1
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
2
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2024:e0015422. [PMID: 39584819 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Zeng Z, Li M, Zhu S, Zhang K, Wu Y, Zheng M, Cao Y, Huang Z, Liao Q, Zhang L. Strain-level genomic analysis of serotype, genotype and virulence gene composition of group B streptococcus. Front Cell Infect Microbiol 2024; 14:1396762. [PMID: 39569407 PMCID: PMC11576427 DOI: 10.3389/fcimb.2024.1396762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction GBS (group B streptococcus) is an opportunistic pathogen that can colonize healthy individuals but presents significant challenges in clinical obstetrics and gynecology, as it can cause miscarriage, preterm birth, and invasive infections in newborns. To develop specific and personalized preventative strategies, a better understanding of the epidemiological characteristics and pathogenic features of GBS is essential. Methods We conducted a comprehensive strain-level genomic analysis of GBS, examining serotype and genotype distributions, as well as the composition and correlations of virulence genes using the blastn-short mode of the BLAST program(v2.10.0+), mlstsoftware (https://github.com/tseemann/mlst), Snippy (v4.6.0), FastTree (v2.1.11) and iTOL. The coding sequence region of virulence factors was annotated by Prodigal (v2.6.3) and Glimmer(v3.02b). We further identified host protein interacting with Srr2 by mass spectrometry analysis. Results While certain genotypes showed strong serotype consistency, there was no significant association between overall serotypes and genotypes. However, the composition of virulence genes was more closely related to the phylogeny of GBS, among which simultaneous presence of Srr2 and HygA exhibit significant association with hypervirulence. Tubulin emerged as the most distinct and abundant hit. The specific interaction of Tubulin with Srr2-BR, rather than Srr1-BR, was further confirmed by immunoblotting. Discussion Considering the impact of cytoskeleton rearrangement on GBS pathogenesis, this observation offers a plausible explanation for the hypervirulence triggered by Srr2. Collectively, our findings indicate that in the future clinical practice, virulence gene detection should be given more attention to achieve precise GBS surveillance and disease prevention.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Simin Zhu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ke Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yifan Wu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minzi Zheng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenyu Huang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Coppolino F, Berbiglia A, Lentini G, Famà A, Pietrocola G, Teti G, Beninati C, De Gaetano GV. Role of the SaeRS Two-Component Regulatory System in Group B Streptococcus Biofilm Formation on Human Fibrinogen. Microorganisms 2024; 12:2096. [PMID: 39458405 PMCID: PMC11510217 DOI: 10.3390/microorganisms12102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus or GBS, is a commensal colonizer of human vaginal and gastrointestinal tracts that can also be a deadly pathogen for newborns, pregnant women, and the elderly. The SaeRS two-component regulatory system (TCS) positively regulates the expression of two GBS adhesins genes, but its role in the formation of biofilm, an important step in pathogenesis, has not been investigated. In the present study, we set up a novel model of GBS biofilm formation using surfaces coated with human fibrinogen (hFg). Biofilm mass and structure were analyzed by crystal violet staining and three-dimensional fluorescence microscopy, respectively. GBS growth on hFg resulted in the formation of a mature and abundant biofilm composed of bacterial cells and an extracellular matrix containing polysaccharides, proteins, and extracellular DNA (eDNA). Enzymatic and genetic analysis showed that GBS biofilm formation on hFg is dependent on proteins and eDNA in the extracellular matrix and on the presence of covalently linked cell wall proteins on the bacterial surface but not on the type-specific capsular polysaccharide. In the absence of the SaeR regulator of the SaeRS TCS, there was a significant reduction in biomass formation, with reduced numbers of bacterial cells, reduced eDNA content, and disruption of the biofilm architecture. Overall, our data suggest that GBS binding to hFg contributes to biofilm formation and that the SaeRS TCS plays an important role in this process.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Alessia Berbiglia
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Germana Lentini
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Agata Famà
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
- Scylla Biotech S.r.l., 98168 Messina, Italy
| | - Giuseppe Valerio De Gaetano
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
- Microbiology Doctoral
Training Program, University of
Wisconsin-Madison, Madison,
Wisconsin, USA
| | - Andrew J. Hryckowian
- Department of
Medicine, Division of Gastroenterology and Hepatology, University of
Wisconsin School of Medicine and Public
Health, Madison,
Wisconsin, USA
- Department of Medical
Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Healthon,
Madison, Wisconsin, USA
| |
Collapse
|
6
|
Liu K, Liu X, Yang J, Gu X, Zhang L, Qu W. Streptococcus agalactiae isolated from clinical mastitis cases on large dairy farms in north China: phenotype, genotype of antimicrobial resistance and virulence genes. Front Cell Infect Microbiol 2024; 14:1417299. [PMID: 39295731 PMCID: PMC11409094 DOI: 10.3389/fcimb.2024.1417299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024] Open
Abstract
Streptococcus agalactiae (Strep. agalactiae) is bovine mastitis pathogen and has thus became a matter of concern to dairy farms worldwide in terms of economic loss. The aims of this study were to (a) determine virulence genes, and (b) characterize the antimicrobial resistance (AMR) profiles and AMR genes and (c) figure out the relationship between AMR phenotypes and genotypes of Strep. agalactiae isolated from dairy cows in north China. A total of 20 virulence genes and 23 AMR genes of 140 isolates collected from 12 farms in six provinces were studied. The antimicrobial susceptibility of 10 veterinary commonly used antimicrobials were tested using the broth microdilution method. Results showed that all the isolates harbored the virulence genes lacIV, gapC, and dltA. The isolates that harbored the genes lacIII, fbsA, hylB, and cfb exhibited the high prevalence (99.29%), followed by isolates that harbored lacI (98.57%), bibA (97.86%), cylE (97.14%), lacII (92.14%), cspA (52.14%), pavA (25%), bca (2.14%), and scpB (0.71%). The fbsB, lmb, spbI, bac, and rib genes were not detected. The virulence patterns of B (fbsA_cfb_cylE_ hylB_bibA_cspA_ gapC_dltA_lacIII/IV) and C (fbsA_cfb_ bibA _ gapC_ dltA_lacIV) were dominant, accounting for 97.86% of the isolates. The following AMR genes were prevalent: pbp1A (97.14%), tet(M) (95.00%), lnu (A) (80.71%), erm (B) (75.00%), tet(O) (72.14%), blaZ (49.29%), tet(S) (29.29%), blaTEM (25.71%), erm (A) (17.14%), erm (C) (13.57%), tet (L) (10.71%), linB (2.86%), and erm (TR) (2.86%). The pbp2b, mecA1, mecC, lnu (D), erm (F/G/Q), and mef (A) genes were not detected. Eighty percent of the isolates harbored AMR genes and were highly resistant to tetracycline, followed by macrolides (10.71%), lincosamides (9.29%) and β-lactams (4.29%). In conclusion, isolates only exhibited well correlation between tetracyclines resistance phenotype and genotype, and almost all isolates harbored intact combination of virulence genes.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jieyan Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
8
|
Abdelaziz R, Elsheshtawy HM, El-Houseiny W, Aloufi AS, Alwutayd KM, Mansour AT, Hadad G, Arisha AH, El-Murr AE, M Yassin A. A novel metabolite of Streptomyces coeruleorubidus exhibits antibacterial activity against Streptococcus agalactiae through modulation of physiological performance, inflammatory cytokines, apoptosis, and oxidative stress-correlated gene expressions in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109496. [PMID: 38461875 DOI: 10.1016/j.fsi.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 μg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1β, il-10, tgf-β, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Yassin
- Laboratories Unit, Microbiology Department, Zagazig Univeristy Hospiltals, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Segklia K, Matsas R, Papastefanaki F. Brain Infection by Group B Streptococcus Induces Inflammation and Affects Neurogenesis in the Adult Mouse Hippocampus. Cells 2023; 12:1570. [PMID: 37371040 DOI: 10.3390/cells12121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Central nervous system infections caused by pathogens crossing the blood-brain barrier are extremely damaging and trigger cellular alterations and neuroinflammation. Bacterial brain infection, in particular, is a major cause of hippocampal neuronal degeneration. Hippocampal neurogenesis, a continuous multistep process occurring throughout life in the adult brain, could compensate for such neuronal loss. However, the high rates of cognitive and other sequelae from bacterial meningitis/encephalitis suggest that endogenous repair mechanisms might be severely affected. In the current study, we used Group B Streptococcus (GBS) strain NEM316, to establish an adult mouse model of brain infection and determine its impact on adult neurogenesis. Experimental encephalitis elicited neurological deficits and death, induced inflammation, and affected neurogenesis in the dentate gyrus of the adult hippocampus by suppressing the proliferation of progenitor cells and the generation of newborn neurons. These effects were specifically associated with hippocampal neurogenesis while subventricular zone neurogenesis was not affected. Overall, our data provide new insights regarding the effect of GBS infection on adult brain neurogenesis.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
10
|
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10:microorganisms10122483. [PMID: 36557736 PMCID: PMC9784991 DOI: 10.3390/microorganisms10122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine.
Collapse
|
11
|
Keith MF, Gopalakrishna KP, Bhavana VH, Hillebrand GH, Elder JL, Megli CJ, Sadovsky Y, Hooven TA. Nitric Oxide Production and Effects in Group B Streptococcus Chorioamnionitis. Pathogens 2022; 11:1115. [PMID: 36297171 PMCID: PMC9608865 DOI: 10.3390/pathogens11101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine infection, or chorioamnionitis, due to group B Streptococcus (GBS) is a common cause of miscarriage and preterm birth. To cause chorioamnionitis, GBS must bypass maternal-fetal innate immune defenses including nitric oxide (NO), a microbicidal gas produced by nitric oxide synthases (NOS). This study examined placental NO production and its role in host-pathogen interactions in GBS chorioamnionitis. In a murine model of ascending GBS chorioamnionitis, placental NOS isoform expression quantified by RT-qPCR revealed a four-fold expression increase in inducible NOS, no significant change in expression of endothelial NOS, and decreased expression of neuronal NOS. These NOS expression results were recapitulated ex vivo in freshly collected human placental samples that were co-incubated with GBS. Immunohistochemistry of wild type C57BL/6 murine placentas with GBS chorioamnionitis demonstrated diffuse inducible NOS expression with high-expression foci in the junctional zone and areas of abscess. Pregnancy outcomes between wild type and inducible NOS-deficient mice did not differ significantly although wild type dams had a trend toward more frequent preterm delivery. We also identified possible molecular mechanisms that GBS uses to survive in a NO-rich environment. In vitro exposure of GBS to NO resulted in dose-dependent growth inhibition that varied by serovar. RNA-seq on two GBS strains with distinct NO resistance phenotypes revealed that both GBS strains shared several detoxification pathways that were differentially expressed during NO exposure. These results demonstrate that the placental immune response to GBS chorioamnionitis includes induced NO production and indicate that GBS activates conserved stress pathways in response to NO exposure.
Collapse
Affiliation(s)
- Mary Frances Keith
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | - Gideon Hayden Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jordan Lynn Elder
- Manual Hematology and Coagulation Department, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina Joann Megli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Thomas Alexander Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- UPMC Children’s Hospital of Pittsburgh Richard King Mellon Institute for Pediatric Research, Pittsburgh, PA 15224, USA
- UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Rangos Research Building #8128, Pittsburgh, PA 15224, USA
| |
Collapse
|
12
|
Chaguza C, Jamrozy D, Bijlsma MW, Kuijpers TW, van de Beek D, van der Ende A, Bentley SD. Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion. Nat Commun 2022; 13:4215. [PMID: 35864107 PMCID: PMC9304382 DOI: 10.1038/s41467-022-31858-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA.
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Merijn W Bijlsma
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Haematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Reference Laboratory for Bacterial Meningitis, Center of Infection and Immunity Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
13
|
De Gaetano GV, Coppolino F, Lentini G, Famà A, Cullotta C, Raffaele I, Motta C, Teti G, Speziale P, Pietrocola G, Beninati C. Streptococcus pneumoniae
binds collagens and C1q
via
the SSURE repeats of the PfbB adhesin. Mol Microbiol 2022; 117:1479-1492. [PMID: 35570359 PMCID: PMC9328315 DOI: 10.1111/mmi.14920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The binding of Streptococcus pneumoniae to collagen is likely an important step in the pathogenesis of pneumococcal infections, but little is known of the underlying molecular mechanisms. Streptococcal surface repeats (SSURE) are highly conserved protein domains present in cell wall adhesins from different Streptococcus species. We find here that SSURE repeats of the pneumococcal adhesin plasminogen and fibronectin binding protein B (PfbB) bind to various types of collagen. Moreover, deletion of the pfbB gene resulted in a significant impairment of the ability of encapsulated or unencapsulated pneumococci to bind collagen. Notably, a PfbB SSURE domain is also bound to the complement component C1q that bears a collagen‐like domain and promotes adherence of pneumococci to host cells by acting as a bridge between bacteria and epithelial cells. Accordingly, deletion of PfbB or pre‐treatment with anti‐SSURE antibodies markedly decreased pneumococcal binding to C1q as well as C1q‐dependent adherence to epithelial and endothelial cells. Further data indicated that C1q promotes pneumococcal adherence by binding to integrin α2β1. In conclusion, our results indicate that the SSURE domains of the PfbB protein promote interactions of pneumococci with various types of collagen and with C1q. These repeats may be useful targets in strategies to control S. pneumoniae infections.
Collapse
Affiliation(s)
| | - Francesco Coppolino
- Department of BiomedicalDental and Imaging SciencesUniversity of MessinaMessinaItaly
| | - Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Cullotta
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Ivana Raffaele
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Motta
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Pietro Speziale
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly
- Scylla Biotech SrlMessinaItaly
| |
Collapse
|
14
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Ma X, Wu M, Wang C, Li H, Fan A, Wang Y, Han C, Xue F. The pathogenesis of prevalent aerobic bacteria in aerobic vaginitis and adverse pregnancy outcomes: a narrative review. Reprod Health 2022; 19:21. [PMID: 35090514 PMCID: PMC8796570 DOI: 10.1186/s12978-021-01292-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background Aerobic vaginitis is a common cause of vaginal discharge in reproductive-age women, increasing the risk of negative pregnancy outcomes such as premature delivery, abortion, premature rupture of membranes and stillbirth. However, the aetiology and pathogenesis of aerobic vaginitis causing negative pregnancy outcomes are still unclear, and there is no unified and standardized treatment method for aerobic vaginitis in the pregnancy period. Methods We conducted a literature search of published studies in the English language focusing on aerobic vaginitis and its association with adverse pregnancy outcomes utilizing PubMed and Web of Science from January 1973 through June 2021. The common pathogenic bacteria of aerobic vaginitis during pregnancy, such as group B Streptococcus, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae, as well as the related adverse pregnancy outcomes and existing treatments were reviewed. Results A total of 4534 articles were identified, and 97 studies that had inclusion criteria were subjected to careful review. The pathogenic bacteria of aerobic vaginitis can produce different toxins or affect the local immunity of patients and then lead to the occurrence of infection. Fresh wet mount microscopy is the preferred diagnostic method for aerobic vaginitis. Clindamycin is a common antibiotic used for aerobic vaginitis in pregnant women. The use of products combining probiotics has achieved excellent treatment success. Conclusions Future research in this field can provide insights regarding the mechanism of aerobic vaginitis-induced adverse pregnancy outcomes in humans and ways to prevent their occurrence. Aerobic vaginitis is an infection of the vagina that increases the risk of negative pregnancy outcomes. The aetiology and pathogenesis of aerobic vaginitis causing negative pregnancy outcomes are still unclear. This paper reviews the common pathogenic bacteria of aerobic vaginitis during pregnancy, and the related adverse pregnancy outcomes. We also review the existing treatment. Currently, it is believed that the microflora in aerobic vaginitis is composed of commensal aerobic microorganisms of intestinal origin, and the most frequently encountered bacteria are group B Streptococcus, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae. The pathogenic bacteria of aerobic vaginitis can produce different toxins or affect the local immunity of patients and then lead to the occurrence of infection. Fresh wet mount microscopy is the preferred diagnostic method for aerobic vaginitis. Clindamycin is a common antibiotic used for aerobic vaginitis in pregnant women. The use of products combining probiotics has achieved excellent treatment success. This study provides a reference for future research and early diagnosis and treatment during pregnancy. Future research in this field can provide insights regarding the mechanisms of aerobic vaginitis-induced adverse pregnancy outcomes in humans and ways to prevent their occurrence.
Collapse
Affiliation(s)
- Xiaotong Ma
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Ming Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China.
| |
Collapse
|
16
|
Coppolino F, Romeo L, Pietrocola G, Lentini G, De Gaetano GV, Teti G, Galbo R, Beninati C. Lysine Residues in the MK-Rich Region Are Not Required for Binding of the PbsP Protein From Group B Streptococci to Plasminogen. Front Cell Infect Microbiol 2021; 11:679792. [PMID: 34568085 PMCID: PMC8455988 DOI: 10.3389/fcimb.2021.679792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Binding to plasminogen (Plg) enables bacteria to associate with and invade host tissues. The cell wall protein PbsP significantly contributes to the ability of group B streptococci, a frequent cause of invasive infection, to bind Plg. Here we sought to identify the molecular regions involved in the interactions between Plg and PbsP. The K4 Kringle domain of the Plg molecule was required for binding of Plg to whole PbsP and to a PbsP fragment encompassing a region rich in methionine and lysine (MK-rich domain). These interactions were inhibited by free L-lysine, indicating the involvement of lysine binding sites in the Plg molecule. However, mutation to alanine of all lysine residues in the MK-rich domain did not decrease its ability to bind Plg. Collectively, our data identify a novel bacterial sequence that can interact with lysine binding sites in the Plg molecule. Notably, such binding did not require the presence of lysine or other positively charged amino acids in the bacterial receptor. These data may be useful for developing alternative therapeutic strategies aimed at blocking interactions between group B streptococci and Plg.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Letizia Romeo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | | | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
17
|
Brokaw A, Furuta A, Dacanay M, Rajagopal L, Adams Waldorf KM. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol 2021; 11:720789. [PMID: 34540718 PMCID: PMC8446444 DOI: 10.3389/fcimb.2021.720789] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.
Collapse
Affiliation(s)
- Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina M Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, University of Washington and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Thomas S, Arora S, Liu W, Churion K, Wu Y, Höök M. vhp Is a Fibrinogen-Binding Protein Related to vWbp in Staphylococcus aureus. mBio 2021; 12:e0116721. [PMID: 34340548 PMCID: PMC8406236 DOI: 10.1128/mbio.01167-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus can target a variety of tissues, causing life-threatening infections. The basis for this diversity stems from the microorganism's ability to spread in the vascular system throughout the body. To survive in blood, S. aureus coats itself with a fibrinogen (Fg)/fibrin shield. The protective shield is assembled by the coordinated actions of a number of Fg-binding bacterial proteins that manipulate the host's blood coagulation system. Several of the Fg binders appear redundant, sharing similar functional motifs. This observation led us to screen for the presence of novel proteins with significant amino acid identities to von Willebrand factor-binding protein (vWbp), a key component in the shield assembly machinery. One identified protein showed significant sequence identity with the C-terminal region of vWbp, and we consequently named it vWbp homologous protein (vhp). The vhp gene lies within a cluster of genes that encode other virulence factors in S. aureus. Although each isolate only contains one copy of the vhp gene, S. aureus has at least three distinct alleles, vhpA, B, and C, that are present in the core genome. All three vhp isoforms bind Fg with high affinity, targeting a site located in the D fragment of Fg. We further identified an ∼79 amino acid-long, conserved segment within the C-terminal region of vWbp that shares high sequence identities (54 to 67%) with the vhps and binds soluble Fg with high affinity. Further analysis of this conserved motif and the intact vhps revealed intriguing differences in the Fg binding behavior, perhaps suggesting that these proteins have similar but discrete functions in the shield assembly. IMPORTANCE The life-threatening diseases caused by multidrug-resistant Staphylococcus aureus strains are a worldwide medical problem due to treatment limitations and the lack of an effective vaccine. The ability of S. aureus to coat itself with a protective fibrinogen (Fg)/fibrin shield allows the organism to survive in blood and to disseminate and cause invasive diseases. This process represents a promising target for novel antistaphylococcal treatment strategies but is incompletely understood. S. aureus expresses a number of Fg-binding proteins. Some of these proteins have apparently redundant functions. Proteins with similar functions often share a structural or functional motif with each other. In this study, we identified a protein homologous to the C-terminal of von Willebrand factor-binding protein (vWbp), a key contributor in the Fg shield assembly that also binds Fg. Further analysis allowed us to identify a common Fg-binding motif.
Collapse
Affiliation(s)
- Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - You Wu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
20
|
Mancuso G, Midiri A, Beninati C, Zummo S, Biondo C. Protective role of IL-18 in host defenses against group B Streptococcus. Eur J Clin Microbiol Infect Dis 2021; 40:2657-2663. [PMID: 34218324 DOI: 10.1007/s10096-021-04299-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the role of IL-18, a member of the IL-1 family, in group B Streptococcus (GBS) infection. Both in a neonatal and adult model of GBS infection, IL-18-deficient animals were significantly more susceptible to infection than WT animals. The lack of IL18 was associated with a marked reduction in IFN-γ-levels after bacterial stimulation but did not play a significant role in the recruitment of PMN to sites of GBS infection. Collectively, our data document a fundamental function of IL-18 signaling in boosting the host immune responses against GBS infection.
Collapse
Affiliation(s)
- G Mancuso
- Department of Human Pathology, University of Messina, Messina, Italy.
| | - A Midiri
- Department of Human Pathology, University of Messina, Messina, Italy
| | - C Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| | - S Zummo
- Department of Human Pathology, University of Messina, Messina, Italy
| | - C Biondo
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
21
|
van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103. [PMID: 33522633 PMCID: PMC8013792 DOI: 10.15252/embj.2020106103] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical Microbiology,Infection Prevention and Netherlands Reference Laboratory for Bacterial MeningitisAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniel A Bonsor
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
| | - Liwen Deng
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Erik Lindahl
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Verena Schmitt
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Mykola Lyndin
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
- Department of PathologySumy State UniversitySumyUkraine
| | - Alexej Schmidt
- Department of Medical BiosciencesUmeå UniversityPathology, UmeåSweden
| | - Olof R Nilsson
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
| | - Jaime Brizuela
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Elena Boero
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Eric J Sundberg
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGAUSA
| | - Jos A G van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Kelly S Doran
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Bernhard B Singer
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Gunnar Lindahl
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
- Department of ChemistryDivision of Applied MicrobiologyLund UniversityLundSweden
| | - Alex J McCarthy
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| |
Collapse
|
22
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
24
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
25
|
Baldan R, Sendi P. Precision Medicine in the Diagnosis and Management of Orthopedic Biofilm Infections. Front Med (Lausanne) 2020; 7:580671. [PMID: 33240905 PMCID: PMC7683765 DOI: 10.3389/fmed.2020.580671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
Orthopedic biofilm infections are difficult to treat and require a multidisciplinary approach to diagnostics and management. Recent advances in the field include methods to disrupt biofilm, sequencing tools, and antibiotic susceptibility tests for bacteria residing in biofilm. The observation of interclonal differences in biofilm properties of the causative microorganisms, together with considerations of comorbidities and polypharmacy in a growing aging population, calls for a personalized approach to treat these infections. In this article, we highlight aspects of precision medicine that may open new perspectives in the diagnosis and management of orthopedic biofilm infections.
Collapse
Affiliation(s)
- Rossella Baldan
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Centre for Musculoskeletal Infections, University Hospital Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. mBio 2020; 11:mBio.00728-20. [PMID: 32518186 PMCID: PMC7373188 DOI: 10.1128/mbio.00728-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.
The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.
These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted. Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence. The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host. These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted.
Collapse
|
27
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
28
|
Beninati C, Famà A, Teti G. How BspC from Streptococcus agalactiae Interacts with Host Vimentin during Meningitis. Trends Microbiol 2019; 27:727-728. [PMID: 31324435 DOI: 10.1016/j.tim.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Streptococcus agalactiae meningitis is a frequent neonatal disease associated with high mortality and permanent neurological damage. Deng et al. (PLoS Pathog., 2019) now show that interactions between the bacterial protein BspC and host cell vimentin participate in the process of invasion of the meninges by this bacterial pathogen.
Collapse
Affiliation(s)
- Concetta Beninati
- Metchnikoff Laboratory, Department of Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Charybdis Vaccines S.r.l., 98124 Messina, Italy
| | | |
Collapse
|
29
|
Arato V, Gasperini G, Giusti F, Ferlenghi I, Scarselli M, Leuzzi R. Dual role of the colonization factor CD2831 in Clostridium difficile pathogenesis. Sci Rep 2019; 9:5554. [PMID: 30944377 PMCID: PMC6447587 DOI: 10.1038/s41598-019-42000-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic bacterium and the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis. C. difficile modulates its transition from a motile to a sessile lifestyle through a mechanism of riboswitches regulated by cyclic diguanosine monophosphate (c-di-GMP). Previously described as a sortase substrate positively regulated by c-di-GMP, CD2831 was predicted to be a collagen-binding protein and thus potentially involved in sessility. By overexpressing CD2831 in C. difficile and heterologously expressing it on the surface of Lactococcus lactis, here we further demonstrated that CD2831 is a collagen-binding protein, able to bind to immobilized collagen types I, III and V as well as native collagen produced by human fibroblasts. We also observed that the overexpression of CD2831 raises the ability to form biofilm on abiotic surface in both C. difficile and L. lactis. Notably, we showed that CD2831 binds to the collagen-like domain of the human complement component C1q, suggesting a role in preventing complement cascade activation via the classical pathway. This functional characterization places CD2831 in the Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMMs) family, a class of virulence factors with a dual role in adhesion to collagen-rich tissues and in host immune evasion by binding to human complement components.
Collapse
Affiliation(s)
- Vanessa Arato
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.,University of Padova, Department of Biomedical Sciences, 35131, Padua, Italy
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100, Siena, Italy
| | - Fabiola Giusti
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Ilaria Ferlenghi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Maria Scarselli
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Rosanna Leuzzi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
30
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
31
|
De Gaetano GV, Pietrocola G, Romeo L, Galbo R, Lentini G, Giardina M, Biondo C, Midiri A, Mancuso G, Venza M, Venza I, Firon A, Trieu-Cuot P, Teti G, Speziale P, Beninati C. The Streptococcus agalactiae cell wall-anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α v integrin axis. Mol Microbiol 2018; 110:82-94. [PMID: 30030946 DOI: 10.1111/mmi.14084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/02/2023]
Abstract
Binding of microbial pathogens to host vitronectin (Vtn) is a common theme in the pathogenesis of invasive infections. In this study, we characterized the role of Vtn in the invasion of mucosal epithelial cells by Streptococcus agalactiae (i.e. group B streptococcus or GBS), a frequent human pathogen. Moreover, we identified PbsP, a previously described plasminogen-binding protein of GBS, as a dual adhesin that can also interact with human Vtn through its streptococcal surface repeat (SSURE) domains. Deletion of the pbsP gene decreases both bacterial adhesion to Vtn-coated inert surfaces and the ability of GBS to interact with epithelial cells. Bacterial adherence to and invasion of epithelial cells were either inhibited or enhanced by cell pretreatment with, respectively, anti-Vtn antibodies or Vtn, confirming the role of Vtn as a GBS ligand on host cells. Finally, antibodies directed against the integrin αv subunit inhibited Vtn-dependent cell invasion by GBS. Collectively, these results indicate that Vtn acts as a bridge between the SSURE domains of PbsP on the GBS surface and host integrins to promote bacterial invasion of epithelial cells. Therefore, inhibition of interactions between PbsP and extracellular matrix components could represent a viable strategy to prevent colonization and invasive disease by GBS.
Collapse
Affiliation(s)
- Giuseppe Valerio De Gaetano
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Letizia Romeo
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Roberta Galbo
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Germana Lentini
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Miriam Giardina
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Angelina Midiri
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Mario Venza
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Isabella Venza
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Arnaud Firon
- Institut Pasteur, Unite de Biologie des Bacteriés Pathogènes a Gram positif, CNRS ERL6002, 75015, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unite de Biologie des Bacteriés Pathogènes a Gram positif, CNRS ERL6002, 75015, Paris, France
| | - Giuseppe Teti
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
32
|
The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci Rep 2018; 8:14322. [PMID: 30254272 PMCID: PMC6156580 DOI: 10.1038/s41598-018-32774-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a frequent cause of serious disease in newborns and adults. Epidemiological evidence indicates a strong association between GBS strains belonging to the hypervirulent CC17 clonal complex and the occurrence of meningitis in neonates. We investigate here the role of PbsP, a cell wall plasminogen binding protein, in colonization of the central nervous system by CC17 GBS. Deletion of pbsP selectively impaired the ability of the CC17 strain BM110 to colonize the mouse brain after intravenous challenge, despite its unchanged capacity to persist at high levels in the blood and to invade the kidneys. Moreover, immunization with a recombinant form of PbsP considerably reduced brain infection and lethality. In vitro, pbsP deletion markedly decreased plasmin-dependent transmigration of BM110 through brain microvascular endothelial cells. Although PbsP was modestly expressed in bacteria grown under standard laboratory conditions, pbsP expression was markedly upregulated during in vivo infection or upon contact with cultured brain endothelial cells. Collectively, our studies indicate that PbsP is a highly conserved Plg binding adhesin, which is functionally important for invasion of the central nervous system by the hypervirulent CC17 GBS. Moreover, this antigen is a promising candidate for inclusion in a universal GBS vaccine.
Collapse
|
33
|
Role of Neuraminidase-Producing Bacteria in Exposing Cryptic Carbohydrate Receptors for Streptococcus gordonii Adherence. Infect Immun 2018; 86:IAI.00068-18. [PMID: 29661931 DOI: 10.1128/iai.00068-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to β-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.
Collapse
|
34
|
Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 2018; 14:e1007342. [PMID: 29659565 PMCID: PMC5919688 DOI: 10.1371/journal.pgen.1007342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment. Nucleotide-based second messengers play central functions in bacterial physiology and host-pathogen interactions. Among these signalling nucleotides, cyclic-di-AMP (c-di-AMP) synthesis was originally assumed to be essential for bacterial growth. In this study, we confirmed that the only di-adenylate cyclase enzyme in the opportunistic pathogen Streptococcus agalactiae is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable by accumulating spontaneous mutations in genes involved in osmotic regulation. We identified that c-di-AMP binds directly to four proteins necessary to maintain osmotic homeostasis, including three osmolyte transporters and the BusR transcriptional factor. We demonstrated that BusR negatively controls the expression of the busAB operon and that it is the main component leading to growth inhibition in the absence of c-di-AMP synthesis if osmoprotectants are present in the environment. Overall, c-di-AMP is essential to maintain osmotic homeostasis by coordinating osmolyte uptake and thus bacteria have developed specific mechanisms to keep c-di-AMP as the central regulator of osmotic homeostasis.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dona Sleiman
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Philippe Lanotte
- Université de Tours, Infectiologie et Santé Publique, Bactéries et Risque Materno-Fœtal, INRA UMR1282, Tours France
- Hôpital Bretonneau, Centre Hospitalier Régional et Universitaire de Tours, Service de Bactériologie-Virologie, Tours France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol 2018; 9:602. [PMID: 29686667 PMCID: PMC5900788 DOI: 10.3389/fimmu.2018.00602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Shabayek S, Spellerberg B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front Microbiol 2018; 9:437. [PMID: 29593684 PMCID: PMC5861770 DOI: 10.3389/fmicb.2018.00437] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.
Collapse
Affiliation(s)
- Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
37
|
Patras KA, Nizet V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr 2018; 6:27. [PMID: 29520354 PMCID: PMC5827363 DOI: 10.3389/fped.2018.00027] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the gastrointestinal and vaginal epithelium of a significant percentage of healthy women, with potential for ascending intrauterine infection or transmission during parturition, creating a risk of serious disease in the vulnerable newborn. This review highlights new insights on the bacterial virulence determinants, host immune responses, and microbiome interactions that underpin GBS vaginal colonization, the proximal step in newborn infectious disease pathogenesis. From the pathogen perspective, the function GBS adhesins and biofilms, β-hemolysin/cytolysin toxin, immune resistance factors, sialic acid mimicry, and two-component transcriptional regulatory systems are reviewed. From the host standpoint, pathogen recognition, cytokine responses, and the vaginal mucosal and placental immunity to the pathogen are detailed. Finally, the rationale, efficacy, and potential unintended consequences of current universal recommended intrapartum antibiotic prophylaxis are considered, with updates on new developments toward a GBS vaccine or alternative approaches to reducing vaginal colonization.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
38
|
Group B Streptococcus: developing a correlate of protection for a vaccine against neonatal infections. Curr Opin Infect Dis 2017; 29:262-7. [PMID: 26926474 DOI: 10.1097/qco.0000000000000266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Maternal vaccination to prevent invasive Group B Streptococcus (GBS) disease in infants is an important alternative strategy to intrapartum antibiotic prophylaxis. Licensure of GBS vaccines could be expedited using immunological correlates of protection. RECENT FINDINGS Between 2014 and 2015, we identified two studies that demonstrated an inverse association between invasive GBS disease and maternal serotype III capsular antibody levels greater than 1 μg/ml and greater than 3 μg/ml, and higher maternal antibody levels were associated with protection against serotype Ia disease. Furthermore, serotype Ia and III antibody levels greater than 3 μg/ml were associated with a reduced risk of GBS colonization in pregnant women.Experimental studies have investigated the use of GBS surface proteins as vaccine candidates. Although the immunogenic potential of pilus island and other surface proteins has been shown in animal-model studies, no association between maternal pilus island antibody levels and invasive GBS disease was demonstrated in infants. Additionally, several novel innate immune mediators that prevent GBS infection have been described in human and experimental studies. SUMMARY Recent studies suggest that maternal capsular antibody thresholds may be used as immunological correlates of protection for vaccine licensure. Surface proteins, as candidate vaccines or conjugates to the polysaccharide-protein vaccine, may broaden protection against invasive GBS disease.
Collapse
|
39
|
Vornhagen J, Adams Waldorf KM, Rajagopal L. Perinatal Group B Streptococcal Infections: Virulence Factors, Immunity, and Prevention Strategies. Trends Microbiol 2017. [PMID: 28633864 DOI: 10.1016/j.tim.2017.05.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group B streptococcus (GBS) or Streptococcus agalactiae is a β-hemolytic, Gram-positive bacterium that is a leading cause of neonatal infections. GBS commonly colonizes the lower gastrointestinal and genital tracts and, during pregnancy, neonates are at risk of infection. Although intrapartum antibiotic prophylaxis during labor and delivery has decreased the incidence of early-onset neonatal infection, these measures do not prevent ascending infection that can occur earlier in pregnancy leading to preterm births, stillbirths, or late-onset neonatal infections. Prevention of GBS infection in pregnancy is complex and is likely influenced by multiple factors, including pathogenicity, host factors, vaginal microbiome, false-negative screening, and/or changes in antibiotic resistance. A deeper understanding of the mechanisms of GBS infections during pregnancy will facilitate the development of novel therapeutics and vaccines. Here, we summarize and discuss important advancements in our understanding of GBS vaginal colonization, ascending infection, and preterm birth.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Global Health, University of Washington, Seattle, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Kannika K, Pisuttharachai D, Srisapoome P, Wongtavatchai J, Kondo H, Hirono I, Unajak S, Areechon N. Molecular serotyping, virulence gene profiling and pathogenicity of
Streptococcus agalactiae
isolated from tilapia farms in Thailand by multiplex
PCR. J Appl Microbiol 2017; 122:1497-1507. [DOI: 10.1111/jam.13447] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- K. Kannika
- Department of Aquaculture Faculty of Fisheries Kasetsart University Bangkok Thailand
- Center for Advanced Studies for Agriculture and Food Kasetsart University Institute for Advanced Studies Kasetsart University Bangkok Thailand
| | - D. Pisuttharachai
- Fishery Science and Aquatic Resources, Faculty of Agricultural Technology King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus Chumphon Thailand
| | - P. Srisapoome
- Department of Aquaculture Faculty of Fisheries Kasetsart University Bangkok Thailand
| | - J. Wongtavatchai
- Department of Veterinary Medicine Faculty of Veterinary Science Chulalongkorn University Bangkok Thailand
| | - H. Kondo
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - I. Hirono
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - S. Unajak
- Center for Advanced Studies for Agriculture and Food Kasetsart University Institute for Advanced Studies Kasetsart University Bangkok Thailand
- Department of Biochemistry Faculty of Science Kasetsart University Bangkok Thailand
| | - N. Areechon
- Department of Aquaculture Faculty of Fisheries Kasetsart University Bangkok Thailand
- Center for Advanced Studies for Agriculture and Food Kasetsart University Institute for Advanced Studies Kasetsart University Bangkok Thailand
| |
Collapse
|
41
|
Efstratiou A, Lamagni T, Turner CE. Streptococci and Enterococci. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Mohammadi N, Midiri A, Mancuso G, Patanè F, Venza M, Venza I, Passantino A, Galbo R, Teti G, Beninati C, Biondo C. Neutrophils Directly Recognize Group B Streptococci and Contribute to Interleukin-1β Production during Infection. PLoS One 2016; 11:e0160249. [PMID: 27509078 PMCID: PMC4980021 DOI: 10.1371/journal.pone.0160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022] Open
Abstract
Previous studies have shown that the pro-inflammatory cytokine IL-1β has a crucial role in host defenses against group B streptococcus (GBS), a frequent human pathogen, by recruiting neutrophils to infection sites. We examined here the cell types and mechanisms involved in IL-1β production during infection. Using a GBS-induced peritonitis model in mice, we first found that a large proportion of exudate cells contain intracellular IL-1β by immunofluorescence. Of the IL-1β positive cells, 82 and 7% were neutrophils and macrophages, respectively, suggesting that the former cell type might significantly contribute to IL-1β production. Accordingly, depletion of neutrophils with anti-Ly6G antibodies resulted in a significant reduction in the levels of IL-1β, but not of TNF-α or IL-6. We next found that neutrophils are capable of releasing mature IL-1β and TNF-α directly in response to in vitro stimulation with GBS. The production of pro-IL-1β and TNF-α in these cells required the Toll-like receptor (TLR) adaptor MyD88 and the chaperone protein UNC93B1, which is involved in mobilization of a subfamily of TLRs to the endosomes. Moreover, pro-IL-1β processing and IL-1β release was triggered by GBS hemolysin and required components of the canonical inflammasome, including caspase-1, ASC and NLRP3. Collectively our findings indicate that neutrophils make a significant contribution to IL-1β production during GBS infection, thereby amplifying their own recruitment. These cells directly recognize GBS by means of endosomal TLRs and cytosolic sensors, leading to activation of the caspase-1 inflammasome.
Collapse
Affiliation(s)
- Nastaran Mohammadi
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125, Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125, Messina, Italy
| | - Francesco Patanè
- Department of Human Pathology, University of Messina, 98125, Messina, Italy
| | - Mario Venza
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | - Isabella Venza
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
| | | | - Roberta Galbo
- Department of Biological, Chemical and Environmental Sciences, University of Messina, 98125, Messina, Italy
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy
- Charybdis Vaccines Srl, 98125, Messina, Italy
- * E-mail:
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98125, Messina, Italy
- Scylla Biotech Srl, 98125, Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125, Messina, Italy
| |
Collapse
|
43
|
Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, Baker CJ, Margarit I, Rosini R. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 2016; 6:29799. [PMID: 27411639 PMCID: PMC4944191 DOI: 10.1038/srep29799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.
Collapse
Affiliation(s)
- Edmondo Campisi
- GSK Vaccines s.r.l., Siena, Italy.,Sapienza, Università di Roma, Rome, Italy
| | | | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mara Barucco
- GSK Vaccines s.r.l., Siena, Italy.,Department of physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | | | - Morven S Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
44
|
Buscetta M, Firon A, Pietrocola G, Biondo C, Mancuso G, Midiri A, Romeo L, Galbo R, Venza M, Venza I, Kaminski PA, Gominet M, Teti G, Speziale P, Trieu-Cuot P, Beninati C. PbsP, a cell wall-anchored protein that binds plasminogen to promote hematogenous dissemination of group B Streptococcus. Mol Microbiol 2016; 101:27-41. [PMID: 26888569 DOI: 10.1111/mmi.13357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine-rich region, and a LPXTG cell wall-anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface-bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non-CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.
Collapse
Affiliation(s)
- Marco Buscetta
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy.,Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Carmelo Biondo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Angelina Midiri
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Letizia Romeo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Roberta Galbo
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Mario Venza
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Giuseppe Teti
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS ERL3526, 75015, Paris, France
| | - Concetta Beninati
- Metchnikoff Laboratory, Departments of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
45
|
Clonal Complex 17 Group B Streptococcus strains causing invasive disease in neonates and adults originate from the same genetic pool. Sci Rep 2016; 6:20047. [PMID: 26843175 PMCID: PMC4740736 DOI: 10.1038/srep20047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
A significant proportion of group B Streptococcus (GBS) neonatal disease, particularly late-onset disease, is associated with strains of serotype III, clonal complex (CC) 17. CC17 strains also cause invasive infections in adults. Little is known about the phylogenetic relationships of isolates recovered from neonatal and adult CC17 invasive infections. We performed whole-genome-based phylogenetic analysis of 93 temporally and geographically matched CC17 strains isolated from both neonatal and adult invasive infections in the metropolitan region of Toronto/Peel, Canada. We also mined the whole-genome data to reveal mobile genetic elements carrying antimicrobial resistance genes. We discovered that CC17 GBS strains causing neonatal and adult invasive disease are interspersed and cluster tightly in a phylogenetic tree, signifying that they are derived from the same genetic pool. We identified limited variation due to recombination in the core CC17 genome. We describe that loss of Pilus Island 1 and acquisition of different mobile genetic elements carrying determinants of antimicrobial resistance contribute to CC17 genetic diversity. Acquisition of some of these mobile genetic elements appears to correlate with clonal expansion of the strains that possess them. Our results provide a genome-wide portrait of the population structure and evolution of a major disease-causing clone of an opportunistic pathogen.
Collapse
|
46
|
Dehbashi S, Pourmand MR, Mashhadi R. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:73-9. [PMID: 27092228 PMCID: PMC4833744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. MATERIALS AND METHODS The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. RESULTS AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. CONCLUSIONS AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Reza Pourmand Address: Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-21- 88954910, E-mail:
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Ponnuvel S, Bandaru D, Ragunathan P, Ponnuraj K. Functional characterization and molecular modelling of FnFgBP, a surface protein from Streptococcus agalactiae. RSC Adv 2016. [DOI: 10.1039/c6ra18275e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GBS1263 (FnFgBP) exhibits dual-ligand (fibronectin and fibrinogen) binding property. Molecular modeling of FnFgBP is suggestive of a unique ligand binding mechanism.
Collapse
Affiliation(s)
- Shobana Ponnuvel
- Centre of Advanced Study in Crystallography and Biophysics
- University of Madras
- Chennai-600 025
- India
| | - Dhanalakshmi Bandaru
- Centre of Advanced Study in Crystallography and Biophysics
- University of Madras
- Chennai-600 025
- India
| | - Preethi Ragunathan
- Centre of Advanced Study in Crystallography and Biophysics
- University of Madras
- Chennai-600 025
- India
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics
- University of Madras
- Chennai-600 025
- India
| |
Collapse
|
48
|
Chuzeville S, Dramsi S, Madec JY, Haenni M, Payot S. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation. Microb Pathog 2015; 88:1-9. [PMID: 26232503 DOI: 10.1016/j.micpath.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species.
Collapse
Affiliation(s)
- Sarah Chuzeville
- INRA, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France; CNRS ERL3526, Paris, France
| | - Jean-Yves Madec
- ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Sophie Payot
- INRA, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
49
|
Six A, Bellais S, Bouaboud A, Fouet A, Gabriel C, Tazi A, Dramsi S, Trieu-Cuot P, Poyart C. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen. Mol Microbiol 2015; 97:1209-22. [PMID: 26094503 DOI: 10.1111/mmi.13097] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Abstract
The Group B Streptococcus (GBS) 'hypervirulent' ST-17 clone is strongly associated with invasive neonatal meningitis. Comparative genome analyses revealed that the serine-rich repeat (Srr) glycoprotein Srr2 is a cell wall-anchored protein specific for ST-17 strains, the non-ST-17 isolates expressing Srr1. Here, we unravel the binding capacity of GBS Srr proteins to relevant components of the host fibrinolysis pathway. We demonstrate that: (i) Srr2 binds plasminogen and plasmin whereas Srr1 does not; (ii) the ability of ST-17 strains to bind fibrinogen reflects a high level surface display of Srr2 combined with a higher affinity of Srr2 than Srr1 to bind this ligand; and (iii) Srr2 binding to host plasma proteins results in the formation of bacterial aggregates that are efficiently endocytosed by phagocytes. Importantly, we show that Srr2 increased bacterial survival to phagocytic killing and bacterial persistence in a murine model of meningitis. We conclude that Srr2 is a multifaceted adhesin used by the ST-17 clone to hijack ligands of the host coagulation system, thereby contributing to bacterial dissemination and invasiveness, and ultimately to meningitis.
Collapse
Affiliation(s)
- Anne Six
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Samuel Bellais
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Abdelouhab Bouaboud
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Agnès Fouet
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France
| | - Christelle Gabriel
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Asmaa Tazi
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France.,Hôpitaux Universitaires Paris Centre Cochin-Hôtel Dieu-Broca, Assistance Publique Hôpitaux de Paris, Paris, F-75014, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France
| | - Claire Poyart
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France.,Hôpitaux Universitaires Paris Centre Cochin-Hôtel Dieu-Broca, Assistance Publique Hôpitaux de Paris, Paris, F-75014, France
| |
Collapse
|
50
|
Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 2015; 5:6. [PMID: 25699242 PMCID: PMC4316791 DOI: 10.3389/fcimb.2015.00006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.
Collapse
|