1
|
Kennedy VC, Lynch CS, Tanner AR, Winger QA, Gad A, Rozance PJ, Anthony RV. Fetal Hypoglycemia Induced by Placental SLC2A3-RNA Interference Alters Fetal Pancreas Development and Transcriptome at Mid-Gestation. Int J Mol Sci 2024; 25:4780. [PMID: 38731997 PMCID: PMC11084495 DOI: 10.3390/ijms25094780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to β cell activity.
Collapse
Affiliation(s)
- Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Ahmed Gad
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Paul J. Rozance
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| |
Collapse
|
2
|
Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, Dassa B, Gruper Y, Khalaila R, Ben-Nun O, Gome T, Dobeš J, Ben-Dor S, Kedmi M, Keren-Shaul H, Heffner-Krausz R, Porat Z, Golani O, Addadi Y, Brenner O, Lo DD, Goldfarb Y, Abramson J. Thymic mimetic cells function beyond self-tolerance. Nature 2023; 622:164-172. [PMID: 37674082 DOI: 10.1038/s41586-023-06512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.
Collapse
Affiliation(s)
- Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Del Castillo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
4
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
5
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Chilunga FP, Meeks KAC, Henneman P, Agyemang C, Doumatey AP, Rotimi CN, Adeyemo AA. An epigenome-wide association study of insulin resistance in African Americans. Clin Epigenetics 2022; 14:88. [PMID: 35836279 PMCID: PMC9281172 DOI: 10.1186/s13148-022-01309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background African Americans have a high risk for type 2 diabetes (T2D) and insulin resistance. Studies among other population groups have identified DNA methylation loci associated with insulin resistance, but data in African Americans are lacking. Using DNA methylation profiles of blood samples obtained from the Illumina Infinium® HumanMethylation450 BeadChip, we performed an epigenome-wide association study to identify DNA methylation loci associated with insulin resistance among 136 non-diabetic, unrelated African American men (mean age 41.6 years) from the Howard University Family Study. Results We identified three differentially methylated positions (DMPs) for homeostatic model assessment of insulin resistance (HOMA-IR) at 5% FDR. One DMP (cg14013695, HOXA5) is a known locus among Mexican Americans, while the other two DMPs are novel—cg00456326 (OSR1; beta = 0.027) and cg20259981 (ST18; beta = 0.010). Although the cg00456326 DMP is novel, the OSR1 gene has previously been found associated with both insulin resistance and T2D in Europeans. The genes HOXA5 and ST18 have been implicated in biological processes relevant to insulin resistance. Differential methylation at the significant HOXA5 and OSR1 DMPs is associated with differences in gene expression in the iMETHYL database. Analysis of differentially methylated regions (DMRs) did not identify any epigenome-wide DMRs for HOMA-IR. We tested transferability of HOMA-IR associated DMPs from five previous EWAS in Mexican Americans, Indian Asians, Europeans, and European ancestry Americans. Out of the 730 previously reported HOMA-IR DMPs, 47 (6.4%) were associated with HOMA-IR in this cohort of African Americans. Conclusions The findings from our study suggest substantial differences in DNA methylation patterns associated with insulin resistance across populations. Two of the DMPs we identified in African Americans have not been reported in other populations, and we found low transferability of HOMA-IR DMPs reported in other populations in African Americans. More work in African-ancestry populations is needed to confirm our findings as well as functional analyses to understand how such DNA methylation alterations contribute to T2D pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01309-4.
Collapse
Affiliation(s)
- Felix P Chilunga
- Department of Public & Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public & Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Yeh PK, Liang CS, Tsai CL, Lin YK, Lin GY, Tsai CK, Tsai MC, Liu Y, Tai YM, Hung KS, Yang FC. Genetic Variants Associated With Subjective Cognitive Decline in Patients With Migraine. Front Aging Neurosci 2022; 14:860604. [PMID: 35783123 PMCID: PMC9248861 DOI: 10.3389/fnagi.2022.860604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The genetic association between subjective cognitive decline (SCD) and migraine comorbidity remains unclear. Furthermore, single nucleotide polymorphisms (SNP) associated with SCD have not been identified previously. Migraineurs were genotyped using an Affymetrix array. The correlation between different SNP variants in migraineurs with or without SCD and non-migraine controls was investigated. Migraineurs with or without SCD were further divided for the analysis of relevant SNP variants linked to migraine with aura (MA), migraine without aura (MoA), episodic migraine (EM), and chronic migraine (CM). Significant connectivity between SNPs and clinical indices in migraineurs and non-migraine controls with SCD were assessed using multivariate regression analysis. The rs144191744 SNP was found in migraineurs (p = 3.19E-08), EM (p = 1.34E-07), and MoA(p = 7.69E-07) with and without SCD. The T allele frequency for rs144191744 in TGFBR3 was 0.0054 and 0.0445 in migraineurs with and without SCD (odds ratio, 0.12), respectively. rs2352564, rs6089473 in CDH4, rs112400385 in ST18, rs4488224 and rs17111203 in ARHGAP29 SNPs were found, respectively, in non-migraineurs (p = 4.85E-06, p = 8.28E-06), MoA (p = 3.13E-07), and CM subgroups (p = 1.05E-07, 6.24E-07) with and without SCD. Rs144191744 closely relates to SCD with the all-migraine group and the EM and MoA subgroups. In conclusion, rs144191744 in TGFBR3 was significantly associated with SCD in migraineurs, especially in the EM, MoA, and female patient subgroups. Furthermore, three SNPs (rs112400385, rs4488224, and rs17111203) were associated with SCD in migraineurs but not in non-migraine controls.
Collapse
Affiliation(s)
- Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Fu-Chi Yang
| |
Collapse
|
8
|
Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, Kim D, Hao C, Zentner GE, O'Hagan HM. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 2021; 81:3791-3805. [PMID: 34035083 DOI: 10.1158/0008-5472.can-20-3562] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tim Lai
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana.,Department of Mathematics, Indiana University, Bloomington, Indiana
| | - Thomas D Huntington
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Christopher A Ladaika
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Maruyama K, Kidoya H, Takemura N, Sugisawa E, Takeuchi O, Kondo T, Eid MMA, Tanaka H, Martino MM, Takakura N, Takayama Y, Akira S, Vandenbon A, Kumagai Y. Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages. Cell Rep 2021; 32:107906. [PMID: 32668247 DOI: 10.1016/j.celrep.2020.107906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.
Collapse
Affiliation(s)
- Kenta Maruyama
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan.
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoki Takemura
- Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Erika Sugisawa
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8636, Japan
| | | | - Hiroki Tanaka
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies, Aichi 444-8787, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaro Kumagai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
10
|
Yoon C, Lee D, Lee SJ. Regulation of the Central Dogma through Bioinorganic Events with Metal Coordination for Specific Interactions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Dong‐Heon Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
11
|
Li HJ, Ray SK, Kucukural A, Gradwohl G, Leiter AB. Reduced Neurog3 Gene Dosage Shifts Enteroendocrine Progenitor Towards Goblet Cell Lineage in the Mouse Intestine. Cell Mol Gastroenterol Hepatol 2020; 11:433-448. [PMID: 32822913 PMCID: PMC7788244 DOI: 10.1016/j.jcmgh.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Transient expression of Neurog3 commits intestinal secretory progenitors to become enteroendocrine-biased progenitors and hence drive enteroendocrine differentiation. Loss of Neurog3 in mouse resulted in the depletion of intestinal enteroendocrine cells (EECs) and an increase in goblet cells. Earlier studies in developing mouse pancreas identified a role of Neurog3 gene dosage in endocrine and exocrine cell fate allocation. We aimed to determine whether Neurog3 gene dosage controls fate choice of enteroendocrine progenitors. METHODS We acquired mutant Neurog3 reporter mice carrying 2, 1, or null Neurog3 alleles to study Neurog3 gene dosage effect by lineage tracing. Cell types arising from Neurog3+ progenitors were determined by immunohistochemistry using antibodies against intestinal lineage-specific markers. RNA sequencing of sorted Neurog3+/+, Neurog3+/-, or bulk intestinal cells were performed and differentially expressed genes were analyzed. RESULTS We identified 2731 genes enriched in sorted Neurog3+/+-derived cells in the Neurog3+/+EYFP mouse intestine when compared with bulk duodenum epithelial cells. In the intestine of Neurog3+/-EGFP heterozygous mouse, we observed a 63% decrease in EEC numbers. Many Neurog3-derived cells stained for goblet marker Mucin 2. RNA sequencing of sorted Neurog3+/- cells uncovered enriched expression of genes characteristic for both goblet and enteroendocrine cells, indicating the mixed lineages arose from Neurog3+ progenitors. Consistent with this hypothesis, deletion of both Neurog3 alleles resulted in the total absence of EECs. All Neurog3+-derived cells stained for Mucin 2. CONCLUSIONS We identified that the fate of Neurog3+ enteroendocrine progenitors is dependent on Neurog3 gene dosage. High Neurog3 gene dosage enforces the commitment of secretory progenitors to an EE lineage, while constraining their goblet cell lineage potential. Transcriptome profiling data was deposited to Gene Ontology omnibus, accession number: GSE149203.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Subir K Ray
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alper Kucukural
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gerard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
12
|
Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G. Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Dev Cell 2020; 53:390-405.e10. [PMID: 32359405 PMCID: PMC7278035 DOI: 10.1016/j.devcel.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet β cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal β cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human β cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human β cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-βH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.
Collapse
Affiliation(s)
- Ruiying Hu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Weng
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gillian E Erickson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anastasia Coldren
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Xiaodun Yang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marcela Brissova
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Irina Kaverina
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Appakalai N Balamurugan
- Department of Surgery, Clinical Islet Transplantation Laboratory, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Christopher V E Wright
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Mathur R, Hui Q, Huang Y, Gwinn M, So-Armah K, Freiberg MS, Justice AC, Xu K, Marconi VC, Sun YV. DNA Methylation Markers of Type 2 Diabetes Mellitus Among Male Veterans With or Without Human Immunodeficiency Virus Infection. J Infect Dis 2020; 219:1959-1962. [PMID: 30649532 DOI: 10.1093/infdis/jiz023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications such as DNA methylation are associated with both human immunodeficiency virus (HIV) infection and type 2 diabetes mellitus (T2DM). We investigated epigenetic associations with T2DM according to HIV infection status and assessed interaction effects among 681 male participants of the Veterans Aging Cohort Study. Methylation at previously reported sites, cg1963031 (TXNIP), cg18181703 (SOCS3), and cg09152259 (PROC), was significantly associated with T2DM in HIV-infected individuals. We identified 3 novel associations with suggestive statistical significance: cg1231141 (ADAMTS2), cg19534769 (HGFAC), and cg13163919 (TLE3). Suggestive interaction with HIV infection status was found at cg17862404 (TSC22D1). The implicated genes are involved in inflammation, pancreatic β-cell function, and T2DM pathogenesis.
Collapse
Affiliation(s)
- Raina Mathur
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Marta Gwinn
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Kaku So-Armah
- Department Global Health, Emory University Rollins School of Public Health, Atlanta
| | - Matthew S Freiberg
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta
| | - Amy C Justice
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta.,Atlanta Veterans Affairs Medical Center, Georgia
| | - Ke Xu
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta.,Boston University School of Medicine, Massachusetts
| | - Vincent C Marconi
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville.,Connecticut Veteran Health System, West Haven.,Department of Psychiatry, New Haven, Connecticut
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta.,Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville.,Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Huang YH, Hu J, Chen F, Lecomte N, Basnet H, David CJ, Witkin MD, Allen PJ, Leach SD, Hollmann TJ, Iacobuzio-Donahue CA, Massagué J. ID1 Mediates Escape from TGFβ Tumor Suppression in Pancreatic Cancer. Cancer Discov 2020; 10:142-157. [PMID: 31582374 PMCID: PMC6954299 DOI: 10.1158/2159-8290.cd-19-0529] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
TGFβ is an important tumor suppressor in pancreatic ductal adenocarcinoma (PDA), yet inactivation of TGFβ pathway components occurs in only half of PDA cases. TGFβ cooperates with oncogenic RAS signaling to trigger epithelial-to-mesenchymal transition (EMT) in premalignant pancreatic epithelial progenitors, which is coupled to apoptosis owing to an imbalance of SOX4 and KLF5 transcription factors. We report that PDAs that develop with the TGFβ pathway intact avert this apoptotic effect via ID1. ID1 family members are expressed in PDA progenitor cells and encode components of a set of core transcriptional regulators shared by PDAs. PDA progression selects against TGFβ-mediated repression of ID1. The sustained expression of ID1 uncouples EMT from apoptosis in PDA progenitors. AKT signaling and mechanisms linked to low-frequency genetic events converge on ID1 to preserve its expression in PDA. Our results identify ID1 as a crucial node and potential therapeutic target in PDA. SIGNIFICANCE: Half of PDAs escape TGFβ-induced tumor suppression without inactivating the TGFβ pathway. We report that ID1 expression is selected for in PDAs and that ID1 uncouples TGFβ-induced EMT from apoptosis. ID1 thus emerges as a crucial regulatory node and a target of interest in PDA.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Yun-Han Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Sloan Kettering/Rockefeller Tri-Institutional MD-PhD Program, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York
| | - Jing Hu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fei Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicolas Lecomte
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles J David
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew D Witkin
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven D Leach
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
15
|
Melhuish TA, Kowalczyk I, Manukyan A, Zhang Y, Shah A, Abounader R, Wotton D. Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:983-995. [PMID: 30312684 DOI: 10.1016/j.bbagrm.2018.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 12/19/2022]
Abstract
Myelin transcription factor 1 (Myt1) and Myt1l (Myt1-like) are zinc finger transcription factors that regulate neuronal differentiation. Reduced Myt1l expression has been implicated in glioblastoma (GBM), and the related St18 was originally identified as a potential tumor suppressor for breast cancer. We previously analyzed changes in gene expression in a human GBM cell line with re-expression of either Myt1 or Myt1l. This revealed largely overlapping gene expression changes, suggesting similar function in these cells. Here we show that re-expression of Myt1 or Myt1l reduces proliferation in two different GBM cell lines, activates gene expression programs associated with neuronal differentiation, and limits expression of proliferative and epithelial to mesenchymal transition gene-sets. Consistent with this, expression of both MYT1 and MYT1L is lower in more aggressive glioma sub-types. Examination of the gene expression changes in cells expressing Myt1 or Myt1l suggests that both repress expression of the YAP1 transcriptional coactivator, which functions primarily in the Hippo signaling pathway. Expression of YAP1 and its target genes is reduced in Myt-expressing cells, and there is an inverse correlation between YAP1 and MYT1/MYT1L expression in human brain cancer datasets. Proliferation of GBM cell lines is reduced by lowering YAP1 expression and increased with YAP1 over-expression, which overcomes the anti-proliferative effect of Myt1/Myt1l expression. Finally we show that reducing YAP1 expression in a GBM cell line slows the growth of orthotopic tumor xenografts. Together, our data suggest that Myt1 and Myt1l directly repress expression of YAP1, a protein which promotes proliferation and GBM growth.
Collapse
Affiliation(s)
- Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Izabela Kowalczyk
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Ying Zhang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Anant Shah
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; Center for Cell Signaling, University of Virginia, Charlottesville, USA.
| |
Collapse
|
16
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Manukyan A, Kowalczyk I, Melhuish TA, Lemiesz A, Wotton D. Analysis of transcriptional activity by the Myt1 and Myt1l transcription factors. J Cell Biochem 2018; 119:4644-4655. [PMID: 29291346 DOI: 10.1002/jcb.26636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
Myt1 and Myt1l (Myelin transcription factor 1, and Myt1-like) are members of a small family of closely related zinc finger transcription factors, characterized by two clusters of C2HC zinc fingers. Both are widely expressed during early embryogenesis, but are largely restricted to expression within the brain in the adult. Myt1l, as part of a three transcription factor mix, can reprogram fibroblasts to neurons and plays a role in maintaining neuronal identity. Previous analyses have indicated roles in both transcriptional activation and repression and suggested that Myt1 and Myt1l may have opposing functions in gene expression. We show that when targeted to DNA via multiple copies of the consensus Myt1/Myt1l binding site Myt1 represses transcription, whereas Myt1l activates. By targeting via a heterologous DNA binding domain we mapped an activation function in Myt1l to an amino-terminal region that is poorly conserved in Myt1. However, genome wide analyses of the effects of Myt1 and Myt1l expression in a glioblastoma cell line suggest that the two proteins have largely similar effects on endogenous gene expression. Transcriptional repression is likely mediated by binding to DNA via the known consensus site, whereas this site is not associated with the transcriptional start sites of genes with higher expression in the presence of Myt1 or Myt1l. This work suggests that these two proteins function similarly, despite differences observed in analyses based on synthetic reporter constructs.
Collapse
Affiliation(s)
- Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Izabela Kowalczyk
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Agata Lemiesz
- Department of Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, Virginia
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Purwana I, Liu JJ, Portha B, Buteau J. HSF1 acetylation decreases its transcriptional activity and enhances glucolipotoxicity-induced apoptosis in rat and human beta cells. Diabetologia 2017; 60:1432-1441. [PMID: 28547133 DOI: 10.1007/s00125-017-4310-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Heat shock factor protein 1 (HSF1) is a transcription factor that regulates the expression of key molecular chaperones, thereby orchestrating the cellular response to stress. This system was recently implicated in the control of insulin sensitivity and is therefore being scrutinised as a novel therapeutic avenue for type 2 diabetes. However, the regulation and biological actions of HSF1 in beta cells remain elusive. Herein, we sought to investigate the regulation of HSF1 in pancreatic beta cells and to study its potential role in cell survival. METHODS We exposed human islets and beta cell lines to glucolipotoxicity and thapsigargin. HSF1 activity was evaluated by gel shift assay. HSF1 acetylation and interaction with the protein acetylase cAMP response element binding protein (CBP) were investigated by western blot. We measured the expression of HSF1 and its canonical targets in islets from Goto-Kakizaki (GK) rat models of diabetes and delineated the effects of HSF1 acetylation using mutants mimicking constitutive acetylation and deacetylation of the protein. RESULTS Glucolipotoxicity promoted HSF1 acetylation and interaction with CBP. Glucolipotoxicity-induced HSF1 acetylation inhibited HSF1 DNA binding activity and decreased the expression of its target genes. Restoration of HSF1 activity in beta cells prevented glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. However, overexpression of a mutant protein (K80Q) mimicking constitutive acetylation of HSF1 failed to confer protection against glucolipotoxicity. Finally, we showed that expression of HSF1 and its target genes were altered in islets from diabetic GK rats, suggesting that this pathway could participate in the pathophysiology of diabetes and constitutes a potential site for therapeutic intervention. CONCLUSIONS/INTERPRETATION Our results unravel a new mechanism by which HSF1 inhibition is required for glucolipotoxicity-induced beta cell apoptosis. Restoring HSF1 activity may represent a novel strategy for the maintenance of a functional beta cell mass. Our study supports the therapeutic potential of HSF1/heat shock protein-targeting agents in diabetes treatment.
Collapse
Affiliation(s)
- Indri Purwana
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jun J Liu
- Laboratoire Biologie et Pathologie du Pancréas Endocrine (B2PE), Unité Biologie Fonctionnelle et Adaptive (BFA), Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8251, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Bernard Portha
- Laboratoire Biologie et Pathologie du Pancréas Endocrine (B2PE), Unité Biologie Fonctionnelle et Adaptive (BFA), Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8251, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Ravà M, D'Andrea A, Doni M, Kress TR, Ostuni R, Bianchi V, Morelli MJ, Collino A, Ghisletti S, Nicoli P, Recordati C, Iascone M, Sonzogni A, D'Antiga L, Shukla R, Faulkner GJ, Natoli G, Campaner S, Amati B. Mutual epithelium-macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology 2017; 65:1708-1719. [PMID: 27859418 PMCID: PMC5412898 DOI: 10.1002/hep.28942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED The ST18 gene has been proposed to act either as a tumor suppressor or as an oncogene in different human cancers, but direct evidence for its role in tumorigenesis has been lacking thus far. Here, we demonstrate that ST18 is critical for tumor progression and maintenance in a mouse model of liver cancer, based on oncogenic transformation and adoptive transfer of primary precursor cells (hepatoblasts). ST18 messenger RNA (mRNA) and protein were detectable neither in normal liver nor in cultured hepatoblasts, but were readily expressed after subcutaneous engraftment and tumor growth. ST18 expression in liver cells was induced by inflammatory cues, including acute or chronic inflammation in vivo, as well as coculture with macrophages in vitro. Knocking down the ST18 mRNA in transplanted hepatoblasts delayed tumor progression. Induction of ST18 knockdown in pre-established tumors caused rapid tumor involution associated with pervasive morphological changes, proliferative arrest, and apoptosis in tumor cells, as well as depletion of tumor-associated macrophages, vascular ectasia, and hemorrhage. Reciprocally, systemic depletion of macrophages in recipient animals had very similar phenotypic consequences, impairing either tumor development or maintenance, and suppressing ST18 expression in hepatoblasts. Finally, RNA sequencing of ST18-depleted tumors before involution revealed down-regulation of inflammatory response genes, pointing to the suppression of nuclear factor kappa B-dependent transcription. CONCLUSION ST18 expression in epithelial cells is induced by tumor-associated macrophages, contributing to the reciprocal feed-forward loop between both cell types in liver tumorigenesis. Our findings warrant the exploration of means to interfere with ST18-dependent epithelium-macrophage interactions in a therapeutic setting. (Hepatology 2017;65:1708-1719).
Collapse
Affiliation(s)
- Micol Ravà
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly
| | - Aleco D'Andrea
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Mirko Doni
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Theresia R. Kress
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly,Present address: Department of Translational Medicine and Clinical PharmacologyBoehringer Ingelheim PharmaBiberach an der RissGermany
| | - Renato Ostuni
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly,Present address: San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valerio Bianchi
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly,Present address: Hubrecht Institute‐KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Marco J. Morelli
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly
| | - Agnese Collino
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Serena Ghisletti
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Paola Nicoli
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | | | - Maria Iascone
- Medical and Laboratory GeneticsAzienda Ospedaliera Papa Giovanni XXIIIBergamoItaly
| | - Aurelio Sonzogni
- Pathology DepartmentAzienda Ospedaliera Papa Giovanni XXIIIBergamoItaly
| | - Lorenzo D'Antiga
- Paediatric Liver, GI and TransplantationAzienda Ospedaliera Papa Giovanni XXIIIBergamoItaly
| | - Ruchi Shukla
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghUnited Kingdom,Present address: Northern Institute for Cancer ResearchNewcastle UniversityUnited Kingdom
| | - Geoffrey J. Faulkner
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghUnited Kingdom,Mater Research InstituteThe University of Queensland, Translational Research InstituteWoolloongabbaAustralia
| | - Gioacchino Natoli
- Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di TecnologiaMilanItaly,Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
| |
Collapse
|
20
|
Vodo D, Sarig O, Geller S, Ben-Asher E, Olender T, Bochner R, Goldberg I, Nosgorodsky J, Alkelai A, Tatarskyy P, Peled A, Baum S, Barzilai A, Ibrahim SM, Zillikens D, Lancet D, Sprecher E. Identification of a Functional Risk Variant for Pemphigus Vulgaris in the ST18 Gene. PLoS Genet 2016; 12:e1006008. [PMID: 27148741 PMCID: PMC4858139 DOI: 10.1371/journal.pgen.1006008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is a life-threatening autoimmune mucocutaneous blistering disease caused by disruption of intercellular adhesion due to auto-antibodies directed against epithelial components. Treatment is limited to immunosuppressive agents, which are associated with serious adverse effects. The propensity to develop the disease is in part genetically determined. We therefore reasoned that the delineation of PV genetic basis may point to novel therapeutic strategies. Using a genome-wide association approach, we recently found that genetic variants in the vicinity of the ST18 gene confer a significant risk for the disease. Here, using targeted deep sequencing, we identified a PV-associated variant residing within the ST18 promoter region (p<0.0002; odds ratio = 2.03). This variant was found to drive increased gene transcription in a p53/p63-dependent manner, which may explain the fact that ST18 is up-regulated in the skin of PV patients. We then discovered that when overexpressed, ST18 stimulates PV serum-induced secretion of key inflammatory molecules and contributes to PV serum-induced disruption of keratinocyte cell-cell adhesion, two processes previously implicated in the pathogenesis of PV. Thus, the present findings indicate that ST18 may play a direct role in PV and consequently represents a potential target for the treatment of this disease.
Collapse
Affiliation(s)
- Dan Vodo
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Shamir Geller
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Edna Ben-Asher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Bochner
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ilan Goldberg
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Judith Nosgorodsky
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Anna Alkelai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Tatarskyy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Peled
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharon Baum
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Aviv Barzilai
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Saleh M. Ibrahim
- Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
21
|
Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. ACTA ACUST UNITED AC 2015; 23:44. [PMID: 26381880 PMCID: PMC4573932 DOI: 10.1186/s40199-015-0127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Background Diabetes mellitus is a leading cause of morbidity and mortality worldwide. Studies have shown that Zinc has numerous beneficial effects in both type-1 and type-2 diabetes. We aim to evaluate the literature on the mechanisms and molecular level effects of Zinc on glycaemic control, β-cell function, pathogenesis of diabetes and its complications. Methods A review of published studies reporting mechanisms of action of Zinc in diabetes was undertaken in PubMed and SciVerse Scopus medical databases using the following search terms in article title, abstract or keywords; (“Zinc” or “Zn”) and (“mechanism” or “mechanism of action” or “action” or “effect” or “pathogenesis” or “pathology” or “physiology” or “metabolism”) and (“diabetes” or “prediabetes” or “sugar” or “glucose” or “insulin”). Results The literature search identified the following number of articles in the two databases; PubMed (n = 1799) and SciVerse Scopus (n = 1879). After removing duplicates the total number of articles included in the present review is 111. Our results show that Zinc plays an important role in β-cell function, insulin action, glucose homeostasis and the pathogenesis of diabetes and its complications. Conclusion Numerous in-vitro and in-vivo studies have shown that Zinc has beneficial effects in both type-1 and type-2 diabetes. However further randomized double-blinded placebo-controlled clinical trials conducted for an adequate duration, are required to establish therapeutic safety in humans. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0127-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Shehani Pigera
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Prasad Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Godwin R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
22
|
Besold AN, Michel SLJ. Neural Zinc Finger Factor/Myelin Transcription Factor Proteins: Metal Binding, Fold, and Function. Biochemistry 2015; 54:4443-52. [DOI: 10.1021/bi501371a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelique N. Besold
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
23
|
Lee SJ, Michel SLJ. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc Chem Res 2014; 47:2643-50. [PMID: 25098749 DOI: 10.1021/ar500182d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc finger (ZF) proteins are a large family of metalloproteins that utilize zinc for structural purposes. Zinc coordinates to a combination of cysteine thiol and histidine imidazole residues within the ZF polypeptide sequence resulting in a folded and functional protein. Initially, a single class of ZFs were identified. These ZFs, now referred to as the "classical" ZFs, utilize a Cys2His2 (CCHH) ligand set to bind zinc. Upon Zn coordination, the classical ZFs fold into a structure made up of an α helix and an antiparallel β sheet. When folded, classical ZFs recognize and bind to specific DNA targets and function as transcription factors. With the advent of genome sequencing and proteomics, many additional classes of ZFs were identified based upon their primary amino acid sequences. At least 13 additional classes of ZFs are known, and collectively these "nonclassical" ZFs differ in the ligand set involved in Zn(II) coordination, the organization of the ligands within the polypeptide sequence and the macromolecular targets. Some nonclassical ZFs are DNA binding "transcription factors", while others are involved in RNA regulation and protein recognition. Much less is known about these nonclassical ZFs with regards to the roles of metal coordination in fold and function. This Account focuses on our laboratory's efforts to characterize two families of "nonclassical" ZFs: the Cys3His (or CCCH) ZF family and the Cys2His2Cys (or CCHHC) ZF family. Our work on the CCCH ZF family has focused on the protein Tristetraprolin (TTP), which is a key protein in regulating inflammation. TTP contains two CCCH domains that were proposed to be ZFs based upon their sequence. We have shown that while this protein can coordinate Zn(II) at the CCCH sites, it can also coordinate Fe(II) and Fe(III). Moreover, the zinc and iron bound forms of TTP are equally adept at discriminating between RNA targets, which we have demonstrated via a fluorescence anisotropy based approach. Thus, CCCH type ZFs appear to be promiscuous with respect to metal preference and a role for iron coordination in CCCH ZF function is proposed. The CCHHC family of ZFs is a small family of nonclassical ZFs that are essential for the development of the central nervous system. There are three ZFs in this family: neural zinc finger factor-1 (NZF-1), myelin transcription factor-1 (MyT1), and suppressor of tumorgenicity 18 (ST18). All three proteins contain multiple clusters of "CCHHC" domains, which are all predicted to be Zn binding domains. We have focused on a tandem-CCHHC domain construct of NZF-1, which recognizes β-RARE DNA, and we have identified key residues required for DNA recognition. Unlike classical ZFs, for which a few conserved residues are required for DNA recognition, the CCHHC class of ZFs utilize a few nonconserved residues to drive DNA recognition leading us to propose a new paradigm for ZF/DNA binding.
Collapse
Affiliation(s)
- Seung Jae Lee
- Department
of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sarah L. J. Michel
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|