In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregations of macrophages in the liver compared with control diet-fed mice. Upon indole supplementation, the severity of MCD-induced hepatic steatosis and inflammation, as well as liver fibrosis, was significantly decreased compared with that of MCD-fed and control-treated mice. In vitro, indole treatment caused significant decreases in lipopolysaccharide-induced proinflammatory responses in hepatocytes incubated with either basal or MCD-mimicking media. However, indole treatment only significantly decreased lipopolysaccharide-induced proinflammatory responses in bone marrow-derived macrophages incubated with basal, but not MCD-mimicking media. These differential effects suggest that, relative to the responses of macrophages to indole, the responses of hepatocytes to indole appeared to make a greater contribution to indole alleviation of NASH, in particular liver inflammation. While indole supplementation decreased liver expression of desmin in MCD-fed mice, treatment of LX2 cells (a line of hepatic stellate cells) with indole also decreased the expression of various markers of hepatic stellate cell fibrogenic activation. Lastly, indole supplementation decreased intestinal inflammation in MCD-fed mice, suggesting that decreased intestinal inflammation also was involved in indole alleviation of NASH. Collectively, these results demonstrate that indole supplementation alleviates MCD-induced NASH, which is attributable to, in large part, indole suppression of hepatocyte proinflammatory responses and hepatic stellate cell fibrogenic activation, as well as intestinal proinflammatory responses.
Collapse
Affiliation(s)
- Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bangchao Lu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Chiashan Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
19
|
Tsuruta A, Shiiba Y, Matsunaga N, Fujimoto M, Yoshida Y, Koyanagi S, Ohdo S. Diurnal Expression of PD-1 on Tumor-Associated Macrophages Underlies the Dosing Time-Dependent Antitumor Effects of the PD-1/PD-L1 Inhibitor BMS-1 in B16/BL6 Melanoma-Bearing Mice. Mol Cancer Res 2022; 20:972-982. [PMID: 35190830 PMCID: PMC9381128 DOI: 10.1158/1541-7786.mcr-21-0786] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/07/2023]
Abstract
Cancer cells have acquired several pathways to escape from host immunity in the tumor microenvironment. Programmed death 1 (PD-1) receptor and its ligand PD-L1 are involved in the key pathway of tumor immune escape, and immune checkpoint therapy targeting PD-1 and PD-L1 has been approved for the treatment of patients with certain types of malignancies. Although PD-1 is a well-characterized receptor on T cells, the immune checkpoint receptor is also expressed on tumor-associated macrophages (TAM), a major immune component of the tumor microenvironment. In this study, we found significant diurnal oscillation in the number of PD-1-expressing TAMs collected from B16/BL6 melanoma-bearing mice. The levels of Pdcd1 mRNA, encoding PD-1, in TAMs also fluctuated in a diurnal manner. Luciferase reporter and bioluminescence imaging analyses revealed that a NF-κB response element in the upstream region of the Pdcd1 gene is responsible for its diurnal expression. A circadian regulatory component, DEC2, whose expression in TAMs exhibited diurnal oscillation, periodically suppressed NF-κB-induced transactivation of the Pdcd1 gene, resulting in diurnal expression of PD-1 in TAMs. Furthermore, the antitumor efficacy of BMS-1, a small molecule inhibitor of PD-1/PD-L1, was enhanced by administering it at the time of day when PD-1 expression increased on TAMs. These findings suggest that identification of the diurnal expression of PD-1 on TAMs is useful for selecting the most appropriate time of day to administer PD-1/PD-L1 inhibitors. IMPLICATIONS Selecting the most appropriate dosing time of PD-1/PD-L1 inhibitors may aid in developing cancer immunotherapy with higher efficacy.
Collapse
Affiliation(s)
- Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Yuki Shiiba
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Marina Fujimoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Yoshida
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Glocal Healthcare, Faculty of Pharmaceutical Sciences Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Corresponding Author: Shigehiro Ohdo, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8512, Japan. E-mail:
| |
Collapse
|
20
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Circadian Clock Genes Are Correlated with Prognosis and Immune Cell Infiltration in Colon Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1709918. [PMID: 35116071 PMCID: PMC8807038 DOI: 10.1155/2022/1709918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Background Colon adenocarcinoma (COAD) is a malignancy with a high incidence and is associated with poor quality of life. Dysfunction of circadian clock genes and disruption of normal rhythms are associated with the occurrence and progression of many cancer types. However, studies that systematically describe the prognostic value and immune-related functions of circadian clock genes in COAD are lacking. Methods Genomic data obtained from The Cancer Genome Atlas (TCGA) database was analyzed for expression level, mutation status, potential biological functions, and prognostic performance of core circadian clock genes in COAD. Their correlations with immune infiltration and TMB/MSI score were analyzed by Spearman's correlation analysis. Pearson's correlation analysis was performed to analyze their associations with drug sensitivity. Lasso Cox regression analysis was performed to construct a prognosis signature. Moreover, an mRNA-miRNA-lncRNA regulatory axis was also detected by ceRNA network. Results In COAD tissues, the mRNA levels of CLOCK, CRY1, and NR1D1 were increased, while the mRNA levels of ARNTL, CRY2, PER1, PER3, and RORA were decreased. We also summarized the relative genetic mutation variation landscape. GO and KEGG pathway analyses demonstrated that these circadian clock genes were primarily correlated with the regulation of circadian rhythms and glucocorticoid receptor signaling pathways. COAD patients with high CRY2, NR1D1, and PER2 expression had worse prognosis. A prognostic model constructed based on the 9 core circadian clock genes predicted the COAD patients' overall survival with medium to high accuracy. A significant association between prognostic circadian clock genes and immune cell infiltration was found. Moreover, the lncRNA KCNQ1OT1/hsa-miRNA-32-5p/PER2/CRY2 regulatory axis in COAD was also detected through a mRNA-miRNA-lncRNA network. Conclusion Our results identified CRY2, NR1D1, and PER2 as potential prognostic biomarkers for COAD patients and correlated their expression with immune cell infiltration. The lncRNA KCNQ1OT1/hsa-miRNA-32-5p/PER2/CRY2 regulatory axis was detected in COAD and might play a vital role in the occurrence and progression of COAD.
Collapse
|
22
|
Cao L, Xu E, Zheng R, Zhangchen Z, Zhong R, Huang F, Ye J, Sun H, Fan Y, Xie S, Chen Y, Xu Y, Cao J, Cao W, Liu C. Traditional Chinese medicine Lingguizhugan decoction ameliorate HFD-induced hepatic-lipid deposition in mice by inhibiting STING-mediated inflammation in macrophages. Chin Med 2022; 17:7. [PMID: 34983596 PMCID: PMC8728979 DOI: 10.1186/s13020-021-00559-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Stimulator of IFN genes (STING) is highly expressed in the livers of non-alcoholic fatty liver disease (NAFLD) patients and high fat diet (HFD) induced NAFLD mice model. The STING signaling-mediated inflammation has been shown to play a critical role in metabolic disorders. Lingguizhugan decoction (LGZG), a Traditional Chinese herbal decoction, has been applied to treat metabolic disorders for many years. However, whether LGZG can alleviate the progression of NAFLD through inhibiting inflammation remains unclear. This study was to determine the role of STING-mediated inflammation in the HFD-induced hepatic-lipid deposition treated with LGZG. Methods The anti-inflammatory and anti-steatotic effects of LGZG in vivo were detected by H&E staining, immunofluorescence and immuno-chemistry. Mice bone-marrow-derived macrophages (BMDMs) and primary liver macrophages were treated with STING-specific agonist (DMXAA), LGZG and its critical components respectively. The treated culture supernatant of BMDMs and primary liver macrophages from each group was co-cultured with palmitic acid-treated mouse primary hepatocytes or mouse liver cell line AML-12 respectively to detect whether the activation of STING-mediated pathway is involved in the anti-steatotic effect of LGZG. The hepatocyte lipid deposition in vivo and in vitro were detected by oil red staining. Mitochondrial DNA release of mouse liver extracts were detected by real time PCR. The expression of proteins and inflammatory cytokines related to STING-TBK1-NF-κB pathway was detected by western blotting and ELISA. Results LGZG significantly ameliorated HFD induced hepatic steatosis, oxidative stress, hepatic mitochondrial damage and mitochondrial DNA release, which was correlated with reduction of the expression level of STING as well as the infiltration of STING-positive macrophages in the livers of HFD fed mice. The critical components of LGZG directly inhibited the activation of STING-TBK1-NF-κB pathway in liver macrophages induced by DMXAA, LPS, thereby reducing the release of IFNβ and TNFα. Co-incubating the culture supernatant of LGZG treated liver macrophages and PA-stimulated hepatocytes significantly inhibited the PA-induced lipid deposition. Conclusion This study demonstrates that LGZG can ameliorate HFD-induced hepatic-lipid deposition through inhibiting STING-TBK1-NF-κB pathway in liver macrophages, which provides novel insight for elucidating the molecular mechanism of LGZG alleviating HFD induced hepatic steatosis.
Collapse
Affiliation(s)
- Lin Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.
| | - Erjin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Rendong Zheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Zhili Zhangchen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Rongling Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Fei Huang
- Suzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, No. 18 Yangsu Road, Gusu District, Suzhou, 215002, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Hongping Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Yaofu Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Shaofeng Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Yu Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Yijiao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China
| | - Jing Cao
- Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China
| | - Wen Cao
- The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169, Dongshan street, Hushan Road, Jiangning District, Nanjing, 211100, China.
| | - Chao Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, No. 100, Shizi Street, Hongshan Road, Nanjing, 210028, China.
| |
Collapse
|
23
|
Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:cells10123300. [PMID: 34943809 PMCID: PMC8699427 DOI: 10.3390/cells10123300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a serious ongoing health problem that significantly increases the incidence of nonalcoholic fatty liver disease (NAFLD). During obesity, adipose tissue dysfunction is obvious and characterized by increased fat deposition (adiposity) and chronic low-grade inflammation. The latter has been implicated to critically promote the development and progression of NAFLD, whose advanced form non-alcoholic steatohepatitis (NASH) is considered one of the most common causes of terminal liver diseases. This review summarizes the current knowledge on obesity-related adipose dysfunction and its roles in the pathogenesis of hepatic steatosis and inflammation, as well as liver fibrosis. A better understanding of the crosstalk between adipose tissue and liver under obesity is essential for the development of new and improved preventive and/or therapeutic approaches for managing NAFLD.
Collapse
|
24
|
Guo X, Zheng J, Zhang S, Jiang X, Chen T, Yu J, Wang S, Ma X, Wu C. Advances in Unhealthy Nutrition and Circadian Dysregulation in Pathophysiology of NAFLD. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:691828. [PMID: 36994336 PMCID: PMC10012147 DOI: 10.3389/fcdhc.2021.691828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Unhealthy diets and lifestyle result in various metabolic conditions including metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that disruption of circadian rhythms contributes to the development and progression of excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this review, we emphasize the importance of nutrition as a critical factor in the regulation of circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and the composition of diets in the regulation of circadian clocks in the context of controlling hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition and circadian dysregulation on the development of hepatic steatosis and inflammation. A better understanding of how the interplay among nutrition, circadian rhythms, and dysregulated metabolism result in hepatic steatosis and inflammation can help develop improved preventive and/or therapeutic strategies for managing NAFLD.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xin Guo, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shu'e Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Xin Guo, ; Chaodong Wu,
| |
Collapse
|
25
|
Ma D, Li X, Wang Y, Cai L, Wang Y. Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutr Metab (Lond) 2021; 18:89. [PMID: 34627306 PMCID: PMC8502262 DOI: 10.1186/s12986-021-00616-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a progressive metabolic disorder characterized by the excessive depletion of adipose tissue. This hypermetabolic condition has catastrophic impacts on the survival and quality of life for patients suffering from critical illness. However, efficient therapies to prevent adipose expenditure have not been discovered. It has been established that the circadian clock plays an important role in modulating fat metabolic processes. Recently, an increasing number of studies had provided evidence showing that disrupted circadian rhythm leads to insulin resistance and obesity; however, studies analyzing the relationship between circadian misalignment and adipose tissue expenditure in cachexia are scarce. In the present review, we cover the involvement of the circadian clocks in the regulation of adipogenesis, lipid metabolism and thermogenesis as well as inflammation in white and brown adipose tissue. According to the present review, we conclude that circadian clock disruption is associated with lipid metabolism imbalance and elevated adipose tissue inflammation. Moreover, under cachexia conditions, lipid synthesis and storage processes lost rhythm and decreased, while lipolysis and thermogenesis activities remained high for 24 h. Therefore, disordered circadian clock may be responsible for fat expenditure in cachexia by adversely influencing lipid synthesis/ storage/lipolysis/utilization. Further study needs to be performed to explore the direct interaction between circadian clock and fat expenditure in cachexia, it will likely provide potential efficient drugs for the treatment of fat expenditure in cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Xiao Li
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yongcheng Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Lu Cai
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China.
| |
Collapse
|
26
|
Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W. Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021; 12:721231. [PMID: 34557221 PMCID: PMC8452875 DOI: 10.3389/fgene.2021.721231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The circadian clock coordinates physiology, metabolism, and behavior with the 24-h cycles of environmental light. Fundamental mechanisms of how the circadian clock regulates organ physiology and metabolism have been elucidated at a rapid speed in the past two decades. Here we review circadian networks in more than six organ systems associated with complex disease, which cluster around metabolic disorders, and seek to propose critical regulatory molecules controlled by the circadian clock (named clock-controlled checkpoints) in the pathogenesis of complex disease. These include clock-controlled checkpoints such as circadian nuclear receptors in liver and muscle tissues, chemokines and adhesion molecules in the vasculature. Although the progress is encouraging, many gaps in the mechanisms remain unaddressed. Future studies should focus on devising time-dependent strategies for drug delivery and engagement in well-characterized organs such as the liver, and elucidating fundamental circadian biology in so far less characterized organ systems, including the heart, blood, peripheral neurons, and reproductive systems.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haoran Xin
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongli Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyuan Tian
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Fang Deng
- Key Laboratory of Extreme Environmental Medicine, Department of Pathophysiology, College of High Altitude Military Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
27
|
Palomino-Segura M, Hidalgo A. Circadian immune circuits. J Exp Med 2021; 218:211639. [PMID: 33372990 PMCID: PMC7774593 DOI: 10.1084/jem.20200798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Immune responses are gated to protect the host against specific antigens and microbes, a task that is achieved through antigen- and pattern-specific receptors. Less appreciated is that in order to optimize responses and to avoid collateral damage to the host, immune responses must be additionally gated in intensity and time. An evolutionary solution to this challenge is provided by the circadian clock, an ancient time-keeping mechanism that anticipates environmental changes and represents a fundamental property of immunity. Immune responses, however, are not exclusive to immune cells and demand the coordinated action of nonhematopoietic cells interspersed within the architecture of tissues. Here, we review the circadian features of innate immunity as they encompass effector immune cells as well as structural cells that orchestrate their responses in space and time. We finally propose models in which the central clock, structural elements, and immune cells establish multidirectional circadian circuits that may shape the efficacy and strength of immune responses and other physiological processes.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Matthews DR, Li H, Zhou J, Li Q, Glaser S, Francis H, Alpini G, Wu C. Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1743-1753. [PMID: 34242656 DOI: 10.1016/j.ajpath.2021.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Inflammation drives the development and progression of nonalcoholic steatohepatitis (NASH). The current study examined changes in intestinal inflammation during NASH. In male C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in severe hepatic steatosis and inflammation relative to feeding a chow diet (CD). Also, MCD-fed mice exhibited characteristics of mucosal and submucosal inflammatory responses and increased CD68+ cells compared with mice fed a CD. Moreover, intestinal phosphorylation states of c-Jun N-terminal protein kinase p46 and mRNA levels of IL-1B, IL-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 were significantly higher and intestinal mRNA levels of IL-4 and IL-13 significantly lower in MCD-fed mice compared with their respective levels in CD mice. Surprisingly, upon treatment with MCD-mimicking media, the proinflammatory responses in cultured intestinal epithelial cells (CMT-93 cells, a transformed epithelial cell line) did not differ significantly from those in intestinal epithelial cells treated with control media. In contrast, in RAW264.7 cells (transformed macrophages), MCD-mimicking media significantly increased the phosphorylation states of c-Jun N-terminal protein kinase p46 and mitogen-activated protein kinases p38 and mRNA levels of IL-1B, IL-6, IL-10, and tumor necrosis factor alpha under either basal or lipopolysaccharide-stimulated conditions. Collectively, these results suggest that increased intestinal inflammation is associated with NASH phenotype. In addition, elevated proinflammatory responses in macrophages likely contribute to, in large part, increased intestinal inflammation in NASH.
Collapse
Affiliation(s)
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Jing Zhou
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
29
|
Xu H, Zhu B, Li H, Jiang B, Wang Y, Yin Q, Cai J, Glaser S, Francis H, Alpini G, Wu C. Adipocyte inducible 6-phosphofructo-2-kinase suppresses adipose tissue inflammation and promotes macrophage anti-inflammatory activation. J Nutr Biochem 2021; 95:108764. [PMID: 33964465 DOI: 10.1016/j.jnutbio.2021.108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/11/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance. To better understand how adipocytes regulate WAT inflammation, the present study generated chimeric mice in which inducible 6-phosphofructo-2-kinase was low, normal, or high in WAT while the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) was normal in hematopoietic cells, and analyzed changes in high-fat diet (HFD)-induced WAT inflammation and systemic insulin resistance in the mice. Indicated by proinflammatory signaling and cytokine expression, the severity of HFD-induced WAT inflammation in WT → Pfkfb3+/- mice, whose Pfkfb3 was disrupted in WAT adipocytes but not hematopoietic cells, was comparable with that in WT → WT mice, whose Pfkfb3 was normal in all cells. In contrast, the severity of HFD-induced WAT inflammation in WT → Adi-Tg mice, whose Pfkfb3 was over-expressed in WAT adipocytes but not hematopoietic cells, remained much lower than that in WT → WT mice. Additionally, HFD-induced insulin resistance was correlated with the status of WAT inflammation and comparable between WT → Pfkfb3+/- mice and WT → WT mice, but was significantly lower in WT → Adi-Tg mice than in WT → WT mice. In vitro, palmitoleate decreased macrophage phosphorylation states of Jnk p46 and Nfkb p65 and potentiated the effect of interleukin 4 on suppressing macrophage proinflammatory activation. Taken together, these results suggest that the Pfkfb3 in adipocytes functions to suppress WAT inflammation. Moreover, the role played by adipocyte Pfkfb3 is attributable to, at least in part, palmitoleate promotion of macrophage anti-inflammatory activation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Boxiong Jiang
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Wang
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiongli Yin
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana, USA; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana, USA; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
30
|
Zhang Z, Zeng P, Gao W, Zhou Q, Feng T, Tian X. Circadian clock: a regulator of the immunity in cancer. Cell Commun Signal 2021; 19:37. [PMID: 33752691 PMCID: PMC7986390 DOI: 10.1186/s12964-021-00721-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The circadian clock is an endogenous timekeeper system that controls and optimizes biological processes, which are consistent with a master circadian clock and peripheral clocks and are controlled by various genes. Notably, the disruption of circadian clock genes has been identified to affect a wide range of ailments, including cancers. The cancer-immunity cycle is composed of seven major steps, namely cancer cell antigen release and presentation, priming and activation of effector immunity cells, trafficking, and infiltration of immunity to tumors, and elimination of cancer cells. Existing evidence indicates that the circadian clock functions as a gate that govern many aspects of the cancer-immunity cycle. In this review, we highlight the importance of the circadian clock during tumorigenesis, and discuss the potential role of the circadian clock in the cancer-immunity cycle. A comprehensive understanding of the regulatory function of the circadian clock in the cancer-immunity cycle holds promise in developing new strategies for the treatment of cancer. Video Abstract
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, People's Republic of China
| | - Wenhui Gao
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Ting Feng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410007, Hunan, People's Republic of China. .,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China.
| |
Collapse
|
31
|
Zhu B, Guo X, Xu H, Jiang B, Li H, Wang Y, Yin Q, Zhou T, Cai JJ, Glaser S, Meng F, Francis H, Alpini G, Wu C. Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. J Transl Med 2021; 101:328-340. [PMID: 33462362 PMCID: PMC7897240 DOI: 10.1038/s41374-020-00523-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance; however, precisely how immune cells regulate WAT inflammation in relation to systemic insulin resistance remains to be elucidated. The present study examined a role for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in hematopoietic cells in regulating WAT inflammation and systemic insulin sensitivity. Male C57BL/6J mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 12 weeks and examined for WAT inducible 6-phosphofructo-2-kinase (iPFK2) content, while additional HFD-fed mice were treated with rosiglitazone and examined for PFKFB3 mRNAs in WAT stromal vascular cells (SVC). Also, chimeric mice in which PFKFB3 was disrupted only in hematopoietic cells and control chimeric mice were also fed an HFD and examined for HFD-induced WAT inflammation and systemic insulin resistance. In vitro, adipocytes were co-cultured with bone marrow-derived macrophages and examined for adipocyte proinflammatory responses and insulin signaling. Compared with their respective levels in controls, WAT iPFK2 amount in HFD-fed mice and WAT SVC PFKFB3 mRNAs in rosiglitazone-treated mice were significantly increased. When the inflammatory responses were analyzed, peritoneal macrophages from PFKFB3-disrputed mice revealed increased proinflammatory activation and decreased anti-inflammatory activation compared with control macrophages. At the whole animal level, hematopoietic cell-specific PFKFB3 disruption enhanced the effects of HFD feeding on promoting WAT inflammation, impairing WAT insulin signaling, and increasing systemic insulin resistance. In vitro, adipocytes co-cultured with PFKFB3-disrupted macrophages revealed increased proinflammatory responses and decreased insulin signaling compared with adipocytes co-cultured with control macrophages. These results suggest that PFKFB3 disruption in hematopoietic cells only exacerbates HFD-induced WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Guo
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong, Jinan, China
| | - Hang Xu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Boxiong Jiang
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Yina Wang
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiongli Yin
- Department of VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianhao Zhou
- Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Fanyin Meng
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Collins EJ, Cervantes-Silva MP, Timmons GA, O'Siorain JR, Curtis AM, Hurley JM. Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res 2021; 31:171-185. [PMID: 33436377 PMCID: PMC7849412 DOI: 10.1101/gr.263814.120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/20/2020] [Indexed: 01/07/2023]
Abstract
Our core timekeeping mechanism, the circadian clock, plays a vital role in immunity. Although the mechanics of circadian control over the immune response is generally explained by transcriptional activation or repression derived from this clock's transcription-translation negative-feedback loop, research suggests that some regulation occurs beyond transcriptional activity. We comprehensively profiled the transcriptome and proteome of murine bone marrow-derived macrophages and found that only 15% of the circadian proteome had corresponding oscillating mRNA, suggesting post-transcriptional regulation influences macrophage clock regulatory output to a greater extent than any other tissue previously profiled. This regulation may be explained by the robust temporal enrichment we identified for proteins involved in degradation and translation. Extensive post-transcriptional temporal-gating of metabolic pathways was also observed and further corresponded with daily variations in ATP production, mitochondrial morphology, and phagocytosis. The disruption of this circadian post-transcriptional metabolic regulation impaired immune functionality. Our results demonstrate that cell-intrinsic post-transcriptional regulation is a primary driver of circadian output in macrophages and that this regulation, particularly of metabolic pathways, plays an important role in determining their response to immune stimuli.
Collapse
Affiliation(s)
- Emily J Collins
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - George A Timmons
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
33
|
Vieira E, Mirizio GG, Barin GR, de Andrade RV, Nimer NFS, La Sala L. Clock Genes, Inflammation and the Immune System-Implications for Diabetes, Obesity and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249743. [PMID: 33371208 PMCID: PMC7766955 DOI: 10.3390/ijms21249743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic β cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic β cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elaine Vieira
- Postgraduate Program on Physical Education, Universidade Católica de Brasília, DF, Taguatinga 71966-700, Brazil
- Correspondence:
| | - Gerardo Gabriel Mirizio
- Muscle Cell Physiology Laboratory, Center of Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8330015 Santiago, Chile;
| | - Geovana Reichert Barin
- Postgraduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, DF, Taguatinga 71966-700, Brazil; (G.R.B.); (R.V.d.A.); (N.F.S.N.)
| | - Rosângela Vieira de Andrade
- Postgraduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, DF, Taguatinga 71966-700, Brazil; (G.R.B.); (R.V.d.A.); (N.F.S.N.)
| | - Nidah Fawzi Said Nimer
- Postgraduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, DF, Taguatinga 71966-700, Brazil; (G.R.B.); (R.V.d.A.); (N.F.S.N.)
| | - Lucia La Sala
- Laboratory of Cardiovascular and Dysmetabolic diseases, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
34
|
Crespo M, Gonzalez-Teran B, Nikolic I, Mora A, Folgueira C, Rodríguez E, Leiva-Vega L, Pintor-Chocano A, Fernández-Chacón M, Ruiz-Garrido I, Cicuéndez B, Tomás-Loba A, A-Gonzalez N, Caballero-Molano A, Beiroa D, Hernández-Cosido L, Torres JL, Kennedy NJ, Davis RJ, Benedito R, Marcos M, Nogueiras R, Hidalgo A, Matesanz N, Leiva M, Sabio G. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. eLife 2020; 9:59258. [PMID: 33287957 PMCID: PMC7723411 DOI: 10.7554/elife.59258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis. Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by ‘clock genes’ that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils – white blood cells that protect the body by being the first response to inflammation – can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver’s daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice’s liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice’s liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver’s rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.
Collapse
Affiliation(s)
- María Crespo
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | - Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | | | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Antonia Tomás-Loba
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Noelia A-Gonzalez
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | | | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.,CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Lourdes Hernández-Cosido
- Department of General Surgery, University Hospital of Salamanca-IBSAL, Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norman J Kennedy
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Ruben Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.,CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos (CNIC), Madrid, Spain
| |
Collapse
|
35
|
Guo X, Zhu B, Xu H, Li H, Jiang B, Wang Y, Zheng B, Glaser S, Alpini G, Wu C. Adoptive transfer of Pfkfb3-disrupted hematopoietic cells to wild-type mice exacerbates diet-induced hepatic steatosis and inflammation. LIVER RESEARCH 2020; 4:136-144. [PMID: 34336366 PMCID: PMC8320599 DOI: 10.1016/j.livres.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Hepatic steatosis and inflammation are key characteristics of non-alcoholic fatty liver disease (NAFLD). However, whether and how hepatic steatosis and liver inflammation are differentially regulated remains to be elucidated. Considering that disruption of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3/iPfk2) dissociates fat deposition and inflammation, the present study examined a role for Pfkfb3/iPfk2 in hematopoietic cells in regulating hepatic steatosis and inflammation in mice. METHODS Pfkfb3-disrupted (Pfkfb3 +/-) mice and wild-type (WT) littermates were fed a high-fat diet (HFD) and examined for NAFLD phenotype. Also, bone marrow cells isolated from Pfkfb3 +/- mice and WT mice were differentiated into macrophages for analysis of macrophage activation status and for bone marrow transplantation (BMT) to generate chimeric (WT/BMT- Pfkfb3 +/-) mice in which Pfkfb3 was disrupted only in hematopoietic cells and control chimeric (WT/BMT-WT) mice. The latter were also fed an HFD and examined for NAFLD phenotype. In vitro, hepatocytes were co-cultured with bone marrow-derived macrophages and examined for hepatocyte fat deposition and proinflammatory responses. RESULTS After the feeding period, HFD-fed Pfkfb3 +/- mice displayed increased severity of liver inflammation in the absence of hepatic steatosis compared with HFD-fed WT mice. When inflammatory activation was analyzed, Pfkfb3 +/- macrophages revealed increased proinflammatory activation and decreased anti-proinflammatory activation. When NAFLD phenotype was analyzed in the chimeric mice, WT/BMT-Pfkfb3 +/- mice displayed increases in the severity of HFD-induced hepatic steatosis and inflammation compared with WT/BMT-WT mice. At the cellular level, hepatocytes co-cultured with Pfkfb3 +/- macrophages revealed increased fat deposition and proinflammatory responses compared with hepatocytes co-cultured with WT macrophages. CONCLUSIONS Pfkfb3 disruption only in hematopoietic cells exacerbates HFD-induced hepatic steatosis and inflammation whereas the Pfkfb3/iPfk2 in nonhematopoietic cells appeared to be needed for HFD feeding to induce hepatic steatosis. As such, the Pfkfb3/iPfk2 plays a unique role in regulating NAFLD pathophysiology.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition, Texas A&M University, College Station, TX, USA,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, TX, USA,Department of VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hang Xu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Boxiong Jiang
- Department of VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yina Wang
- Department of VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Benrong Zheng
- Department of VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shannon Glaser
- Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, USA,Corresponding author. Department of Nutrition, Texas A&M University, College Station, TX, USA. (C. Wu)
| |
Collapse
|
36
|
Timmons GA, O'Siorain JR, Kennedy OD, Curtis AM, Early JO. Innate Rhythms: Clocks at the Center of Monocyte and Macrophage Function. Front Immunol 2020; 11:1743. [PMID: 32849621 PMCID: PMC7417365 DOI: 10.3389/fimmu.2020.01743] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
The circadian cycle allows organisms to track external time of day and predict/respond to changes in the external environment. In higher order organisms, circadian rhythmicity is a central feature of innate and adaptive immunity. We focus on the role of the molecular clock and circadian rhythmicity specifically in monocytes and macrophages of the innate immune system. These cells display rhythmicity in their internal functions, such as metabolism and inflammatory mediator production as well as their external functions in pathogen sensing, phagocytosis, and migration. These inflammatory mediators are of clinical interest as many are therapeutic targets in inflammatory disease such as cardiovascular disease, diabetes, and rheumatoid arthritis. Moreover, circadian rhythm disruption is closely linked with increased prevalence of these conditions. Therefore, understanding the mechanisms by which circadian disruption affects monocyte/macrophage function will provide insights into novel therapeutic opportunities for these chronic inflammatory diseases.
Collapse
Affiliation(s)
- George A Timmons
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oran D Kennedy
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James O Early
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
37
|
Lai KY, Sarkar C, Ni MY, Gallacher J, Webster C. Exposure to light at night (LAN) and risk of obesity: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2020; 187:109637. [PMID: 32497902 DOI: 10.1016/j.envres.2020.109637] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is emerging evidence of the association between light at night (LAN) exposure and weight gain. OBJECTIVE We aim to conduct a systematic review and meta-analysis of observational studies on the association between LAN exposure and risk of obesity in human subjects. METHODS Peer-reviewed observational studies were systematically searched from MEDLINE (EBSCO), Academic Search Complete (EBSCO), CINAHL Plus (EBSCO) and PubMed up to December 24, 2019. Random-effects models were developed to estimate the associations between LAN exposure and weight-related outcomes of overweight and obesity as measured by body mass index (BMI), waist circumference, waist-hip-ratio and waist-to-height-ratio. The I2 statistic was used to assess the degree of heterogeneity across studies. The National Toxicology Program's Office of Health Assessment and Translation (OHAT) risk of bias rating tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline were respectively employed to assess the risk of bias and to appraise the quality of the generated evidence. RESULTS A total of 12 studies (three with longitudinal and nine of cross-sectional design) published between 2003 and 2019 were included for systematic review, while seven of them fulfilling the inclusion/exclusion criteria were included in the meta-analysis. A higher LAN exposure was significantly associated with 13% higher odds of overweight (BMI≥25 kg/m2) (Summary Odds Ratio; SOR: 1.13, 95% CI: 1.10-1.16) with low heterogeneity (I2 = 27.27%), and 22% higher odds of obesity (BMI≥30 kg/m2) (SOR: 1.22, 95% CI: 1.07-1.38) with substantial heterogeneity (I2 = 85.96%). Stratifying analyses by the levels of measurement of LAN exposures (macro-, meso- and micro-levels) and time of LAN measurement (including before and while sleeping) consistently produced robust estimates, with higher exposure to LAN being positively associated with poorer weight outcomes. Assessment of risk of bias identified substantial detection bias for exposure, with over half of the pooled studies employing subjective LAN measures. The overall evidence of the association between LAN exposure and risk of obesity was rated as 'moderate' as per the GRADE guideline. CONCLUSIONS Exposure to LAN was reported to be a significant risk factor for overweight and obesity. Prospectively designed future studies with objectively measured multi-level LAN exposures and weight outcomes are required.
Collapse
Affiliation(s)
- Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Michael Y Ni
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Gallacher
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
38
|
Could SCGF-Beta Levels Be Associated with Inflammation Markers and Insulin Resistance in Male Patients Suffering from Obesity-Related NAFLD? Diagnostics (Basel) 2020; 10:diagnostics10060395. [PMID: 32545215 PMCID: PMC7345627 DOI: 10.3390/diagnostics10060395] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
One of the pathologic hallmarks of obesity is macrophage infiltration of adipose tissue that has been confirmed as source of multipotent adult stem cells. Stem cell growth factor-beta (SCGF-β) shows activity on granulocyte/macrophage progenitor cells in combination with granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Obesity-associated inflammation induces insulin resistance (IR), which is central to nonalcoholic fatty liver disease (NAFLD) or hepatic steatosis (HS). We searched for relationship between levels of SCGF-β and those of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-β (TNF-β), interleukin-12p40 (IL-12p40), interleukin-10 (IL-10), ferritin, GM-CSF and M-CSF and between SCGF-β concentrations and IR in obese patients with HS. Eighty obese patients were retrospectively studied. Serum cytokines levels were appreciated by magnetic bead-based multiplex immunoassays. IR was evaluated by homeostatic model assessment (HOMA), HOMA-derived β-cell function (HOMA-B%), quantitative insulin sensitivity check Index (QUICKI) and single point insulin sensitivity estimator (SPISE). HS and spleen volume were assessed by ultrasonography (US). SCGF-β and IL-6 levels predicted HOMA values (p = 0.032 and 0.041, respectively) only in males. In male patients, CRP and IL-6 levels (p = 0.007) predicted SCGF-β concentrations (p = 0.03 and 0.007, respectively), which in turn predicted HS at US, p = 0.037. SCGF-β levels were linked to IR and HS severity with the mediation role of CRP. IL-10 levels negatively predicted SCGF-β concentrations (p = 0.033). M-CSF levels predicted serum concentration of both TNF-β and IL-12p40 (p = 0.00), but did not predict serum IL-10 (p = 0.30). Prediction of HOMA values by SCGF-β levels, likely mediated by markers of inflammation, characterizes this study, shedding some light on mechanisms inducing/worsening IR of male patients with obesity-related NAFLD.
Collapse
|
39
|
Du S, Chen G, Yuan B, Hu Y, Yang P, Chen Y, Zhao Q, Zhou J, Fan J, Zeng Z. DNA sensing and associated type 1 interferon signaling contributes to progression of radiation-induced liver injury. Cell Mol Immunol 2020; 18:1718-1728. [PMID: 32203191 DOI: 10.1038/s41423-020-0395-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
Liver damage upon exposure to ionizing radiation (IR), whether accidental or therapeutic, can contribute to liver dysfunction. Currently, radiotherapy (RT) is used for various cancers including hepatocellular carcinoma (HCC); however, the treatment dose is limited by radiation-induced liver disease (RILD) with a high mortality rate. Furthermore, the precise molecular mechanisms of RILD remain poorly understood. Here, we investigated RILD pathogenesis using various knockout mouse strains subjected to whole-liver irradiation. We found that hepatocytes released a large quantity of double-stranded DNA (dsDNA) after irradiation. The cGAS-STING pathway in non-parenchymal cells (NPCs) was promptly activated by this dsDNA, causing interferon (IFN)-I production and release and concomitant hepatocyte damage. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against RILD. Moreover, clinically irradiated human peri-HCC liver tissues exhibited substantially higher STING and IFNβ expression than non-irradiated tissues. Increased serum IFNβ concentrations post-radiation were associated with RILD development in patients. These results delineate cGAS-STING induced type 1 interferon release in NPCs as a key mediator of IR-induced liver damage and described a mechanism of innate-immunity-driven pathology, linking cGAS-STING activation with amplification of initial radiation-induced liver injury.
Collapse
Affiliation(s)
- Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qianqian Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Liver Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, Wu Y, Hu L, Wang B, Tan J. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab 2020; 34:112-123. [PMID: 32180551 PMCID: PMC7031140 DOI: 10.1016/j.molmet.2020.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Objective Chronic inflammation of adipose tissues contributes to obesity-triggered insulin resistance. Unfortunately, the potential molecular mechanisms regarding obesity-associated systemic inflammation and metabolic disorder remain complicated. Here, we report that inactive rhomboid-like protein 2 (iRhom2) was increased in overweight mice with adipose inflammation. Methods Mice with deletion of iRhom2 on a C57BL/6J background, mice without deletion of this gene (controls), and mice with deficiency of iRhom2 only in myeloid cells were fed a standard chow diet (SCD) or a high-fat diet (HFD; 60% fat calories). Then the adipose tissues or bone marrow cells were isolated for the further detection. Results After 16 weeks on a high-fat diet (HFD), obesity, chronic inflammation in adipose tissues, and insulin resistance were markedly mitigated in iRhom2 knockout (iRhom2 KO) mice, whereas these parameters were exaggerated in iRhom2 overactivated mice. The adverse influences of iRhom2 on adipose inflammation and associated pathologies were determined in db/db mice. We further demonstrated that, in response to an HFD, iRhom2 KO mice and mice with deletion only in the myeloid cells showed less severe adipose inflammation and insulin resistance than control groups. Conversely, transplantation of bone marrow cells from normal mice to iRhom2 KO mice unleashed severe systemic inflammation and metabolic dysfunction after HFD ingestion. Conclusion We identified iRhom2 as a key regulator that promotes obesity-associated metabolic disorders. Loss of iRhom2 from macrophages in adipose tissues may indirectly restrain inflammation and insulin resistance via blocking crosslinks between macrophages and adipocytes. Hence, iRhom2 may be a therapeutic target for obesity-induced metabolic dysfunction. iRhom2 deletion protects against high fat diet-induced obesity. Alteration of iRhom2 activity is coupled with high fat diet-triggered adipose inflammation. Myeloid cell-specific iRhom2 knockout reduces high fat diet-induced adipose inflammation and dyslipidemia. iRhom2 expression only in myeloid cells increases high fat diet-induced adipose inflammation and dyslipidemia.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Yuting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
41
|
Zhou J, Li H, Cai Y, Ma L, Matthews D, Lu B, Zhu B, Chen Y, Qian X, Xiao X, Li Q, Guo S, Huo Y, Zhao L, Tian Y, Li Q, Wu C. Mice lacking adenosine 2A receptor reveal increased severity of MCD-induced NASH. J Endocrinol 2019; 243:JOE-19-0198.R1. [PMID: 31505462 PMCID: PMC7050433 DOI: 10.1530/joe-19-0198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
Adenosine 2A receptor (A2AR) exerts a protective role in obesity-related non-alcoholic fatty liver disease. Here, we examined whether A2AR protects against non-alcoholic steatohepatitis (NASH). In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregation of macrophages in the liver compared with mice fed a chow diet. MCD feeding also significantly increased the numbers of A2AR-positive macrophages/Kupffer cells in liver sections although decreasing A2AR amount in liver lysates compared with chow diet feeding. Next, MCD-induced NASH phenotype was examined in A2AR-disrupted mice and control mice. Upon MCD feeding, A2AR-disruptd mice and control mice displayed comparable decreases in body weight and fat mass. However, MCD-fed A2AR-disrupted mice revealed greater liver weight and increased severity of hepatic steatosis compared with MCD-fed control mice. Moreover, A2AR-disupted mice displayed increased severity of MCD-induced liver inflammation, indicated by massive aggregation of macrophages and increased phosphorylation states of Jun-N terminal kinase (JNK) p46 and nuclear factor kappa B (NFκB) p65 and mRNA levels of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6. In vitro, incubation with MCD-mimicking media increased lipopolysaccharide (LPS)-induced phosphorylation states of JNK p46 and/or NFκB p65 and cytokine mRNAs in control macrophages and RAW264.7 cells, but not primary hepatocytes. Additionally, MCD-mimicking media significantly increased lipopolysaccharide-induced phosphorylation states of p38 and NFκB p65 in A2AR-deficient macrophages, but insignificantly decreased lipopolysaccharide-induced phosphorylation states of JNK p46 and NFκB p65 in A2AR-deficient hepatocytes. Collectively, these results suggest that A2AR disruption exacerbates MCD-induced NASH, which is attributable to, in large part, increased inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Yuli Cai
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, China
| | - Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Destiny Matthews
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Bangchao Lu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Geriatrics, the Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangshu 211166, USA
| | - Bilian Zhu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yanming Chen
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoxian Qian
- Department of Cardiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Liang Zhao
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
42
|
Li Y, Sun JP, Wang J, Lu WH, Xie LY, Lv J, Li HX, Yang SF. Expression of Vsig4 attenuates macrophage-mediated hepatic inflammation and fibrosis in high fat diet (HFD)-induced mice. Biochem Biophys Res Commun 2019; 516:858-865. [PMID: 31266632 DOI: 10.1016/j.bbrc.2019.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
The innate immune response contributes to hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). However, the pathogenic mechanism of NAFLD is still poorly understood. The costimulatory molecule V-set and immunoglobulin domain-containing protein-4 (Vsig4), which is exclusively expressed on macrophages, shows significant role in regulating macrophage-mediated inflammation. Here, we attempted to explore if Vsig4 expression was involved in high fat diet (HFD)-induced NAFLD. The results indicated that Vsig4 expression was markedly down-regulated in fatty livers of NAFLD patients and obese mice. Vsig4 knockout accelerated HFD-induced metabolic dysfunction. In addition, the loss of Vsig4 significantly promoted insulin resistance and lipid deposition in liver samples of HFD-challenged mice. Furthermore, HFD-induced inflammation was apparently accelerated in Vsig4 knockout mice by further activating nuclear factor-κB (NF-κB) signaling pathway. Also, Vsig4 deficient mice exhibited greater collagen accumulation in hepatic samples in HFD-challenged mice compared to the WT mice, which was through promoting transforming growth factor-β1 (TGFβ1) signaling. Importantly, we found that lipopolysaccharide (LPS)- or TGFβ1-stimulated inflammation and fibrosis in primary hepatocytes and hepatic stellate cells, respectively, were markedly exacerbated by co-culture with condition medium from bone marrow-derived macrophages (BMDMs) with Vsig4 deficiency. Finally, transplantation of bone marrow cells from control mice to Vsig4-knockout mice restored the severity of steatosis, inflammation and fibrosis after HFD feeding. Therefore, loss of Vsig4 accelerated the severity of lipid deposition, fibrosis and the inflammatory response. Vsig4 could be a therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Ji-Ping Sun
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, Shaanxi, 721000, China
| | - Wan-Hong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China
| | - Li-Yi Xie
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China
| | - Jing Lv
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China
| | - Hui-Xian Li
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China
| | - Shi-Feng Yang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China.
| |
Collapse
|
43
|
Role of Proinflammatory Cytokines in Feedback Modulation of Circadian Clock Gene Rhythms by Saturated Fatty Acids. Sci Rep 2019; 9:8909. [PMID: 31222133 PMCID: PMC6586641 DOI: 10.1038/s41598-019-45322-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 01/03/2023] Open
Abstract
Proinflammatory signaling cascades have been implicated in the mechanism by which high fat diet (HFD) and saturated fatty acids (SFA) modulate fundamental circadian properties of peripheral clocks. Because the cytokines TNFα and IL-6 are key signals in HFD- and SFA-induced proinflammatory responses that ultimately lead to systemic insulin resistance, the present study examined the roles of these cytokines in the feedback modulation of peripheral circadian clocks by the proinflammatory SFA, palmitate. IL-6 and TNFα secretion in Bmal1-dLuc fibroblast cultures was increased during palmitate treatment although the time course and amplitude of the inductive response differed between these cytokines. Similar to the time-dependent phase shifts observed in response to palmitate, treatment with IL-6 or with the low dose (0.1 ng/ml) of TNFα at hour 12 (i.e., after forskolin synchronization) induced phase advances of fibroblast Bmal1-dLuc rhythms. In complementary experiments, treatment with neutralizing antibodies against these proinflammatory cytokines or their receptors to inhibit of IL-6- or TNFα-mediated signaling repressed palmitate-induced phase shifts of the fibroblast clock. These studies suggest that TNFα, IL-6 and other proinflammatory cytokines may mediate the feedback modulation of peripheral circadian clocks by SFA-induced inflammatory signaling.
Collapse
|
44
|
Bai J, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 2019; 68:1099-1108. [PMID: 31109939 PMCID: PMC6610018 DOI: 10.2337/dbi18-0052] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It has been appreciated for many years that there is a strong association between metabolism and immunity in advanced metazoan organisms. Distinct immune signatures and signaling pathways have been found not only in immune but also in metabolic cells. The newly discovered DNA-sensing cGAS-cGAMP-STING pathway mediates type I interferon inflammatory responses in immune cells to defend against viral and bacterial infections. Recent studies show that this pathway is also activated by host DNA aberrantly localized in the cytosol, contributing to increased sterile inflammation, insulin resistance, and the development of nonalcoholic fatty liver disease (NAFLD). Potential interactions of the cGAS-cGAMP-STING pathway with mTORC1 signaling, autophagy, and apoptosis have been reported, suggesting an important role of the cGAS-cGAMP-STING pathway in the networking and coordination of these important biological processes. However, the regulation, mechanism of action, and tissue-specific role of the cGAS-cGAMP-STING signaling pathway in metabolic disorders remain largely elusive. It is also unclear whether targeting this signaling pathway is effective for the prevention and treatment of obesity-induced metabolic diseases. Answers to these questions would provide new insights for developing effective therapeutic interventions for metabolic diseases such as insulin resistance, NAFLD, and type 2 diabetes.
Collapse
Affiliation(s)
- Juli Bai
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| | - Feng Liu
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| |
Collapse
|
45
|
Rusu A, Ciobanu D, Bala C, Cerghizan A, Roman G. Social jetlag, sleep-related parameters, and glycemic control in adults with type 1 diabetes: Results of a cross-sectional study. J Diabetes 2019; 11:394-401. [PMID: 30302947 DOI: 10.1111/1753-0407.12867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/02/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Social jetlag (SJL) is a small recurrent circadian rhythm disruption and the most frequent form of circadian rhythm misalignment. The main aim of this study was to investigate the effect of SJL on glycemic control, as assessed by HbA1c, in real-life settings. METHODS In all, 115 consecutive patients with type 1 diabetes (T1D) were analyzed cross-sectionally. Data on bedtime, sleep onset latency, and wake up time on weekdays and weekends during the previous month were collected from all participants and used to calculate SJL, chronotype, and sleep duration. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI). A PSQI score > 5 was considered as an indicator of poor sleep quality. RESULTS Patients with SJL ≥ 1 hour had significantly higher adjusted values of HbA1c than those with SJL <1 hour (8.7% vs 8.0%; P = 0.029). In unadjusted multivariate regression analysis, SJL ≥ 1 hour and poor sleep quality were significant predictors of HbA1c values, explaining 22.7% and 23.5%, respectively, of the increase in HbA1c. After adjusting for age, sex, diabetes duration, insulin dose (kg/d), insulin regimen and body mass index, only SJL ≥ 1 hour remained associated with HbA1c (β = 0.253; P = 0.026). There was no significant interaction between SJL ≥ 1 hour and poor sleep quality in either the unadjusted or adjusted models (Pinteraction = 0.914). CONCLUSIONS In patients with T1D, SJL is associated with poor glycemic control, acting independently of sleep quality, sleep duration, and chronotype to exert a deleterious effect on glycemic control.
Collapse
Affiliation(s)
- Adriana Rusu
- Department of Diabetes and Nutrition Diseases, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Ciobanu
- Department of Diabetes and Nutrition Diseases, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Bala
- Department of Diabetes and Nutrition Diseases, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Clinical Diabetes Center, Emergency County Hospital Cluj, Cluj-Napoca, Romania
| | - Anca Cerghizan
- Clinical Diabetes Center, Emergency County Hospital Cluj, Cluj-Napoca, Romania
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Clinical Diabetes Center, Emergency County Hospital Cluj, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Gobert F, Luauté J, Raverot V, Cotton F, Dailler F, Claustrat B, Perrin F, Gronfier C. Is circadian rhythmicity a prerequisite to coma recovery? Circadian recovery concomitant to cognitive improvement in two comatose patients. J Pineal Res 2019; 66:e12555. [PMID: 30633817 DOI: 10.1111/jpi.12555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 01/15/2023]
Abstract
Circadian rhythmicity (CR) is involved in the regulation of all integrated functions, from sleep-wake cycle regulation to metabolic function, mood and cognition. However, the interdependence of CR, cognition and consciousness has been poorly addressed. To clarify the state of CR in coma and to determine the chronological relationship between its recovery and consciousness after brain lesions, we conducted a longitudinal observational study investigating how the state of CR was chronologically related with the recovery of behavioural wakefulness, cognition and/or awareness. Among 16 acute comatose patients, we recruited two 37-year-old patients with a persistent disorder of consciousness, presenting diencephalic lesions caused by severe traumatic brain injuries. Two biological urinary markers of CR were explored every 2 hours during 24 hours (6-sulfatoxymelatonin, free cortisol) with a dedicated methodology to extract the endogenous component of rhythmicity (environmental light recording, near-constant-routine protocol, control of beta-blockers). They presented an initial absence of rhythmic secretions and a recovered CR 7-8 months later. This recovery was not associated with the restoration of behavioural wakefulness, but with an improvement of cognition and awareness (up to the minimally conscious state). MRI showed a lesion pattern compatible with the interruption of either the main hypothalamic-sympathetic pathway or the accessory habenular pathway. These results suggest that CR may be a prerequisite for coma recovery with a potential but still unproven favourable effect on brain function of the resorted circadian melatonin secretion and/or the functional recovery of the suprachiasmatic nucleus (SCN). Assessing circadian functions by urinary melatonin should be further explored as a biomarker of cognition reappearance and investigated to prognosticate functional recovery.
Collapse
Affiliation(s)
- Florent Gobert
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
- ImpAct Team (Integrative, Multisensory, Perception, Action & Cognition), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Center (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Lyon, France
| | - Jacques Luauté
- ImpAct Team (Integrative, Multisensory, Perception, Action & Cognition), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
- Neuro-Rehabilitation Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Véronique Raverot
- Hormone Laboratory, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - François Cotton
- Radiology Unit, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Benite, France
- CREATIS-LRMN (CNRS UMR 5220 - INSERM U630), Villeurbanne, France
| | - Frédéric Dailler
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Bruno Claustrat
- Hormone Laboratory, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Center (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Lyon, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
47
|
Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P. The connection of circadian rhythm to inflammatory bowel disease. Transl Res 2019; 206:107-118. [PMID: 30615844 DOI: 10.1016/j.trsl.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic, immune system-mediated inflammatory diseases that primarily affect the gastrointestinal tract. The pathogenesis of the intestinal lesions in IBD remains elusive, but the inflammation process could be the result of dysfunction of the innate and adaptive immune systems induced by genetic and environmental factors. In recent years, research has demonstrated a connection between environmental stressors that can influence day-night variations, also called circadian rhythms, and digestive health. In this review, we focus on alterations in the complex interactions between intestinal mucosa, microbial factors, and the immune response in the intestinal milieu. We introduce the mechanisms that establish circadian rhythms and their regulation by the circadian rhythm genes. Evidence of circadian variation in the defense mechanisms of the intestine and its implication in the maintenance of a healthy microbiota are presented. Disruption of the circadian system can increase the activity of the gut immune system and the release of inflammatory factors. The link between chronodisruption or circadian rhythm impairment and IBD demonstrated by experimental and clinical studies illustrates the potential impact of circadian rhythms on treatment of these diseases. Future studies that investigate aspects of this subject are warranted.
Collapse
Affiliation(s)
- Marie Gombert
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Biotechnology, University of La Rochelle, La Rochelle, France
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - Gonzalo Pin-Arboledas
- Department of Pediatrics, Pediatric Sleep Unit, Hospital Quironsalud, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain; Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.
| |
Collapse
|
48
|
Abstract
The epidemic of Type 2 diabetes mellitus necessitates development of novel therapeutic and preventative strategies to attenuate expansion of this debilitating disease. Evidence links the circadian system to various aspects of diabetes pathophysiology and treatment. The aim of this review will be to outline the rationale for therapeutic targeting of the circadian system in the treatment and prevention of Type 2 diabetes mellitus and consequent metabolic comorbidities.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
49
|
Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of Metabolic Syndrome and Dietary Intervention. Int J Mol Sci 2018; 20:ijms20010128. [PMID: 30602666 PMCID: PMC6337367 DOI: 10.3390/ijms20010128] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
The growing prevalence of metabolic syndrome (MetS) in the U.S. and even worldwide is becoming a serious health problem and economic burden. MetS has become a crucial risk factor for the development of type 2 diabetes mellitus (T2D) and cardiovascular diseases (CVD). The rising rates of CVD and diabetes, which are the two leading causes of death, simultaneously exist. To prevent the progression of MetS to diabetes and CVD, we have to understand how MetS occurs and how it progresses. Too many causative factors interact with each other, making the investigation and treatment of metabolic syndrome a very complex issue. Recently, a number of studies were conducted to investigate mechanisms and interventions of MetS, from different aspects. In this review, the proposed and demonstrated mechanisms of MetS pathogenesis are discussed and summarized. More importantly, different interventions are discussed, so that health practitioners can have a better understanding of the most recent research progress and have available references for their daily practice.
Collapse
Affiliation(s)
- Hang Xu
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Xiaopeng Li
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hannah Adams
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Karen Kubena
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Shaodong Guo
- Department of Nutrition and Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
50
|
Luo X, Li H, Ma L, Zhou J, Guo X, Woo SL, Pei Y, Knight LR, Deveau M, Chen Y, Qian X, Xiao X, Li Q, Chen X, Huo Y, McDaniel K, Francis H, Glaser S, Meng F, Alpini G, Wu C. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology 2018; 155:1971-1984.e4. [PMID: 30213555 PMCID: PMC6279491 DOI: 10.1053/j.gastro.2018.09.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Transmembrane protein 173 (TMEM173 or STING) signaling by macrophage activates the type I interferon-mediated innate immune response. The innate immune response contributes to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). We investigated whether STING regulates diet-induced in hepatic steatosis, inflammation, and liver fibrosis in mice. METHODS Mice with disruption of Tmem173 (STINGgt) on a C57BL/6J background, mice without disruption of this gene (controls), and mice with disruption of Tmem173 only in myeloid cells were fed a standard chow diet, a high-fat diet (HFD; 60% fat calories), or a methionine- and choline-deficient diet (MCD). Liver tissues were collected and analyzed by histology and immunohistochemistry. Bone marrow cells were isolated from mice, differentiated into macrophages, and incubated with 5,6-dimethylxanthenone-4-acetic acid (DMXAA; an activator of STING) or cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). Macrophages or their media were applied to mouse hepatocytes or human hepatic stellate cells (LX2) cells, which were analyzed for cytokine expression, protein phosphorylation, and fat deposition (by oil red O staining after incubation with palmitate). We obtained liver tissues from patients with and without NAFLD and analyzed these by immunohistochemistry. RESULTS Non-parenchymal cells of liver tissues from patients with NAFLD had higher levels of STING than cells of liver tissues from patients without NAFLD. STINGgt mice and mice with disruption only in myeloid cells developed less severe hepatic steatosis, inflammation, and/or fibrosis after the HFD or MCD than control mice. Levels of phosphorylated c-Jun N-terminal kinase and p65 and mRNAs encoding tumor necrosis factor and interleukins 1B and 6 (markers of inflammation) were significantly lower in liver tissues from STINGgt mice vs control mice after the HFD or MCD. Transplantation of bone marrow cells from control mice to STINGgt mice restored the severity of steatosis and inflammation after the HFD. Macrophages from control, but not STINGgt, mice increased markers of inflammation in response to lipopolysaccharide and cGAMP. Hepatocytes and stellate cells cocultured with STINGgt macrophages in the presence of DMXAA or incubated with the medium collected from these macrophages had decreased fat deposition and markers of inflammation compared with hepatocytes or stellate cells incubated with control macrophages. CONCLUSIONS Levels of STING were increased in liver tissues from patients with NAFLD and mice with HFD-induced steatosis. In mice, loss of STING from macrophages decreased the severity of liver fibrosis and the inflammatory response. STING might be a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xianjun Luo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Honggui Li
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Linqiang Ma
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA,,Department of Endocrinology, Texas A&M University, College Station, TX 77843, USA,Department of the Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Xin Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Ya Pei
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Linda R. Knight
- Department of Radiation Oncology, Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX 77843, USA
| | - Michael Deveau
- Department of Radiation Oncology, Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX 77843, USA
| | - Yanming Chen
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoxian Qian
- Department of Cardiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, Texas A&M University, College Station, TX 77843, USA
| | - Qifu Li
- Department of the Laboratory of Lipid & Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangbai Chen
- Department of Pathology, Baylor Scott & White Health, College Station, TX 77845; USA
| | - Yuqing Huo
- Department of Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kelly McDaniel
- Department of Research, Central Texas Veterans Health Care System,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504
| | - Heather Francis
- Department of Research, Central Texas Veterans Health Care System,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504
| | - Shannon Glaser
- Department of Research, Central Texas Veterans Health Care System,Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medical Physiology, Texas A&M University College of Medicine, Temple, Texas.
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas.
| |
Collapse
|