1
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Wagner J, Park LM, Mukhopadhyay P, Matyas C, Trojnar E, Damadzic R, Jung J, Bell AS, Mavromatis LA, Hamandi AM, Rosoff DB, Vendruscolo LF, Koob GF, Pacher P, Lohoff FW. PCSK9 inhibition attenuates alcohol-associated neuronal oxidative stress and cellular injury. Brain Behav Immun 2024; 119:494-506. [PMID: 38657842 DOI: 10.1016/j.bbi.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.
Collapse
Affiliation(s)
- Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lauren M Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Ruslan Damadzic
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Ali M Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; NIH-Oxford-Cambridge Scholars Program, Radcliffe Department of Medicine, University of Oxford, UK
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD, United States
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
3
|
Goikolea J, Latorre-Leal M, Tsagkogianni C, Pikkupeura S, Gulyas B, Cedazo-Minguez A, Loera-Valencia R, Björkhem I, Rodriguez Rodriguez P, Maioli S. Different effects of CYP27A1 and CYP7B1 on cognitive function: Two mouse models in comparison. J Steroid Biochem Mol Biol 2023; 234:106387. [PMID: 37648096 DOI: 10.1016/j.jsbmb.2023.106387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3β-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- Julen Goikolea
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Maria Latorre-Leal
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Christina Tsagkogianni
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Sonja Pikkupeura
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Balazs Gulyas
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Raul Loera-Valencia
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden; Tecnologico de Monterrey, School of Medicine and Health Sciences, Chihuahua, Mexico
| | - Ingemar Björkhem
- Karolinska Institutet, Department of Laboratory Medicine, Huddinge, Sweden
| | - Patricia Rodriguez Rodriguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden.
| |
Collapse
|
4
|
Ye Z, Pan Y, McCoy RG, Bi C, Chen M, Feng L, Yu J, Lu T, Liu S, Gao S, Hatch KS, Ma Y, Chen C, Mitchell BD, Thompson PM, Hong LE, Kochunov P, Ma T, Chen S. APOE4 poses opposite effects of plasma LDL on white matter integrity in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563796. [PMID: 37961161 PMCID: PMC10634787 DOI: 10.1101/2023.10.24.563796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION APOE4 is a strong genetic risk factor of Alzheimer's disease and is associated with changes in metabolism. However, the interactive relationship between APOE4 and plasma metabolites on the brain remains largely unknown. MEHODS In the UK Biobank, we investigated the moderation effects of APOE4 on the relationship between 249 plasma metabolites derived from nuclear magnetic resonance spectroscopy on whole-brain white matter integrity, measured by fractional anisotropy using diffusion magnetic resonance imaging. RESULTS The increase in the concentration of metabolites, mainly LDL and VLDL, is associated with a decrease in white matter integrity (b= -0.12, CI= [-0.14, -0.10]) among older APOE4 carriers, whereas an increase (b= 0.05, CI= [0.04, 0.07]) among non-carriers, implying a significant moderation effect of APOE4 (b= -0.18, CI= [-0.20,-0.15]). DISCUSSION The results suggest that lipid metabolism functions differently in APOE4 carriers compared to non-carriers, which may inform the development of targeted interventions for APOE4 carriers to mitigate cognitive decline.
Collapse
|
5
|
Karakatsani ME, Ji R, Murillo MF, Kugelman T, Kwon N, Lao YH, Liu K, Pouliopoulos AN, Honig LS, Duff KE, Konofagou EE. Focused ultrasound mitigates pathology and improves spatial memory in Alzheimer's mice and patients. Theranostics 2023; 13:4102-4120. [PMID: 37554284 PMCID: PMC10405840 DOI: 10.7150/thno.79898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/12/2023] [Indexed: 08/10/2023] Open
Abstract
Rationale: Bilateral sonication with focused ultrasound (FUS) in conjunction with microbubbles has been shown to separately reduce amyloid plaques and hyperphosphorylated tau protein in the hippocampal formation and the entorhinal cortex in different mouse models of Alzheimer's disease (AD) without any therapeutic agents. However, the two pathologies are expressed concurrently in human disease. Therefore, the objective of this study is to investigate the effects of repeated bilateral sonications in the presence of both pathologies. Methods: Herein, we investigate its functional and morphological outcomes on brains bearing both pathologies simultaneously. Eleven transgenic mice of the 3xTg-AD line (14 months old) expressing human amyloid beta and human tau and eleven age-matched wild-type littermates received four weekly bilateral sonications covering the hippocampus followed by working memory testing. Afterwards, immunohistochemistry and immunoassays (western blot and ELISA) were employed to assess any changes in amyloid beta and human tau. Furthermore, we present preliminary data from our clinical trial using a neuronavigation-guided FUS system for sonications in AD patients (NCT04118764). Results: Interestingly, both wild-type and transgenic animals that received FUS experienced improved working memory and spent significantly more time in the escape platform-quadrant, with wild-type animals spending 43.2% (sham: 37.7%) and transgenic animals spending 35.3% (sham: 31.0%) of the trial in the target quadrant. Furthermore, this behavioral amelioration in the transgenic animals correlated with a 58.3% decrease in the neuronal length affected by tau and a 27.2% reduction in total tau levels. Amyloid plaque population, volume and overall load were also reduced overall. Consistently, preliminary data from a clinical trial involving AD patients showed a 1.8% decrease of amyloid PET signal 3-weeks after treatment in the treated hemisphere compared to baseline. Conclusion: For the first time, it is shown that bilateral FUS-induced BBB opening significantly and simultaneously ameliorates both coexistent pathologies, which translated to improvements in spatial memory of transgenic animals with complex AD, the human mimicking phenotype. The level of cognitive improvement was significantly correlated with the volume of BBB opening. Non-transgenic animals were also shown to exhibit similar memory amelioration for the first time, indicating that BBB opening results into benefits in the neuronal function regardless of the existence of AD pathology. A potential mechanism of action for the reduction of the both pathologies investigated was the cholesterol metabolism, specifically the LRP1b receptor, which exhibited increased expression levels in transgenic mice following FUS-induced BBB opening. Initial clinical evidence supported that the beta amyloid reduction shown in rodents could be translatable to humans with significant amyloid reduction shown in the treated hemisphere.
Collapse
Affiliation(s)
| | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Maria F. Murillo
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Tara Kugelman
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Keyu Liu
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Karen E. Duff
- UK Dementia Research Institute, University College London, London, UK
| | - Elisa E. Konofagou
- Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
6
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Liu G, Wang J, Wei Z, Fang C, Shen K, Qian C, Qi C, Li T, Gao P, Wong PC, Lu H, Cao X, Wan M. Elevated PDGF-BB from Bone Impairs Hippocampal Vasculature by Inducing PDGFRβ Shedding from Pericytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206938. [PMID: 37102631 PMCID: PMC10369301 DOI: 10.1002/advs.202206938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Evidence suggests a unique association between bone aging and neurodegenerative/cerebrovascular disorders. However, the mechanisms underlying bone-brain interplay remain elusive. Here platelet-derived growth factor-BB (PDGF-BB) produced by preosteoclasts in bone is reported to promote age-associated hippocampal vascular impairment. Aberrantly elevated circulating PDGF-BB in aged mice and high-fat diet (HFD)-challenged mice correlates with capillary reduction, pericyte loss, and increased blood-brain barrier (BBB) permeability in their hippocampus. Preosteoclast-specific Pdgfb transgenic mice with markedly high plasma PDGF-BB concentration faithfully recapitulate the age-associated hippocampal BBB impairment and cognitive decline. Conversely, preosteoclast-specific Pdgfb knockout mice have attenuated hippocampal BBB impairment in aged mice or HFD-challenged mice. Persistent exposure of brain pericytes to high concentrations of PDGF-BB upregulates matrix metalloproteinase 14 (MMP14), which promotes ectodomain shedding of PDGF receptor β (PDGFRβ) from pericyte surface. MMP inhibitor treatment alleviates hippocampal pericyte loss and capillary reduction in the conditional Pdgfb transgenic mice and antagonizes BBB leakage in aged mice. The findings establish the role of bone-derived PDGF-BB in mediating hippocampal BBB disruption and identify the ligand-induced PDGFRβ shedding as a feedback mechanism for age-associated PDGFRβ downregulation and the consequent pericyte loss.
Collapse
Affiliation(s)
- Guanqiao Liu
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Jiekang Wang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ching‐Lien Fang
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Ke Shen
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qian
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Cheng Qi
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Tong Li
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMD21224USA
| | - Philip C. Wong
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineRoss Building, Room 232, 720 Rutland AvenueBaltimoreMD21205USA
| |
Collapse
|
8
|
Passero M, Zhai T, Huang Z. Investigation of Potential Drug Targets for Cholesterol Regulation to Treat Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6217. [PMID: 37444065 PMCID: PMC10341567 DOI: 10.3390/ijerph20136217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Despite extensive research and seven approved drugs, the complex interplay of genes, proteins, and pathways in Alzheimer's disease remains a challenge. This implies the intricacies of the mechanism for Alzheimer's disease, which involves the interaction of hundreds of genes, proteins, and pathways. While the major hallmarks of Alzheimer's disease are the accumulation of amyloid plaques and tau protein tangles, excessive accumulation of cholesterol is reportedly correlated with Alzheimer's disease patients. In this work, protein-protein interaction analysis was conducted based upon the genes from a clinical database to identify the top protein targets with most data-indicated involvement in Alzheimer's disease, which include ABCA1, CYP46A1, BACE1, TREM2, GSK3B, and SREBP2. The reactions and pathways associated with these genes were thoroughly studied for their roles in regulating brain cholesterol biosynthesis, amyloid beta accumulation, and tau protein tangle formation. Existing clinical trials for each protein target were also investigated. The research indicated that the inhibition of SREBP2, BACE1, or GSK3B is beneficial to reduce cholesterol and amyloid beta accumulation, while the activation of ABCA1, CYP46A1, or TREM2 has similar effects. In this study, Sterol Regulatory Element-Binding Protein 2 (SREBP2) emerged as the primary protein target. SREBP2 serves a pivotal role in maintaining cholesterol balance, acting as a transcription factor that controls the expression of several enzymes pivotal for cholesterol biosynthesis. Novel studies suggest that SREBP2 performs a multifaceted role in Alzheimer's disease. The hyperactivity of SREBP2 may lead to heightened cholesterol biosynthesis, which suggested association with the pathogenesis of Alzheimer's disease. Lowering SREBP2 levels in an Alzheimer's disease mouse model results in reduced production of amyloid-beta, a major contributor to Alzheimer's disease progression. Moreover, its thoroughly analyzed crystal structure allows for computer-aided screening of potential inhibitors; SREBP2 is thus selected as a prospective drug target. While more protein targets can be added onto the list in the future, this work provides an overview of key proteins involved in the regulation of brain cholesterol biosynthesis that may be further investigated for Alzheimer's disease intervention.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
9
|
Protective Effect of Ergothioneine against 7-Ketocholesterol-Induced Mitochondrial Damage in hCMEC/D3 Human Brain Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065498. [PMID: 36982572 PMCID: PMC10056831 DOI: 10.3390/ijms24065498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Recent findings have suggested that the natural compound ergothioneine (ET), which is synthesised by certain fungi and bacteria, has considerable cytoprotective potential. We previously demonstrated the anti-inflammatory effects of ET on 7-ketocholesterol (7KC)-induced endothelial injury in human blood-brain barrier endothelial cells (hCMEC/D3). 7KC is an oxidised form of cholesterol present in atheromatous plaques and the sera of patients with hypercholesterolaemia and diabetes mellitus. The aim of this study was to elucidate the protective effect of ET on 7KC-induced mitochondrial damage. Exposure of human brain endothelial cells to 7KC led to a loss of cell viability, together with an increase in intracellular free calcium levels, increased cellular and mitochondrial reactive oxygen species, a decrease in mitochondrial membrane potential, reductions in ATP levels, and increases in mRNA expression of TFAM, Nrf2, IL-1β, IL-6 and IL-8. These effects were significantly decreased by ET. Protective effects of ET were diminished when endothelial cells were coincubated with verapamil hydrochloride (VHCL), a nonspecific inhibitor of the ET transporter OCTN1 (SLC22A4). This outcome demonstrates that ET-mediated protection against 7KC-induced mitochondrial damage occurred intracellularly and not through direct interaction with 7KC. OCTN1 mRNA expression itself was significantly increased in endothelial cells after 7KC treatment, consistent with the notion that stress and injury may increase ET uptake. Our results indicate that ET can protect against 7KC-induced mitochondrial injury in brain endothelial cells.
Collapse
|
10
|
Gao YH, Li X. Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochem Int 2023; 164:105501. [PMID: 36803679 DOI: 10.1016/j.neuint.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Growing evidence points to the importance of cholesterol in preserving brain homeostasis. Cholesterol makes up the main component of myelin in the brain, and myelin integrity is vital in demyelinating diseases such as multiple sclerosis. Because of the connection between myelin and cholesterol, the interest in cholesterol in the central nervous system increased during the last decade. In this review, we provide a detailed overview on brain cholesterol metabolism in multiple sclerosis and its role in promoting oligodendrocyte precursor cell differentiation and remyelination.
Collapse
Affiliation(s)
- Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
11
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
12
|
Xie YY, Zhao L, Gao LJ, Xu RX, Gao Y, Dou KF, Guo YL, He YM. Association between remnant cholesterol and verbal learning and memory function in the elderly in the US. Lipids Health Dis 2022; 21:120. [PMID: 36376895 PMCID: PMC9664689 DOI: 10.1186/s12944-022-01729-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The relationship between remnant cholesterol (RC) and atherosclerotic cardiovascular risk has been given increasing attention in recent years. However, its association with verbal learning and memory performance has not been reported. METHODS Data were extracted from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 database. Participants aged ≥60 years with available fasting lipid data were included. Verbal learning and memory performance were evaluated using the Consortium to Establish a Registry for Alzheimer's Disease Word List Memory Task (CERAD-WL) subtest. The CERAD total score was calculated as the mean of three immediate recalls and a delayed recall. RC was calculated as total cholesterol (TC) minus the sum of low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Multivariate ordinal logistic regression was performed to evaluate the association between RC, as well as its derived marker, the TC/RC ratio, and age-stratified quartiles of the CERAD total score. RESULTS A total of 1377 participants were analysed. On a continuous scale, per 1 mmol/L increase in RC and per 1 unit increase in the TC/RC ratio were associated with multivariable adjusted odds ratios (95% CI) of 0.74 (0.58-0.94) and 1.45 (1.13-1.87), respectively, for having a CERAD total score in a higher quartile. On a categorical scale, higher RC quartiles were associated with a CERAD total score in a lower quartile; in contrast, the higher TC/RC quartile was associated with a CERAD total score in a higher quartile (all P for trend < 0.05). CONCLUSIONS The current study suggests that lower RC levels and a higher TC/RC ratio are associated with better verbal learning and memory function, which indicates that lowering RC levels could be beneficial for preventing cognitive impairment in elderly individuals. Further research is needed to validate the causal roles of RC and the TC/RC ratio in cognition.
Collapse
Affiliation(s)
- Ying-Yi Xie
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Zhao
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li-Jian Gao
- Coronary Heart Disease Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Gao
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ke-Fei Dou
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Cardio-Metabolic Medicine Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Yong-Ming He
- Division of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
13
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 2022; 29:24-36. [PMID: 36193573 PMCID: PMC9804080 DOI: 10.1111/cns.13982] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Maoqiang Xue
- Department of Basic Medical Science, School of MedicineXiamen UniversityXiamenChina
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
14
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
15
|
Li RY, Qin Q, Yang HC, Wang YY, Mi YX, Yin YS, Wang M, Yu CJ, Tang Y. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 2022; 17:40. [PMID: 35658903 PMCID: PMC9166437 DOI: 10.1186/s13024-022-00542-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane immune receptor that is mainly expressed on microglia in the brain and macrophages in the periphery. Recent studies have identified TREM2 as a risk factor for Alzheimer’s disease (AD). Increasing evidence has shown that TREM2 can affect lipid metabolism both in the central nervous system (CNS) and in the periphery. In the CNS, TREM2 affects the metabolism of cholesterol, myelin, and phospholipids and promotes the transition of microglia into a disease-associated phenotype. In the periphery, TREM2 influences lipid metabolism by regulating the onset and progression of obesity and its complications, such as hypercholesterolemia, atherosclerosis, and nonalcoholic fatty liver disease. All these altered lipid metabolism processes could influence the pathogenesis of AD through several means, including affecting inflammation, insulin resistance, and AD pathologies. Herein, we will discuss a potential pathway that TREM2 mediates lipid metabolism to influence the pathogenesis of AD in both the CNS and periphery. Moreover, we discuss the possibility that TREM2 may be a key factor that links central and peripheral lipid metabolism under disease conditions, including AD. This link may be due to impacts on the integrity of the blood–brain barrier, and we introduce potential pathways by which TREM2 affects the blood–brain barrier. Moreover, we discuss the role of lipids in TREM2-associated treatments for AD. We propose some potential therapies targeting TREM2 and discuss the prospect and limitations of these therapies.
Collapse
Affiliation(s)
- Rui-Yang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Han-Chen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xin Mi
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yun-Si Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chao-Ji Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
16
|
Lorincz B, Jury EC, Vrablik M, Ramanathan M, Uher T. The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun Rev 2022; 21:103088. [DOI: 10.1016/j.autrev.2022.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
17
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
18
|
Saitoh SS, Tanabe S, Muramatsu R. Circulating factors that influence the central nervous system remyelination. Curr Opin Pharmacol 2022; 62:130-136. [PMID: 34995894 DOI: 10.1016/j.coph.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Injury in the central nervous system leads to neurological deficits, depending on the disruption of neural networks. Remyelination, which occurs partially and spontaneously, is a critical process in the regeneration of neural networks to recover from neurological deficits. Remyelination depends on the development of oligodendrocytes, including the proliferation of oligodendrocyte precursor cells (OPCs) and the differentiation of OPCs into mature oligodendrocytes to form myelin. OPC proliferation and differentiation are regulated by intracellular and extracellular mechanisms, and recent studies have demonstrated that circulating factors secreted from peripheral organs or infiltrated immune cells play a key role in controlling oligodendrocyte development following remyelination in adult mammals. In this review, we describe the beneficial and detrimental effects of systemic environments, such as circulating factors derived from peripheral organs and immune cells, on CNS remyelination.
Collapse
Affiliation(s)
- Steve S Saitoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
19
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
20
|
Fernández-Beltrán LC, Godoy-Corchuelo JM, Losa-Fontangordo M, Williams D, Matias-Guiu J, Corrochano S. A Transcriptomic Meta-Analysis Shows Lipid Metabolism Dysregulation as an Early Pathological Mechanism in the Spinal Cord of SOD1 Mice. Int J Mol Sci 2021; 22:ijms22179553. [PMID: 34502460 PMCID: PMC8431303 DOI: 10.3390/ijms22179553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial and complex fatal degenerative disorder. A number of pathological mechanisms that lead to motor neuron death have been identified, although there are many unknowns in the disease aetiology of ALS. Alterations in lipid metabolism are well documented in the progression of ALS, both at the systemic level and in the spinal cord of mouse models and ALS patients. The origin of these lipid alterations remains unclear. This study aims to identify early lipid metabolic pathways altered before systemic metabolic symptoms in the spinal cord of mouse models of ALS. To do this, we performed a transcriptomic analysis of the spinal cord of SOD1G93A mice at an early disease stage, followed by a robust transcriptomic meta-analysis using publicly available RNA-seq data from the spinal cord of SOD1 mice at early and late symptomatic disease stages. The meta-analyses identified few lipid metabolic pathways dysregulated early that were exacerbated at symptomatic stages; mainly cholesterol biosynthesis, ceramide catabolism, and eicosanoid synthesis pathways. We present an insight into the pathological mechanisms in ALS, confirming that lipid metabolic alterations are transcriptionally dysregulated and are central to ALS aetiology, opening new options for the treatment of these devastating conditions.
Collapse
Affiliation(s)
- Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Maria Losa-Fontangordo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Debbie Williams
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (L.C.F.-B.); (J.M.G.-C.); (M.L.-F.); (J.M.-G.)
- Correspondence: ; Tel.: +34-913303000
| |
Collapse
|
21
|
Sánchez-Melgar A, Izquierdo-Ramírez PJ, Palomera-Ávalos V, Pallàs M, Albasanz JL, Martín M. High-Fat and Resveratrol Supplemented Diets Modulate Adenosine Receptors in the Cerebral Cortex of C57BL/6J and SAMP8 Mice. Nutrients 2021; 13:nu13093040. [PMID: 34578918 PMCID: PMC8466958 DOI: 10.3390/nu13093040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders are devastating diseases in which aging is a major risk factor. High-fat diet (HFD) seems to contribute to cognition deterioration, but the underlying mechanisms are poorly understood. Moreover, resveratrol (RSV) has been reported to counteract the loss of cognition associated with age. Our study aimed to investigate whether the adenosinergic system and plasma membrane cholesterol are modulated by HFD and RSV in the cerebral cortex of C57BL/6J and SAMP8 mice. Results show that HFD induced increased A1R and A2AR densities in C57BL/6J, whereas this remained unchanged in SAMP8. Higher activity of 5′-Nucleotidase was found as a common effect induced by HFD in both mice strains. Furthermore, the effect of HFD and RSV on A2BR density was different depending on the mouse strain. RSV did not clearly counteract the HFD-induced effects on the adenosinergic system. Besides, no changes in free-cholesterol levels were detected in the plasma membrane of cerebral cortex in both strains. Taken together, our data suggest a different modulation of adenosine receptors depending on the mouse strain, not related to changes in plasma membrane cholesterol content.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Pedro José Izquierdo-Ramírez
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - José Luis Albasanz
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
- Correspondence:
| | - Mairena Martín
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| |
Collapse
|
22
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
23
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
24
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
25
|
Pifferi F, Laurent B, Plourde M. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Front Physiol 2021; 12:645646. [PMID: 33868013 PMCID: PMC8044814 DOI: 10.3389/fphys.2021.645646] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Benoit Laurent
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada.,Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
26
|
Wang ZH, Xia Y, Liu P, Liu X, Edgington-Mitchell L, Lei K, Yu SP, Wang XC, Ye K. ApoE4 activates C/EBPβ/δ-secretase with 27-hydroxycholesterol, driving the pathogenesis of Alzheimer's disease. Prog Neurobiol 2021; 202:102032. [PMID: 33716161 DOI: 10.1016/j.pneurobio.2021.102032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
ApoE4, an apolipoprotein implicated in cholesterol transport and amyloid-β (Aβ) metabolism, is a major genetic risk determinant for Alzheimer's Disease (AD) and drives its pathogenesis via Aβ-dependent and -independent pathways. C/EBPβ, a proinflammatory cytokines-activated transcription factor, is upregulated in AD and mediates cytokines and δ-secretase expression. However, how ApoE4 contributes to AD pathogenesis remains incompletely understood. Here we show that ApoE4 and 27-hydroxycholesterol (27-OHC) co-activate C/EBPβ/δ-secretase signaling in neurons, mediating AD pathogenesis, and this effect is dependent on neuronal secreted Aβ and inflammatory cytokines. Inhibition of cholesterol metabolism with lovastatin diminishes neuronal ApoE4's stimulatory effects. Furthermore, ApoE4 and 27-OHC also mediate lysosomal δ-secretase leakage, activation, secretion and endocytosis. Notably, 27-OHC strongly activates C/EBPβ/δ-secretase pathway in human ApoE4-TR mice and triggers AD pathologies and cognitive deficits, which is blocked by C/EBPβ depletion. Hence, our findings demonstrate that ApoE4 and 27-OHC additively trigger AD pathogenesis via activating C/EBPβ/δ-secretase pathway. Lowering cholesterol levels with statins should benefit the ApoE4 AD carriers.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne Victoria, 3010, Australia
| | - Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Parrado-Fernandez C, Leoni V, Saeed A, Rodriguez-Rodriguez P, Sandebring-Matton A, Córdoba-Beldad CM, Bueno P, Gali CC, Panzenboeck U, Cedazo-Minguez A, Björkhem I. Sex difference in flux of 27-hydroxycholesterol into the brain. Br J Pharmacol 2021; 178:3194-3204. [PMID: 33345295 PMCID: PMC8359195 DOI: 10.1111/bph.15353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/21/2023] Open
Abstract
Background and Purpose The cerebrospinal fluid (CSF)/plasma albumin ratio (QAlb) is believed to reflect the integrity of the blood–brain barrier (BBB). Recently, we reported that QAlb is lower in females. This may be important for uptake of neurotoxic 27‐hydroxycholesterol (27OH) by the brain in particular because plasma levels of 27OH are higher in males. We studied sex differences in the relation between CSF and plasma levels of 27OH and its major metabolite 7α‐hydroxy‐3‐oxo‐4‐cholestenoic acid (7HOCA) with QAlb. We tested the possibility of sex differences in the brain metabolism of 27OH and if its flux into the brain disrupted integrity of the BBB. Experimental Approach We have examined our earlier studies looking for sex differences in CSF levels of oxysterols and their relation to QAlb. We utilized an in vitro model for the BBB with primary cultured brain endothelial cells to test if 27OH has a disruptive effect on this barrier. We measured mRNA and protein levels of CYP7B1 in autopsy brain samples. Key Results The correlation between CSF levels of 27OH and QAlb was higher in males whereas, with 7HOCA, the correlation was higher in females. No significant sex difference in the expression of CYP7B1 mRNA in brain autopsy samples. A correlation was found between plasma levels of 27OH and QAlb. No support was obtained for the hypothesis that plasma levels of 27OH have a disruptive effect on the BBB. Conclusions and Implications The sex differences are discussed in relation to negative effects of 27OH on different brain functions. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc
Collapse
Affiliation(s)
- Cristina Parrado-Fernandez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden.,Discovery and Research, AlzeCure Pharma AB, Huddinge, Sweden
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST-Monza and School of Medicine, University of Milano Bicocca, Monza, Italy
| | - Ahmed Saeed
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | | | - Paula Bueno
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden
| | - Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden.,Rare & Neurologic Diseases Research Therapeutic Area, Neurodegeneration Research, Sanofi Pharmaceuticals, Paris, France
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| |
Collapse
|
28
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
29
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
30
|
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2021; 58:2183-2201. [PMID: 33411241 DOI: 10.1007/s12035-020-02232-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol is an indispensable component of the cell membrane and plays vital roles in critical physiological processes. Brain cholesterol accounts for a large portion of total cholesterol in the human body, and its content must be tightly regulated to ensure normal brain function. Disorders of cholesterol metabolism in the brain are linked to neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and other atypical cognitive deficits that arise at old age. However, the specific role of cholesterol metabolism disorder in the pathogenesis of neurodegenerative diseases has not been fully elucidated. Statins that are a class of lipid-lowering drugs have been reported to have a positive effect on neurodegenerative diseases. Herein, we reviewed the physiological and pathological conditions of cholesterol metabolism and discussed the possible mechanisms of cholesterol metabolism and statin therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
31
|
Jie F, Yang X, Wu L, Wang M, Lu B. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 2021; 62:3613-3630. [PMID: 33397124 DOI: 10.1080/10408398.2020.1867819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytosterols and their oxidation products, namely oxyphytosterols, are natural compounds present in plant foods. With increased intake of phytosterol-enriched functional food products, the exposure of both phytosterols and oxyphytosterols is rising. Over the past ten years, researches have been focused on their absorption and metabolism in human body, as well as their biological effects. More importantly, recent studies showed that phytosterols and oxyphytosterols can traverse the blood-brain barrier and accumulate in the brain. As brain health problems resulting from ageing being more serious, attenuating central nervous system (CNS) disorders with active compounds in food are becoming a hot topic. Phytosterols and oxyphytosterols have been shown to implicated in cognition altering and the pathologies of several CNS disorders, including Alzheimer's disease and multiple sclerosis. We will overview these findings with a focus on the contents of phytosterols and oxyphytosterols in food and their dietary intake, as well as their origins in the brain, and illustrate molecular pathways through which they affect brain health, in terms of inflammation, cholesterol homeostasis, oxidative stress, and mitochondria function. The existing scientific gaps of phytosterols and oxyphytosterols to brain health in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
32
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Borah K, Rickman OJ, Voutsina N, Ampong I, Gao D, Baple EL, Dias IH, Crosby AH, Griffiths HR. A quantitative LC-MS/MS method for analysis of mitochondrial -specific oxysterol metabolism. Redox Biol 2020; 36:101595. [PMID: 32574926 PMCID: PMC7317222 DOI: 10.1016/j.redox.2020.101595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Oxysterols are critical regulators of inflammation and cholesterol metabolism in cells. They are oxidation products of cholesterol and may be differentially metabolised in subcellular compartments and in biological fluids. New analytical methods are needed to improve our understanding of oxysterol trafficking and the molecular interplay between the cellular compartments required to maintain cholesterol/oxysterol homeostasis. Here we describe a method for isolation of oxysterols using solid phase extraction and quantification by liquid chromatography-mass spectrometry, applied to tissue, cells and mitochondria. We analysed five monohydroxysterols; 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7 ketocholesterol and three dihydroxysterols 7α-24(S)dihydroxycholesterol, 7α-25dihydroxycholesterol, 7α-27dihydroxycholesterol by LC-MS/MS following reverse phase chromatography. Our new method, using Triton and DMSO extraction, shows improved extraction efficiency and recovery of oxysterols from cellular matrix. We validated our method by reproducibly measuring oxysterols in mouse brain tissue and showed that mice fed a high fat diet had significantly lower levels of 24S/25diOHC, 27diOHC and 7ketoOHC. We measured oxysterols in mitochondria from peripheral blood mononuclear cells and highlight the importance of rapid cell isolation to minimise effects of handling and storage conditions on oxysterol composition in clinical samples. In addition, in vitro cell culture systems, of THP-1 monocytes and neuronal-like SH-SH5Y cells, showed mitochondrial-specific oxysterol metabolism and profiles were lineage specific. In summary, we describe a robust and reproducible method validated for improved recovery, quantitative linearity and detection, reproducibility and selectivity for cellular oxysterol analysis. This method enables subcellular oxysterol metabolism to be monitored and is versatile in its application to various biological and clinical samples.
Collapse
Affiliation(s)
- Khushboo Borah
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Olivia J Rickman
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Nikol Voutsina
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Isaac Ampong
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Dan Gao
- Department of Human Anatomy,Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Emma L Baple
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | | | - Andrew H Crosby
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter, EX2 5DW, UK
| | - Helen R Griffiths
- Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
34
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
35
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
36
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
37
|
Dierckx T, Bogie JFJ, Hendriks JJA. The Impact of Phytosterols on the Healthy and Diseased Brain. Curr Med Chem 2020; 26:6750-6765. [PMID: 29984647 DOI: 10.2174/0929867325666180706113844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) is the most cholesterol-rich organ in mammals. Cholesterol homeostasis is essential for proper brain functioning and dysregulation of cholesterol metabolism can lead to neurological problems. Multiple sclerosis (MS) and Alzheimer's disease (AD) are examples of neurological diseases that are characterized by a disturbed cholesterol metabolism. Phytosterols (PS) are plant-derived components that structurally and functionally resemble cholesterol. PS are known for their cholesterol-lowering properties. Due to their ability to reach the brain, researchers have started to investigate the physiological role of PS in the CNS. In this review, the metabolism and function of PS in the diseased and healthy CNS are discussed.
Collapse
Affiliation(s)
- Tess Dierckx
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| |
Collapse
|
38
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
39
|
Crick PJ, Yutuc E, Abdel-Khalik J, Saeed A, Betsholtz C, Genove G, Björkhem I, Wang Y, Griffiths WJ. Formation and metabolism of oxysterols and cholestenoic acids found in the mouse circulation: Lessons learnt from deuterium-enrichment experiments and the CYP46A1 transgenic mouse. J Steroid Biochem Mol Biol 2019; 195:105475. [PMID: 31541728 PMCID: PMC6880786 DOI: 10.1016/j.jsbmb.2019.105475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These "proof of principle" data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1.
Collapse
Affiliation(s)
- Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Ahmed Saeed
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | | | - Guillem Genove
- ICMC Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| |
Collapse
|
40
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
41
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
42
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
43
|
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol 2019; 190:104-114. [PMID: 30878503 DOI: 10.1016/j.jsbmb.2019.03.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs. Years of research have shown a strong correlation between blood hypercholesterolemia and AD, however cholesterol is not able to cross the Blood Brain Barrier (BBB) into the brain. Cholesterol lowering therapies have shown mixed results in cognitive performance in AD patients, raising questions of whether brain cholesterol metabolism in the brain should be studied separately from peripheral cholesterol metabolism and what their relationship is. Unlike cholesterol, oxidized cholesterol metabolites known as oxysterols are able to cross the BBB from the circulation into the brain and vice-versa. The main oxysterols present in the circulation are 24S-hydroxycholesterol and 27-hydroxycholesterol. These oxysterols and their catalysing enzymes have been found to be altered in AD brains and there is evidence indicating their influence in the progression of the disease. This review gives a broad perspective on the relationship between hypercholesterolemia and AD, cholesterol lowering therapies for AD patients and the role of oxysterols in pathological and non-pathological conditions. Also, we propose cholesterol metabolites as valuable targets for prevention and alternative AD treatments.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| | - Julen Goikolea
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Institute of Molecular Biology and Genetics-IBGM, (University of Valladolid-CSIC), Valladolid, Spain
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Instituto Cajal (CSIC), Laboratorio Cajal de Circuitos Corticales, Madrid, Spain
| | - Silvia Maioli
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| |
Collapse
|
44
|
Björkhem I, Leoni V, Svenningsson P. On the fluxes of side-chain oxidized oxysterols across blood-brain and blood-CSF barriers and origin of these steroids in CSF (Review). J Steroid Biochem Mol Biol 2019; 188:86-89. [PMID: 30586624 DOI: 10.1016/j.jsbmb.2018.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
In contrast to cholesterol itself the side-chain oxidized metabolites 24S-hydroxycholesterol (24OH) and 27-hydroxycholesterol (27OH) are able to pass the blood-brain barrier and the blood-CSF barrier. Most 27OH in circulation is formed extracerebrally and according to catheterization experiments about 5 mg of it is taken up by the brain per 24 h. 24OH is almost exclusively produced in the brain and about 6 mg fluxes from the brain into the circulation per 24 h. In addition to these major fluxes a very minor fraction of these two oxysterols flux from the circulation into CSF. Isotope experiments have shown that almost all 27OH in CSF originates from the circulation and evidence has been presented that this is the case also with a substantial part of 24OH. The levels of both 24OH and 27OH in CSF are thus affected by the integrity of the blood-CSF barrier with higher levels when the barrier is defect. Both levels of 24OH and 27OH in CSF are increased in connection with neurodegeneration and in general the increase in 24OH levels is higher than the increase in 27OH levels. A number of observations in different type of patients including measurements of other biochemical markers support that the increase in levels of 24OH due to neurodegeneration is due to a release of this oxysterol or its precursor cholesterol from dying neuronal cells. In contrast the increase in levels of 27OH is likely to be a consequence of reduced metabolism due to loss of the neuronal enzyme CYP7B1. We discuss the driving forces behind the fluxes of oxysterols in the brain, the limitations in the flux across the barriers and the diagnostic potential for side-chain oxidized oxysterols in CSF.
Collapse
Affiliation(s)
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, Varese, Italy
| | | |
Collapse
|
45
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
46
|
Alsebaaly J, Dugast E, Favot L, Rabbaa Khabbaz L, Solinas M, Thiriet N. Persistent Neuroadaptations in the Expression of Genes Involved in Cholesterol Homeostasis Induced by Chronic, Voluntary Alcohol Intake in Rats. Front Mol Neurosci 2018; 11:457. [PMID: 30618609 PMCID: PMC6300585 DOI: 10.3389/fnmol.2018.00457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with persistent adaptations in the brain that are believed to participate in the long-lasting vulnerability to relapse after abstinence. Cholesterol, the major sterol compound found in the central nervous system (CNS), plays a major role in maintenance of neuronal morphology, synaptogenesis and synaptic communication and may be involved in alcohol-induced neuroadaptations. In this study, we investigated whether alcohol consumption in a two-bottle choice paradigm followed by 3 weeks of abstinence could alter the expression of genes encoding proteins involved in cholesterol homeostasis in brain regions involved in addiction and relapse, namely the prefrontal cortex (PFC), the nucleus accumbens (NAc), the mesencephalon and the amygdala. We found that voluntary alcohol intake followed by 3 weeks of forced abstinence produces changes in the transcription of several genes encoding proteins directly involved in cholesterol synthesis such as 3-hydroxyl-3-methylglutaryl-coenzyme A (HMGCoA) reductase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and farnesyl diphosphate synthase (FDPS) and in its regulation such as sterol regulatory element-binding factor-2 (SREBF2), in cholesterol transport such as ATP-binding cassette subfamily A member 1 (ABCA1) and in cholesterol degradation such as CYP46A1. Interestingly, these changes appeared to be region-specific and suggest that previous chronic exposure to alcohol might durably increase cholesterol metabolism in the PFC, the NAc and the mesencephalon and decrease cholesterol metabolism in the amygdala. Altogether, these results suggest that alcohol consumption leads to durable deregulations in cholesterol metabolism in key areas involved in loss of control over drug use and addiction. These long-term neuroadaptations may participate in the changes in brain structure and functioning that are responsible for the long-lasting risks of relapse to alcohol.
Collapse
Affiliation(s)
- Josette Alsebaaly
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments (LPCQM), Faculty of Pharmacy, PTS, University of Saint-Joseph of Beirut, Beirut, Lebanon
| | - Emilie Dugast
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA4331, University of Poitiers, Poitiers, France
| | - Lydia Rabbaa Khabbaz
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments (LPCQM), Faculty of Pharmacy, PTS, University of Saint-Joseph of Beirut, Beirut, Lebanon
| | - Marcello Solinas
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
| | - Nathalie Thiriet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM, U-1084, Poitiers, France
| |
Collapse
|
47
|
Griffiths WJ, Crick PJ, Meljon A, Theofilopoulos S, Abdel-Khalik J, Yutuc E, Parker JE, Kelly DE, Kelly SL, Arenas E, Wang Y. Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:191-211. [PMID: 30471425 PMCID: PMC6327153 DOI: 10.1016/j.bbalip.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP) 27A1 is a key enzyme in both the acidic and neutral pathways of bile acid biosynthesis accepting cholesterol and ring-hydroxylated sterols as substrates introducing a (25R)26-hydroxy and ultimately a (25R)26-acid group to the sterol side-chain. In human, mutations in the CYP27A1 gene are the cause of the autosomal recessive disease cerebrotendinous xanthomatosis (CTX). Surprisingly, Cyp27a1 knockout mice (Cyp27a1−/−) do not present a CTX phenotype despite generating a similar global pattern of sterols. Using liquid chromatography – mass spectrometry and exploiting a charge-tagging approach for oxysterol analysis we identified over 50 cholesterol metabolites and precursors in the brain and circulation of Cyp27a1−/− mice. Notably, we identified (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids, indicating the presence of an additional sterol 26-hydroxylase in mouse. Importantly, our analysis also revealed elevated levels of 7α-hydroxycholest-4-en-3-one, which we found increased the number of oculomotor neurons in primary mouse brain cultures. 7α-Hydroxycholest-4-en-3-one is a ligand for the pregnane X receptor (PXR), activation of which is known to up-regulate the expression of CYP3A11, which we confirm has sterol 26-hydroxylase activity. This can explain the formation of (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids; the acid with the former stereochemistry is a liver X receptor (LXR) ligand that increases the number of oculomotor neurons in primary brain cultures. We hereby suggest that a lack of a motor neuron phenotype in some CTX patients and Cyp27a1−/− mice may involve increased levels of 7α-hydroxycholest-4-en-3-one and activation PXR, as well as increased levels of sterol 26-hydroxylase and the production of neuroprotective sterols capable of activating LXR. Besides CYP27A1 an additional sterol 26-hydroxylase is present in mouse. Sterol-acids are observed as 7α-hydroxy-(25R/S)26-acid epimers. The (25S)26-acid is found in mouse brain of the CYP27A1−/− mouse. The (25R)26-acid is found in brain of the wild type animal. Both epimers are found in plasma of both genotypes.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Anna Meljon
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Spyridon Theofilopoulos
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Josie E Parker
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Diane E Kelly
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Steven L Kelly
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
48
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
49
|
Liao WH, Suendermann C, Steuer AE, Pacheco Lopez G, Odermatt A, Faresse N, Henneberg M, Langhans W. Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity. JCI Insight 2018; 3:99015. [PMID: 30046010 DOI: 10.1172/jci.insight.99015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Aldosterone synthase inhibitors (ASIs) should alleviate obesity-related cardiovascular and renal problems resulting partly from aldosterone excess, but their clinical use may have limitations. To improve knowledge for the use of ASIs, we investigated physiology in aldosterone synthase-knockout (ASKO) mice. On regular chow diet (CD), ASKO mice ate more and weighed less than WT mice, largely because they hyperventilated to eliminate acid as CO2. Replacing CD with high-fat diet (HFD) lessened the respiratory burden in ASKO mice, as did 12- to 15-hour fasting. The latter eliminated the genotype differences in respiratory workload and energy expenditure (EE). Thus, aldosterone deficiency burdened the organism more when the animals ate carbohydrate-rich chow than when they ate a HFD. Chronic HFD exposure further promoted hyperinsulinemia in ASKO mice that contributed to visceral fat accumulation accompanied by reduced lipolysis, thermogenic reprogramming, and the absence of weight-gain-related EE increases. Intracerebroventricular aldosterone supplementation in ASKO mice attenuated the HFD-induced hyperinsulinemia, but did not affect EE, suggesting that the presence of aldosterone increased the body's energetic efficiency, thus counteracting the EE-increasing effect of low insulin. ASIs may therefore cause acid-overload-induced respiratory burden and promote obesity. Their use in patients with preexisting renal and cardiopulmonary diseases might be contraindicated.
Collapse
Affiliation(s)
- Wan-Hui Liao
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Center of Competence in Research "Kidney.CH", Switzerland
| | | | - Andrea Eva Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Gustavo Pacheco Lopez
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.,Department of Health Sciences, Division of Biological and Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
| | - Alex Odermatt
- National Center of Competence in Research "Kidney.CH", Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Center of Competence in Research "Kidney.CH", Switzerland
| | - Maciej Henneberg
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Australia
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
50
|
Chen Y, Yin M, Cao X, Hu G, Xiao M. Pro- and Anti-inflammatory Effects of High Cholesterol Diet on Aged Brain. Aging Dis 2018; 9:374-390. [PMID: 29896426 PMCID: PMC5988593 DOI: 10.14336/ad.2017.0706] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Both hypercholesterolemia and aging are related to cognitive decline or Alzheimer's disease. However, their interactive influence on the neurodegenerative progress remains unclear. To address this issue, 6-month-old and 16-month-old female mice were fed a 3% cholesterol diet for 8 weeks, followed by hippocampus-related functional, pathological, biochemical and molecular analyses. The high cholesterol diet did not exacerbate age-dependent cognitive decline and hippocampal neuronal death, and even greatly mitigated decreases of synaptophysin and growth associated protein 43 expression in the hippocampus of aged mice. Compared with young controls, aged mice fed normal diet showed mild activation of hippocampal microglia with increased expression of CD68, a marker of the microglial M1 phenotype, and decreased expression of CD206, a marker of the microglial M2 phenotype. More interestingly, the high cholesterol diet not only improved NLRP3 inflammasome activation and IL-1β expression, but also increased levels of anti-inflammatory cytokines IL-4 and IL-6 in the hippocampus of old mice, suggesting playing pro- and anti-neuroinflammatory effects. In addition, the cholesterol rich diet resulted in a defect of the blood-brain barrier of aged hippocampus, as revealed by increased brain albumin content. These results have revealed both harmful and protective effects of high cholesterol diet on aged brain, which helps us to understand that hypercholesterolemia in the aged population is not associated with dementia and cognitive impairment.
Collapse
Affiliation(s)
- Yali Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Mengmei Yin
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xuejin Cao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|