1
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Szewczyk G, Mokrzyński K, Sarna T. Generation of singlet oxygen inside living cells: correlation between phosphorescence decay lifetime, localization and outcome of photodynamic action. Photochem Photobiol Sci 2024:10.1007/s43630-024-00620-8. [PMID: 39237687 DOI: 10.1007/s43630-024-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Photodynamic therapy (PDT) is a promising alternative treatment for localized lesions and infections, utilizing reactive oxygen species (ROS) generated by photosensitizers (PS) upon light activation. Singlet oxygen (1O2) is a key ROS responsible for photodynamic damage. However, the effectiveness of PS in biological systems may not correlate with the efficiency of singlet oxygen generation in homogeneous solutions. This study investigated singlet oxygen generation and its decay in various cellular microenvironments using liposome and ARPE-19 cell models. Rose Bengal (RB), methylene blue (MB), and protoporphyrin IX (PpIX) were employed as selected PS. Lifetimes of singlet oxygen generated by the selected photosensitizers in different cellular compartments varied, indicating different quenching rates with singlet oxygen. RB, located near cell membranes, exhibited the highest phototoxicity and lipid/protein peroxidation, followed by PpIX, while MB showed minimal cytotoxicity in similar conditions. Singlet oxygen decay lifetimes provide insights into PS localization and potential phototoxicity, highlighting the importance of the lipid microenvironment in PDT efficacy, providing useful screening method prior to in vivo applications.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Mokrzyński K, Szewczyk G. Photoreactivity of polycyclic aromatic hydrocarbons (PAHs) and their mechanisms of phototoxicity against human immortalized keratinocytes (HaCaT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171449. [PMID: 38460699 DOI: 10.1016/j.scitotenv.2024.171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds in the environment. They are produced by many anthropogenic sources of different origins and are known for their toxicity, carcinogenicity, and mutagenicity. Sixteen PAHs have been identified as Priority Pollutants by the US EPA, which are often associated with particulate matter, facilitating their dispersion through air and water. When human skin is exposed to PAHs, it might occur simultaneously with solar radiation, potentially leading to phototoxic effects. Phototoxic mechanisms involve the generation of singlet oxygen and reactive oxygen species, DNA damage under specific light wavelengths, and the formation of charge transfer complexes. Despite predictions of phototoxic properties for some PAHs, there remains a paucity of experimental data. This study examined the photoreactive and phototoxic properties of the 16 PAHs enlisted in the Priority Pollutants list. Examined PAHs efficiently photogenerated singlet oxygen and superoxide anion in simple solutions. Furthermore, singlet oxygen phosphorescence was detected in PAH-loaded HaCaT cells. Phototoxicity against human keratinocytes was evaluated using various assays. At 5 nM concentration, examined PAHs significantly reduced viability and mitochondrial membrane potential of HaCaT cells following the exposure to solar simulated light. Analyzed compounds induced a substantial peroxidation of cellular proteins after light treatment. The results revealed that a majority of the examined PAHs exhibited substantial reactive oxygen species photoproduction under UVA and violet-blue light, with their phototoxicity corresponding to their photoreactive properties. These findings improve our comprehension of the interactions between PAHs and human skin cells under environmental conditions, particularly when exposed to solar radiation.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Siarkiewicz P, Luzak B, Michalski R, Artelska A, Szala M, Przygodzki T, Sikora A, Zielonka J, Grzelakowska A, Podsiadły R. Evaluation of a novel pyridinium cation-linked styryl-based boronate probe for the detection of selected inflammation-related oxidants. Free Radic Biol Med 2024; 212:255-270. [PMID: 38122872 DOI: 10.1016/j.freeradbiomed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.
Collapse
Affiliation(s)
- Przemysław Siarkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Cancer Center Translational Metabolomics Shared Resource, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
| |
Collapse
|
5
|
Dziedzic R, Wójcik K, Olchawa M, Sarna T, Pięta J, Jakieła B, Padjas A, Korona A, Zaręba L, Potaczek DP, Kosałka-Węgiel J, Jurczyszyn A, Bazan-Socha S. Increased oxidative stress response in circulating blood of systemic sclerosis patients - relation to disease characteristics and inflammatory blood biomarkers. Semin Arthritis Rheum 2023; 62:152228. [PMID: 37429138 DOI: 10.1016/j.semarthrit.2023.152228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a rare connective tissue disorder of unknown etiology characterized by organ fibrosis and microcirculation dysfunction. Emerging evidence suggests that SSc is related to increased oxidative stress, which contributes to further tissue and vascular damage. METHODS Oxidative stress response in the peripheral blood was assessed in patients with SSc (n = 55) and well-matched controls (n = 44) using real-time monitoring of protein hydroperoxide (HP) formation by the coumarin boronic acid (CBA) assay. We also analyzed the relationship between HP generation and SSc clinics, systemic inflammation, and cellular fibronectin, an emerging biomarker of endothelial damage. RESULTS SSc was characterized by a significantly faster (2-fold) fluorescent product generation in the CBA assay and higher cumulative HP formation (3-fold) compared to controls (p<0.001, both). The dynamics of HP generation were not associated with the form of the disease (diffuse vs. limited SSc), current immunosuppressive therapy use, presence of abnormal nailfold capillaries, and autoantibody profile. Still, it was enhanced in patients with more severe illness and certain clinical manifestations (i.e., pulmonary hypertension, digital ulcers, and cyclophosphamide treatment) and in smokers (current or past). Higher serum CRP, blood eosinophil count, and cellular fibronectin with lower hemoglobin levels were independent determinants of increased HP formation. CONCLUSIONS Our data indicate a pro-oxidant imbalance in SSc, likely related to systemic inflammation and endothelial injury. However, extensive prospective studies are needed to verify whether it is also associated with clinical disease progression.
Collapse
Affiliation(s)
- Radosław Dziedzic
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Krakow, Poland
| | - Krzysztof Wójcik
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Bogdan Jakieła
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Agnieszka Padjas
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Anna Korona
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Lech Zaręba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 132, 35392 Gießen, Germany; Bioscientia MVZ Labor Mittelhessen GmbH, Rudolf-Diesel-Straße 4, 35394 Gießen, Germany
| | - Joanna Kosałka-Węgiel
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Jagiellonian University Medical College, Department of Hematology, Faculty of Medicine, Kopernika 17, 31-501 Kraków, Poland
| | - Stanisława Bazan-Socha
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland.
| |
Collapse
|
6
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
7
|
Świerczyńska M, Słowiński D, Michalski R, Romański J, Podsiadły R. A thiomorpholine-based fluorescent probe for the far-red hypochlorous acid monitoring. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122193. [PMID: 36508902 DOI: 10.1016/j.saa.2022.122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A simple thiomorpholine-based fluorescent probe was designed and synthesized by combining thiomorpholine (TM) and nitrobenzenoselenadiazoles fluorophore (NBD-Se). The thiomorpholine group quenches the fluorescence of NBD-Se efficiently through the photoinduced electron transfer (PET) effect. Hypochlorous acid (HOCl) oxidizes the NBD-Se-TM probe to its fluorescent S-oxide (NBD-Se-TSO) with a 1:1 stoichiometry. The desirable features of NBD-Se-TM for detecting HOCl in aqueous solutions, such as its high sensitivity and selectivity, reliability at physiological pH, and rapid fluorescence response, enabled its application in the detection of HOCl produced by myeloperoxidase. The results proved that NBD-Se-TM is a promising fluorescent probe that can be used in screening assays for MPO inhibitors. Its high reaction rate constant with HOCl (2k = 2.0 × 107M-1s-1) indicates the possibility of application in more complex biological systems.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Daniel Słowiński
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90‑924 Lodz, Poland
| | - Jarosław Romański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
8
|
Wolnicka-Glubisz A, Olchawa M, Duda M, Pabisz P, Wisniewska-Becker A. The Role of Singlet Oxygen in Photoreactivity and Phototoxicity of Curcumin. Photochem Photobiol 2023; 99:57-67. [PMID: 35713484 DOI: 10.1111/php.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023]
Abstract
Curcumin is a plant-derived yellow-orange compound widely used as a spice, dye and food additive. It is also believed to have therapeutic effects against different disorders. On the other hand, there are data showing its phototoxicity against bacteria, fungi and various mammalian cells. Since the mechanism of its phototoxic action is not fully understood, we investigated here the phototoxic potential of curcumin in liposomal model membranes and in HaCaT cells. First, detection of singlet oxygen (1 O2 ) luminescence proved that curcumin generates 1 O2 upon blue light irradiation in organic solvent and in liposomes. Then, HPLC-EC(Hg) measurements revealed that liposomal and cellular cholesterol is oxidized by 1 O2 photogenerated by curcumin. Enrichment of liposome membranes with curcumin significantly increased the oxygen photo-consumption rate compared to the control liposomes as determined by EPR oximetry. Cytotoxicity measurements, mitochondrial membrane potential analyses and protein hydroperoxides detection confirmed strong phototoxic effects of curcumin in irradiated HaCaT cells. These data show that since curcumin is advertised as a valuable dietary supplement, or a component of cosmetics for topical use, caution should be recommended especially when skin is exposed to light.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Duda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Pabisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Wisniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
10
|
Bazan-Socha S, Wójcik K, Olchawa M, Sarna T, Pięta J, Jakieła B, Soja J, Okoń K, Zarychta J, Zaręba L, Stojak M, Potaczek DP, Bazan JG, Celińska-Lowenhoff M. Increased Oxidative Stress in Asthma-Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices. Biomedicines 2022; 10:1499. [PMID: 35884804 PMCID: PMC9312921 DOI: 10.3390/biomedicines10071499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Airway inflammation in asthma is related to increased reactive oxygen species generation, potentially leading to tissue injury and subsequent airway remodeling. We evaluated oxidative stress in peripheral blood from asthmatic subjects (n = 74) and matched controls (n = 65), using recently developed real-time monitoring of the protein hydroperoxide (HP) formation by the coumarin boronic acid (CBA) assay. We also investigated the relation of the systemic oxidative stress response in asthma to disease severity, lung function, airway remodeling indices (lung computed tomography and histology), and blood and bronchoalveolar lavage fluid (BAL) inflammatory biomarkers. We documented enhanced systemic oxidative stress in asthma, reflected by 35% faster and 58% higher cumulative fluorescent product generation in the CBA assay (p < 0.001 for both). The dynamics of HP generation correlated inversely with lung function but not with asthma severity or histological measures of airway remodeling. HP generation was associated positively with inflammatory indices in the blood (e.g., C-reactive protein) and BAL (e.g., interleukin [IL]-6, IL-12p70, and neutrophil count). Bronchial obstruction, thicker airway walls, increased BAL IL-6, and citrullinated histone 3 in systemic circulation independently determined increased HP formation. In conclusion, a real-time CBA assay showed increased systemic HP generation in asthma. In addition, it was associated with inflammatory biomarkers, suggesting that proper disease control can also lead to a decrease in oxidative stress.
Collapse
Affiliation(s)
- Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
| | - Krzysztof Wójcik
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (M.O.); (T.S.)
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (M.O.); (T.S.)
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Bogdan Jakieła
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
| | - Jerzy Soja
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
| | - Krzysztof Okoń
- Department of Pathology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland;
| | - Jacek Zarychta
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
- Pulmonary Hospital, Gladkie 1, 34-500 Zakopane, Poland
| | - Lech Zaręba
- Institute of Computer Science, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (L.Z.); (J.G.B.)
| | - Michał Stojak
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University Marburg, 35043 Marburg, Germany;
| | - Jan G. Bazan
- Institute of Computer Science, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (L.Z.); (J.G.B.)
| | - Magdalena Celińska-Lowenhoff
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Krakow, Poland; (K.W.); (B.J.); (J.S.); (J.Z.); (M.C.-L.)
| |
Collapse
|
11
|
Pierzchała K, Pięta M, Rola M, Świerczyńska M, Artelska A, Dębowska K, Podsiadły R, Pięta J, Zielonka J, Sikora A, Marcinek A, Michalski R. Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study. Sci Rep 2022; 12:9314. [PMID: 35660769 PMCID: PMC9166712 DOI: 10.1038/s41598-022-13317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors’ potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M−1s−1 for coumarin boronic acid (CBA), 1.1 × 104 M−1s−1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M−1s−1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M−1s−1 for 3’-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M−1s−1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.
Collapse
Affiliation(s)
- Karolina Pierzchała
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Marlena Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Rola
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Małgorzata Świerczyńska
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Angelika Artelska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Karolina Dębowska
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Podsiadły
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jakub Pięta
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Adam Sikora
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Andrzej Marcinek
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Radosław Michalski
- Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
12
|
Olchawa MM, Herrnreiter AM, Skumatz CMB, Krzysztynska-Kuleta OI, Mokrzynski KT, Burke JM, Sarna TJ. The Inhibitory Effect of Blue Light on Phagocytic Activity by ARPE-19 Cells. Photochem Photobiol 2022; 98:1110-1121. [PMID: 35067943 DOI: 10.1111/php.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and β5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvβ5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anja M Herrnreiter
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Olga I Krzysztynska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Krystian T Mokrzynski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Emeritus Professor of Ophthalmology
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
13
|
Yang X, Chen DF, Li LS, Zhao XJ, Zhao MX. Mesoporous silica nanoparticles loaded with fluorescent coumarin-5-fluorouracil conjugates as mitochondrial-targeting theranostic probes for tumor cells. NANOTECHNOLOGY 2021; 32:455101. [PMID: 34340227 DOI: 10.1088/1361-6528/ac19d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nanodrug carrier (mesoporous silica nanoparticle (MSN)-SS-cysteamine hydrochloride (CS)-hyaluronic acid (HA)) for targeted drug delivery was prepared using MSNs, in which HA was used as a targeting ligand and blocking agent to control drug release. Coumarin is a fluorescent molecule that targets mitochondria. Two conjugates (XDS-DJ and 5-FUA-4C-XDS) were synthesized by chemically coupling nitrogen mustard and 5-fluorouracil with coumarin, which was further loaded into MSN-SS-CS-HA nanocarriers. MTT analysis demonstrated that the nanocomposite MSN-SS-CS@5-FUA-4C-XDS/HA displayed stronger cytotoxicity toward HCT-116 cells than HeLa or QSG-7701 cells. Furthermore, MSN-SS-CS@5-FUA-4C-XDS/HA was able to target the mitochondria of HCT-116 cells, causing decreased mitochondrial membrane potential and excessive production of reactive oxygen species. These results indicate that MSN-SS-CS@5-FUA-4C-XDS/HA has the potential to be a nanodrug delivery system for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Di-Feng Chen
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Lin-Song Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
14
|
Zielonka J, Sikora A, Podsiadly R, Hardy M, Kalyanaraman B. Identification of Peroxynitrite by Profiling Oxidation and Nitration Products from Mitochondria-Targeted Arylboronic Acid. Methods Mol Biol 2021; 2275:315-327. [PMID: 34118047 DOI: 10.1007/978-1-0716-1262-0_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of boronic probes enabled reliable detection and quantitative analysis of hydrogen peroxide , other nucleophilic hydroperoxides, hypochlorite , and peroxynitrite . The major product, in which boronate moiety of the probe is replaced by the hydroxyl group, is, however, common for all those oxidants. Here, we describe how ortho-isomer of mitochondria-targeted phenylboronic acid can be used to detect and differentiate peroxynitrite-dependent and independent probe oxidation. This method highlights detection and quantification of both the major, phenolic product and the minor, peroxynitrite-specific cyclic and nitrated products of probe oxidation.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, France
| | - B Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Furso J, Zadlo A, Szewczyk G, Sarna TJ. Photoreactivity of Bis-retinoid A2E Complexed with a Model Protein in Selected Model Systems. Cell Biochem Biophys 2020; 78:415-427. [PMID: 32920760 PMCID: PMC7567710 DOI: 10.1007/s12013-020-00942-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E) is formed as a byproduct of visual cycle in retinal pigment epithelium (RPE). It contributes to golden-yellow fluorescence of the age pigment lipofuscin, which accumulates in RPE. Lipofuscin can generate a variety of reactive oxygen species (ROS) upon blue-light excitation. Although in model systems photoreactivity of A2E has been determined to be low, this bis-retinoid exhibited significant phototoxicity in RPE cells in vitro. Although the mechanism of A2E-mediated phototoxicity remains mostly unknown, we hypothesize that formation of A2E-adducts with different biomolecules may play an important role. In this study, we investigated the photochemical reactivity of A2E and its complex with bovine serum albumin (BSA) using UV-Vis absorption and emission spectroscopy, EPR-spin trapping, EPR-oximetry, time-resolved singlet oxygen phosphorescence, and the fluorogenic CBA probe. Our data show that A2E after complexation with this model protein photogenerated an increased level of ROS, particularly singlet oxygen. We also demonstrated the ability of A2E to oxidize BSA upon excitation with blue light in aqueous model systems. The data suggest that pyridinium bis-retinoid could oxidatively modify cellular proteins under physiological conditions.
Collapse
Affiliation(s)
- Justyna Furso
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
16
|
The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants (Basel) 2020; 9:antiox9111044. [PMID: 33114498 PMCID: PMC7693403 DOI: 10.3390/antiox9111044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most prominent age-related changes of retinal pigment epithelium (RPE) is the accumulation of melanolipofuscin granules, which could contribute to oxidative stress in the retina. The purpose of this study was to determine the ability of melanolipofuscin granules from younger and older donors to photogenerate reactive oxygen species, and to examine if natural antioxidants could modify the phototoxic potential of this age pigment. Electron paramagnetic resonance (EPR) oximetry, EPR-spin trapping, and time-resolved detection of near-infrared phosphorescence were employed for measuring photogeneration of superoxide anion and singlet oxygen by melanolipofuscin isolated from younger and older human donors. Phototoxicity mediated by internalized melanolipofuscin granules with and without supplementation with zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells by determining cell survival, oxidation of cellular proteins, organization of the cell cytoskeleton, and the cell specific phagocytic activity. Supplementation with antioxidants reduced aerobic photoreactivity and phototoxicity of melanolipofuscin granules. The effect was particularly noticeable for melanolipofuscin mediated inhibition of the cell phagocytic activity. Antioxidants decreased the extent of melanolipofuscin-dependent oxidation of cellular proteins and disruption of the cell cytoskeleton. Although melanolipofuscin might be involved in chronic phototoxicity of the aging RPE, natural antioxidants could partially ameliorate these harmful effects.
Collapse
|
17
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Yang M, Li W, Harberg C, Chen W, Yue H, Ferreira RB, Wynia-Smith SL, Carroll KS, Zielonka J, Flaumenhaft R, Silverstein RL, Smith BC. Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Adv 2020; 4:4494-4507. [PMID: 32946569 PMCID: PMC7509873 DOI: 10.1182/bloodadvances.2020001609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Arterial thrombosis in the setting of dyslipidemia promotes clinically significant events, including myocardial infarction and stroke. Oxidized lipids in low-density lipoproteins (oxLDL) are a risk factor for athero-thrombosis and are recognized by platelet scavenger receptor CD36. oxLDL binding to CD36 promotes platelet activation and thrombosis by promoting generation of reactive oxygen species. The downstream signaling events initiated by reactive oxygen species in this setting are poorly understood. In this study, we report that CD36 signaling promotes hydrogen peroxide flux in platelets. Using carbon nucleophiles that selectively and covalently modify cysteine sulfenic acids, we found that hydrogen peroxide generated through CD36 signaling promotes cysteine sulfenylation of platelet proteins. Specifically, cysteines were sulfenylated on Src family kinases, which are signaling transducers that are recruited to CD36 upon recognition of its ligands. Cysteine sulfenylation promoted activation of Src family kinases and was prevented by using a blocking antibody to CD36 or by enzymatic degradation of hydrogen peroxide. CD36-mediated platelet aggregation and procoagulant phosphatidylserine externalization were inhibited in a concentration-dependent manner by a panel of sulfenic acid-selective carbon nucleophiles. At the same concentrations, these probes did not inhibit platelet aggregation induced by the purinergic receptor agonist adenosine diphosphate or the collagen receptor glycoprotein VI agonist collagen-related peptide. Selective modification of cysteine sulfenylation in vivo with a benzothiazine-based nucleophile rescued the enhanced arterial thrombosis seen in dyslipidemic mice back to control levels. These findings suggest that CD36 signaling generates hydrogen peroxide to oxidize cysteines within platelet proteins, including Src family kinases, and lowers the threshold for platelet activation in dyslipidemia.
Collapse
Affiliation(s)
- Moua Yang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Wei Li
- Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV
| | - Calvin Harberg
- Medical School, Medical College of Wisconsin, Milwaukee, WI
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Hong Yue
- Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV
| | - Renan B Ferreira
- Department of Chemistry, Scripps Research Institute, Jupiter, FL; and
| | | | - Kate S Carroll
- Department of Chemistry, Scripps Research Institute, Jupiter, FL; and
| | | | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Roy L Silverstein
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI
- Department of Medicine, and
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
19
|
Serda M, Szewczyk G, Krzysztyńska-Kuleta O, Korzuch J, Dulski M, Musioł R, Sarna T. Developing [60]Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomater Sci Eng 2020; 6:5930-5940. [PMID: 33320587 DOI: 10.1021/acsbiomaterials.0c00932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin cancer is the most common cancer in the U.S.A. and Europe. Its subtype, squamous skin carcinoma (SCC), if allowed to grow, has the potential to metastasize and can become deadly. Currently, carbon nanomaterials are being developed to treat cancer due to their attractive physicochemical and biological properties such as an enhanced permeability effect and their ability to produce reactive oxygen species. Here, we describe the synthesis of two water-soluble aminofullerenes (MonoaminoC60 and HexakisaminoC60), which were evaluated as novel [60]fullerene based photosentizers exhibiting anticancer properties. Moreover, the previously described neutral glycofullerene GF1 and its peracetylated lipophilic precursor MMS48 were compared with the aminofullerenes for their ability to generate reactive oxygen species and oxidize lipids. Remarkably, the generation of singlet oxygen and a superoxide radical by HexakisaminoC60 was found to be markedly elevated in the presence of bovine serum albumin and NADH, respectively. Mechanistic studies of lipid peroxidation using cholesterol as a unique reporter molecule revealed that although all four fullerene nanomaterials primarily generated singlet oxygen, superoxide anion was also formed, which suggest a mixed mechanism of action (in which Type I and Type II photochemistry is involved). The [60]fullerene derivative HexakisaminoC60 was also studied for its phototoxicity in squamous skin cancer cell line (A431) using the MTT test and propidium iodide staining.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Grzegorz Szewczyk
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Olga Krzysztyńska-Kuleta
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzów 41-500, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
20
|
Olchawa MM, Szewczyk GM, Zadlo AC, Krzysztynska-Kuleta OI, Sarna TJ. The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment Cell Melanoma Res 2020; 34:670-682. [PMID: 32702137 DOI: 10.1111/pcmr.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Aging may significantly modify antioxidant and photoprotective properties of melanin in retinal pigment epithelium (RPE). Here, photoreactivity of melanosomes (MS), isolated from younger and older human donors with and without added zeaxanthin and α-tocopherol, was analyzed by electron paramagnetic resonance oximetry, time-resolved singlet oxygen phosphorescence, and protein oxidation assay. The phototoxic potential of ingested melanosomes was examined in ARPE-19 cells exposed to blue light. Phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was determined by flow cytometry. Irradiation of cells fed MS induced significant inhibition of the specific phagocytosis with the effect being stronger for melanosomes from older than from younger human cohorts, and enrichment of the melanosomes with antioxidants reduced the inhibitory effect. Cellular protein photooxidation was more pronounced in samples containing older melanosomes, and it was diminished by antioxidants. This study suggests that blue light irradiated RPE melanosomes could induce substantial inhibition of the key function of the cells-their specific phagocytosis. The data indicate that while photoreactivity of MS and their phototoxic potential increase with age, they could be reduced by selected natural antioxidants.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz M Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej C Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga I Krzysztynska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Rios N, Radi R, Kalyanaraman B, Zielonka J. Tracking isotopically labeled oxidants using boronate-based redox probes. J Biol Chem 2020; 295:6665-6676. [PMID: 32217693 DOI: 10.1074/jbc.ra120.013402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18-labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
22
|
Olchawa MM, Krzysztynska-Kuleta OI, Mokrzynski KT, Sarna PM, Sarna TJ. Quercetin protects ARPE-19 cells against photic stress mediated by the products of rhodopsin photobleaching. Photochem Photobiol Sci 2020; 19:1022-1034. [DOI: 10.1039/d0pp00165a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to intense light could increase the risk of phototoxic reactions mediated by rhodopsin photobleaching products (RPBP) that might accumulate in photoreceptor outer segments (POS).
Collapse
Affiliation(s)
- Magdalena M. Olchawa
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Olga I. Krzysztynska-Kuleta
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Krystian T. Mokrzynski
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Piotr M. Sarna
- Fluid Mechanics Laboratory
- Faculty of Mechanical Engineering
- Cracow University of Technology
- Poland
| | - Tadeusz J. Sarna
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| |
Collapse
|
23
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
24
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
25
|
Olchawa M, Krzysztynska-Kuleta O, Duda M, Pawlak A, Pabisz P, Czuba-Pelech B, Sarna T. In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radic Res 2019; 53:456-471. [DOI: 10.1080/10715762.2019.1603377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Magdalena Olchawa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Olga Krzysztynska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Barbara Czuba-Pelech
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
26
|
Lipofuscin-mediated photodynamic stress induces adverse changes in nanomechanical properties of retinal pigment epithelium cells. Sci Rep 2018; 8:17929. [PMID: 30560899 PMCID: PMC6298986 DOI: 10.1038/s41598-018-36322-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Retinal pigment epithelium (RPE) is an important part of the blood-retina barrier (BRB) that separates the retina from the choroid. Although melanin granules contribute to the mechanical stability of the BRB complex, it is unknown if the age pigment lipofuscin affects mechanical properties of the tissue. To address this issue the effect of sub-lethal photic stress mediated by phagocytized lipofuscin granules, isolated from RPE of human donors, on morphology and mechanical properties of ARPE-19 cells was investigated. Nanomechanical analysis using atomic force spectroscopy revealed that irradiation of cells containing lipofuscin granules with blue light induced significant softening of the cells, which was accompanied by substantial reorganization of the cell cytoskeleton due to peroxidation of cellular proteins. Our results indicate that lipofuscin-mediated photic stress can cause significant modification of the RPE cells with the potential to disturb biological function of the BRB complex.
Collapse
|
27
|
Prolo C, Rios N, Piacenza L, Álvarez MN, Radi R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic Biol Med 2018; 128:59-68. [PMID: 29454880 DOI: 10.1016/j.freeradbiomed.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
In the last two decades, there has been a significant advance in understanding the biochemistry of peroxynitrite, an endogenously-produced oxidant and nucleophile. Its relevance as a mediator in several pathologic states and the aging process together with its transient character and low steady-state concentration, motivated the development of a variety of techniques for its unambiguous detection and estimation. Among these, fluorescence and chemiluminescence approaches have represented important tools with enhanced sensitivity but usual limited specificity. In this review, we analyze selected examples of molecular probes that permit the detection of peroxynitrite by fluorescence and chemiluminescence, disclosing their mechanism of reaction with either peroxynitrite or peroxynitrite-derived radicals. Indeed, probes have been divided into 1) redox probes that yield products by a free radical mechanism, and 2) electrophilic probes that evolve to products secondary to the nucleophilic attack by peroxynitrite. Overall, boronate-based compounds are emerging as preferred probes for the sensitive and specific detection and quantitation. Moreover, novel strategies involving genetically-modified fluorescent proteins with the incorporation of unnatural amino acids have been recently described as peroxynitrite sensors. This review analyzes the most commonly used fluorescence and chemiluminescence approaches for peroxynitrite detection and provides some guidelines for appropriate experimental design and data interpretation, including how to estimate peroxynitrite formation rates in cells.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
28
|
Zielonka J, Kalyanaraman B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 2018; 128:3-22. [PMID: 29567392 PMCID: PMC6146080 DOI: 10.1016/j.freeradbiomed.2018.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in both pathogenic cellular damage events and physiological cellular redox signaling and regulation. To unravel the biological role of ROS, it is very important to be able to detect and identify the species involved. In this review, we introduce the reader to the methods of detection of ROS using luminescent (fluorescent, chemiluminescent, and bioluminescent) probes and discuss typical limitations of those probes. We review the most widely used probes, state-of-the-art assays, and the new, promising approaches for rigorous detection and identification of superoxide radical anion, hydrogen peroxide, and peroxynitrite. The combination of real-time monitoring of the dynamics of ROS in cells and the identification of the specific products formed from the probes will reveal the role of specific types of ROS in cellular function and dysfunction. Understanding the molecular mechanisms involving ROS may help with the development of new therapeutics for several diseases involving dysregulated cellular redox status.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
29
|
Pak YL, Park SJ, Song G, Yim Y, Kang H, Kim HM, Bouffard J, Yoon J. Endoplasmic Reticulum-Targeted Ratiometric N-Heterocyclic Carbene Borane Probe for Two-Photon Microscopic Imaging of Hypochlorous Acid. Anal Chem 2018; 90:12937-12943. [DOI: 10.1021/acs.analchem.8b03565] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | | | - Yubin Yim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | | | - Jean Bouffard
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
31
|
Hardy M, Zielonka J, Karoui H, Sikora A, Michalski R, Podsiadły R, Lopez M, Vasquez-Vivar J, Kalyanaraman B, Ouari O. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products. Antioxid Redox Signal 2018; 28:1416-1432. [PMID: 29037049 PMCID: PMC5910052 DOI: 10.1089/ars.2017.7398] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Collapse
Affiliation(s)
- Micael Hardy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Santander, Colombia
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
32
|
Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018; 293:10363-10380. [PMID: 29739855 DOI: 10.1074/jbc.ra118.003044] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
Collapse
Affiliation(s)
- Gang Cheng
- From the Department of Biophysics.,Free Radical Research Center
| | - Monika Zielonka
- From the Department of Biophysics.,Free Radical Research Center
| | - Brian Dranka
- the Cell Analysis Division, Agilent Technologies, Santa Clara, California 95051
| | | | - Charles R Myers
- Pharmacology and Toxicology, and.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian Bennett
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | - Alexander M Garces
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | | | - David Thiebaut
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Micael Hardy
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Jacek Zielonka
- From the Department of Biophysics.,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- From the Department of Biophysics, .,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
33
|
Aicardo A, Mastrogiovanni M, Cassina A, Radi R. Propagation of free-radical reactions in concentrated protein solutions. Free Radic Res 2018; 52:159-170. [DOI: 10.1080/10715762.2017.1420905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Adrián Aicardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018; 57:1567-1571. [DOI: 10.1002/anie.201711188] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
35
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
36
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 2017; 15:347-362. [PMID: 29306792 PMCID: PMC5756055 DOI: 10.1016/j.redox.2017.12.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide using conventional probes as well as newly developed assays and probes, and the necessity of characterizing the diagnostic marker products with HPLC and LC-MS in order to rigorously identify the oxidizing species. The redox signaling roles of mitochondrial ROS, mitochondrial thiol peroxidases, and transcription factors in response to mitochondria-targeted drugs are highlighted. ROS generation and ROS detoxification in drug-resistant cancer cells and the relationship to metabolic reprogramming are discussed. Understanding the subtle role of ROS in redox signaling and in tumor proliferation, progression, and metastasis as well as the molecular and cellular mechanisms (e.g., autophagy) could help in the development of combination therapies. The paradoxical aspects of antioxidants in cancer treatment are highlighted in relation to the ROS mechanisms in normal and cancer cells. Finally, the potential uses of newly synthesized exomarker probes for in vivo superoxide and hydrogen peroxide detection and the low-temperature electron paramagnetic resonance technique for monitoring oxidant production in tumor tissues are discussed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Brian Bennett
- Department of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53233, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
37
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
38
|
Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 2017; 113:395-405. [PMID: 29055824 DOI: 10.1016/j.freeradbiomed.2017.10.344] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Activated white blood cells generate multiple oxidants in response to invading pathogens. Thus, hypochlorous acid (HOCl) is generated via the reaction of myeloperoxidase (from neutrophils and monocytes) with hydrogen peroxide, and peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent is formed from superoxide radicals and nitric oxide, generated by stimulated macrophages. Excessive or misplaced production of these oxidants has been linked to multiple human pathologies, including cardiovascular disease. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins and ECM generated by human coronary artery endothelial cells (HCAECs). The novel selenocompounds examined react with HOCl with k 0.2-1.0 × 108M-1s-1, and ONOOH with k 4.5-8.6 - × 105M-1s-1. Reaction with H2O2 is considerably slower (k < 0.25M-1s-1). The selenocompound 2-phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine provided protection to human serum albumin (HSA) against HOCl-mediated damage (as assessed by SDS-PAGE) and damage to isolated matrix proteins induced by ONOOH, with a concomitant decrease in the levels of the biomarker 3-nitrotyrosine. Structural damage and generation of 3-nitroTyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis.
Collapse
Affiliation(s)
- Angela M Casaril
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Marta T Ignasiak
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark; Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Beatriz Vieira
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Nathalia B Padilha
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
39
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 986] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
40
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
41
|
Abstract
The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
42
|
Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, Lorente C, Nunez SC, Ribeiro MS, Thomas AH, Vignoni M, Yoshimura TM. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem Photobiol 2017; 93:912-919. [PMID: 28084040 DOI: 10.1111/php.12716] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Here, 10 guidelines are presented for a standardized definition of type I and type II photosensitized oxidation reactions. Because of varied notions of reactions mediated by photosensitizers, a checklist of recommendations is provided for their definitions. Type I and type II photoreactions are oxygen-dependent and involve unstable species such as the initial formation of radical cation or neutral radicals from the substrates and/or singlet oxygen (1 O21 ∆g ) by energy transfer to molecular oxygen. In addition, superoxide anion radical (O2·-) can be generated by a charge-transfer reaction involving O2 or more likely indirectly as the result of O2 -mediated oxidation of the radical anion of type I photosensitizers. In subsequent reactions, O2·- may add and/or reduce a few highly oxidizing radicals that arise from the deprotonation of the radical cations of key biological targets. O2·- can also undergo dismutation into H2 O2 , the precursor of the highly reactive hydroxyl radical (·OH) that may induce delayed oxidation reactions in cells. In the second part, several examples of type I and type II photosensitized oxidation reactions are provided to illustrate the complexity and the diversity of the degradation pathways of mostly relevant biomolecules upon one-electron oxidation and singlet oxygen reactions.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Paolo Di Mascio
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ashwini A Ghogare
- Department of Chemistry, Brooklyn College, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | | | - Martha Simões Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, Brazil
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - Mariana Vignoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| | - Tania Mateus Yoshimura
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, Brazil
| |
Collapse
|
43
|
Liu L, Sun T, Ren H. Electrochemical Detection of Hydrogen Peroxide by Inhibiting the p-Benzenediboronic Acid-Triggered Assembly of Citrate-Capped Au/Ag Nanoparticles on Electrode Surface. MATERIALS 2017; 10:ma10010040. [PMID: 28772401 PMCID: PMC5344540 DOI: 10.3390/ma10010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022]
Abstract
Metal nanoparticles (NPs) possess unique physicochemical attributes for creating effective recognition and transduction processes in chem/bio-sensing. In this work, we suggested that citrate-capped Au/Ag NPs could be used as the reporters for the design of hydrogen peroxide (H₂O₂) sensors with a simple manipulation principle and an easy detection procedure. Specifically, p-benzenediboronic acid (BDBA) induced the aggregation of citrate-capped Au NPs through the cross-linking reaction between citrate and boronic acid of BDBA in solution. By modifying the electrode with a boronic acid derivative, the BDBA-induced assembly of Au NPs was achieved on the electrode surface. This led to a significant decrease in the electron transfer resistance due to the unique conductive ability of Au NPs. However, when the boronate group on the electrode surface was oxidized into its phenol format, the assembly of Au NPs on the electrode surface was not achieved. As a result, a higher electron transfer resistance was observed. The process could be monitored by electrochemical impedance technique. Furthermore, when Ag NPs were used instead of Au NPs in this design, the H₂O₂ concentration could be determined by measuring the linear-sweep voltammetry (LSV) current through the solid-state Ag/AgCl reaction of Ag NPs. The results indicated that NP-based colorimetric assays could be developed into more sensitive electrochemical analysis.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Ting Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Huizhu Ren
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
44
|
Rios N, Piacenza L, Trujillo M, Martínez A, Demicheli V, Prolo C, Álvarez MN, López GV, Radi R. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate. Free Radic Biol Med 2016; 101:284-295. [PMID: 27641237 DOI: 10.1016/j.freeradbiomed.2016.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
The specific and sensitive detection of peroxynitrite (ONOO-/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×106M-1s-1, a million times faster than the rate constant measured for H2O2 (k=1.7M-1s-1) and 2,700 faster than HOCl (6.2×102M-1s-1) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs-1, while immunostimulated macrophages do so in the order of ∼1μMs-1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Alejandra Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Gloria V López
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
45
|
Zielonka J, Podsiadły R, Zielonka M, Hardy M, Kalyanaraman B. On the use of peroxy-caged luciferin (PCL-1) probe for bioluminescent detection of inflammatory oxidants in vitro and in vivo - Identification of reaction intermediates and oxidant-specific minor products. Free Radic Biol Med 2016; 99:32-42. [PMID: 27458121 PMCID: PMC5107150 DOI: 10.1016/j.freeradbiomed.2016.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Peroxy-caged luciferin (PCL-1) probe was first used to image hydrogen peroxide in living systems (Van de Bittner et al., 2010 [9]). Recently this probe was shown to react with peroxynitrite more potently than with hydrogen peroxide (Sieracki et al., 2013 [11]) and was suggested to be a more suitable probe for detecting peroxynitrite under in vivo conditions. In this work, we investigated in detail the products formed from the reaction between PCL-1 and hydrogen peroxide, hypochlorite, and peroxynitrite. HPLC analysis showed that hydrogen peroxide reacts slowly with PCL-1, forming luciferin as the only product. Hypochlorite reaction with PCL-1 yielded significantly less luciferin, as hypochlorite oxidized luciferin to form a chlorinated luciferin. Reaction between PCL-1 and peroxynitrite consists of a major and minor pathway. The major pathway results in luciferin and the minor pathway produces a radical-mediated nitrated luciferin. Radical intermediate was characterized by spin trapping. We conclude that monitoring of chlorinated and nitrated products in addition to bioluminescence in vivo will help identify the nature of oxidant responsible for bioluminescence derived from PCL-1.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
46
|
Oxidative stress, free radicals and protein peroxides. Arch Biochem Biophys 2016; 595:33-9. [PMID: 27095212 DOI: 10.1016/j.abb.2015.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 06/02/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.
Collapse
|
47
|
Dębowska K, Dębski D, Michałowski B, Dybala-Defratyka A, Wójcik T, Michalski R, Jakubowska M, Selmi A, Smulik R, Piotrowski Ł, Adamus J, Marcinek A, Chlopicki S, Sikora A. Characterization of Fluorescein-Based Monoboronate Probe and Its Application to the Detection of Peroxynitrite in Endothelial Cells Treated with Doxorubicin. Chem Res Toxicol 2016; 29:735-46. [PMID: 27081868 DOI: 10.1021/acs.chemrestox.5b00431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Boronate probes have emerged recently as a versatile tool for the detection of reactive oxygen and nitrogen species. Here, we present the characterization of a fluorescein-based monoboronate probe, a 4-(pinacol boronate)benzyl derivative of fluorescein methyl ester (FBBE), that proved to be useful to detect peroxynitrite in cell culture experiments. The reactivity of FBBE toward peroxynitrite as well hypochlorite, hydrogen peroxide, and tyrosyl hydroperoxide was determined. Second-order rate constants of the reactions of FBBE with peroxynitrite, HOCl, and H2O2 at pH 7.4 were equal to (2.8 ± 0.2) × 10(5) M(-1) s(-1), (8.6 ± 0.5) × 10(3) M(-1) s(-1), and (0.96 ± 0.03) M(-1) s(-1), respectively. The presence of glutathione completely blocked the oxidation of the probe by HOCl and significantly inhibited its oxidation by H2O2 and tyrosyl hydroperoxide but not by peroxynitrite. The oxidative conversion of the probe was also studied in the systems generating singlet oxygen, superoxide radical anion, and nitric oxide in the presence and absence of glutathione. Spectroscopic characterization of FBBE and its oxidation product has been also performed. The differences in the reactivity pattern were supported by DFT quantum mechanical calculations. Finally, the FBBE probe was used to study the oxidative stress in endothelial cells (Ea.hy926) incubated with doxorubicin, a quinone anthracycline antibiotic. In endothelial cells pretreated with doxorubicin, FBBE was oxidized, and this effect was reversed by PEG-SOD and L-NAME but not by catalase.
Collapse
Affiliation(s)
- Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Dawid Dębski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Bartosz Michałowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | | | - Tomasz Wójcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Małgorzata Jakubowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Anna Selmi
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland
| | - Renata Smulik
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Łukasz Piotrowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College , Kraków, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| |
Collapse
|
48
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
49
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
50
|
Carballal S, Cuevasanta E, Yadav PK, Gherasim C, Ballou DP, Alvarez B, Banerjee R. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase. J Biol Chem 2016; 291:8004-13. [PMID: 26867575 DOI: 10.1074/jbc.m116.718734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO(•)), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2to Fe(III)-CBS, forming superoxide radical anion (O2 (̇̄)). In this study, we describe the kinetics of nitrite (NO2 (-)) reduction by Fe(II)-CBS to form Fe(II)NO(•)-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO(•)-CBS by O2showed complex kinetic behavior and led to peroxynitrite (ONOO(-)) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO(•)and peroxynitrite.
Collapse
Affiliation(s)
- Sebastián Carballal
- From the Departamento de Bioquímica, Facultad de Medicina, Center for Free Radical and Biomedical Research, and
| | - Ernesto Cuevasanta
- Center for Free Radical and Biomedical Research, and Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo 11800, Uruguay and
| | - Pramod K Yadav
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Carmen Gherasim
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - David P Ballou
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| | - Beatriz Alvarez
- Center for Free Radical and Biomedical Research, and Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo 11800, Uruguay and
| | - Ruma Banerjee
- the Department of Biological Chemistry, Medical Center, University of Michigan, Ann Arbor, Michigan 48109-0600
| |
Collapse
|