1
|
Therachiyil L, Peerapen P, Younis SM, Ahmad A, Thongboonkerd V, Uddin S, Korashy HM. Proteomic insight towards key modulating proteins regulated by the aryl hydrocarbon receptor involved in ovarian carcinogenesis and chemoresistance. J Proteomics 2024; 295:105108. [PMID: 38316181 DOI: 10.1016/j.jprot.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Gynecological malignancies pose a severe threat to female lives. Ovarian cancer (OC), the most lethal gynecological malignancy, is clinically presented with chemoresistance and a higher relapse rate. Several studies have highly correlated the incidence of OC to exposure to environmental pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a process mainly mediated through activating the aryl hydrocarbon receptor (AhR). We have previously reported that exposure of OC cells to TCDD, an AhR activator, significantly modulated the expression of several genes that play roles in stemness and chemoresistance. However, the effect of AhR activation on the whole OC cell proteome aiming at identifying novel druggable targets for both prevention and treatment intervention purposes remains unrevealed. For this purpose, we conducted a comparative proteomic analysis of OC cells A2780 untreated/treated with TCDD for 24 h using a mass spectrometry-based label-free shotgun proteomics approach. The most significantly dysregulated proteins were validated by Western blot analysis. Our results showed that upon AhR activation by TCDD, out of 2598 proteins identified, 795 proteins were upregulated, and 611 were downregulated. STRING interaction analysis and KEGG-Reactome pathway analysis approaches identified several significantly dysregulated proteins that were categorized to be involved in chemoresistance, cancer progression, invasion and metastasis, apoptosis, survival, and prognosis in OC. Importantly, selected dysregulated genes identified by the proteomic study were validated at the protein expression levels by Western blot analysis. In conclusion, this study provides a better understanding of the the cross-talk between AhR and several other molecular signaling pathways and the role and involvement of AhR in ovarian carcinogenesis and chemoresistance. Moreover, the study suggests that AhR is a potential therapeutic target for OC prevention and maintenance. SIGNIFICANCE: To our knowledge, this is the first study that investigates the role and involvement of AhR and its regulated genes in OC by performing a comparative proteomic analysis to identify the critical proteins with a modulated expression upon AhR activation. We found AhR activation to play a tumor-promoting and chemoresistance-inducing role in the pathogenesis of OC. The results of our study help to devise novel therapeutics for better management and prevention and open the doors to finding novel biomarkers for the early detection and prognosis of OC.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shahd M Younis
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
3
|
Bohl SR, Schmalbrock LK, Bauhuf I, Meyer T, Dolnik A, Szyska M, Blätte TJ, Knödler S, Röhner L, Miller D, Kull M, Langer C, Döhner H, Letai A, Damm F, Heckl D, Bullinger L, Krönke J. Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Adv 2021; 5:2391-2402. [PMID: 33950175 PMCID: PMC8114551 DOI: 10.1182/bloodadvances.2020003541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The introduction of new drugs in the past years has substantially improved outcome in multiple myeloma (MM). However, the majority of patients eventually relapse and become resistant to one or multiple drugs. While the genetic landscape of relapsed/ resistant multiple myeloma has been elucidated, the causal relationship between relapse-specific gene mutations and the sensitivity to a given drug in MM has not systematically been evaluated. To determine the functional impact of gene mutations, we performed combined whole-exome sequencing (WES) of longitudinal patient samples with CRISPR-Cas9 drug resistance screens for lenalidomide, bortezomib, dexamethasone, and melphalan. WES of longitudinal samples from 16 MM patients identified a large number of mutations in each patient that were newly acquired or evolved from a small subclone (median 9, range 1-55), including recurrent mutations in TP53, DNAH5, and WSCD2. Focused CRISPR-Cas9 resistance screens against 170 relapse-specific mutations functionally linked 15 of them to drug resistance. These included cereblon E3 ligase complex members for lenalidomide, structural genes PCDHA5 and ANKMY2 for dexamethasone, RB1 and CDK2NC for bortezomib, and TP53 for melphalan. In contrast, inactivation of genes involved in the DNA damage repair pathway, including ATM, FANCA, RAD54B, and BRCC3, enhanced susceptibility to cytotoxic chemotherapy. Resistance patterns were highly drug specific with low overlap and highly correlated with the treatment-dependent clonal evolution in patients. The functional association of specific genetic alterations with drug sensitivity will help to personalize treatment of MM in the future.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Laura K Schmalbrock
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Imke Bauhuf
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Tatjana Meyer
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Szyska
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tamara J Blätte
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Knödler
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Linda Röhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Denise Miller
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Miriam Kull
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Christian Langer
- Department of Hematology, Internal Oncology and Palliative Care, Kempten Hospital, Kempten, Germany; and
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Heckl
- Department of Hematology and Oncology Children's Hospital, Halle University Hospital, Halle, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Krönke
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kumar V, Maity S. ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response. Biomolecules 2021; 11:173. [PMID: 33525374 PMCID: PMC7911976 DOI: 10.3390/biom11020173] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological functions beyond ER stress signaling. Many recent studies have now focused on the non-canonical function of these sensors. In this review, we will focus on ER mitochondrial interdependence with special emphasis on the non-canonical role of ER stress sensors beyond ER stress.
Collapse
|
5
|
Somatilaka BN, Hwang SH, Palicharla VR, White KA, Badgandi H, Shelton JM, Mukhopadhyay S. Ankmy2 Prevents Smoothened-Independent Hyperactivation of the Hedgehog Pathway via Cilia-Regulated Adenylyl Cyclase Signaling. Dev Cell 2020; 54:710-726.e8. [PMID: 32702291 PMCID: PMC9042708 DOI: 10.1016/j.devcel.2020.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
The mechanisms underlying subcellular targeting of cAMP-generating adenylyl cyclases and processes regulated by their compartmentalization are poorly understood. Here, we identify Ankmy2 as a repressor of the Hedgehog pathway via adenylyl cyclase targeting. Ankmy2 binds to multiple adenylyl cyclases, determining their maturation and trafficking to primary cilia. Mice lacking Ankmy2 are mid-embryonic lethal. Knockout embryos have increased Hedgehog signaling and completely open neural tubes showing co-expansion of all ventral neuroprogenitor markers, comparable to the loss of the Hedgehog receptor Patched1. Ventralization in Ankmy2 knockout is completely independent of the Hedgehog pathway transducer Smoothened. Instead, ventralization results from the reduced formation of Gli2 and Gli3 repressors and early depletion of adenylyl cyclase III in neuroepithelial cilia, implicating deficient pathway repression. Ventralization in Ankmy2 knockout requires both cilia and Gli2 activation. These findings indicate that cilia-dependent adenylyl cyclase signaling represses the Hedgehog pathway and promotes morphogenetic patterning.
Collapse
Affiliation(s)
| | - Sun-Hee Hwang
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vivek Reddy Palicharla
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Andrew White
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hemant Badgandi
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Michael Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Kwak C, Shin S, Park JS, Jung M, Nhung TTM, Kang MG, Lee C, Kwon TH, Park SK, Mun JY, Kim JS, Rhee HW. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc Natl Acad Sci U S A 2020; 117:12109-12120. [PMID: 32414919 PMCID: PMC7275737 DOI: 10.1073/pnas.1916584117] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.
Collapse
Affiliation(s)
- Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Jong-Seok Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, 41062 Daegu, Korea;
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, Korea;
- School of Biological Sciences, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
7
|
Hietamäki J, Gregory LC, Ayoub S, Iivonen AP, Vaaralahti K, Liu X, Brandstack N, Buckton AJ, Laine T, Känsäkoski J, Hero M, Miettinen PJ, Varjosalo M, Wakeling E, Dattani MT, Raivio T. Loss-of-Function Variants in TBC1D32 Underlie Syndromic Hypopituitarism. J Clin Endocrinol Metab 2020; 105:dgaa078. [PMID: 32060556 PMCID: PMC7138537 DOI: 10.1210/clinem/dgaa078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 01/28/2023]
Abstract
CONTEXT Congenital pituitary hormone deficiencies with syndromic phenotypes and/or familial occurrence suggest genetic hypopituitarism; however, in many such patients the underlying molecular basis of the disease remains unknown. OBJECTIVE To describe patients with syndromic hypopituitarism due to biallelic loss-of-function variants in TBC1D32, a gene implicated in Sonic Hedgehog (Shh) signaling. SETTING Referral center. PATIENTS A Finnish family of 2 siblings with panhypopituitarism, absent anterior pituitary, and mild craniofacial dysmorphism, and a Pakistani family with a proband with growth hormone deficiency, anterior pituitary hypoplasia, and developmental delay. INTERVENTIONS The patients were investigated by whole genome sequencing. Expression profiling of TBC1D32 in human fetal brain was performed through in situ hybridization. Stable and dynamic protein-protein interaction partners of TBC1D32 were investigated in HEK cells followed by mass spectrometry analyses. MAIN OUTCOME MEASURES Genetic and phenotypic features of patients with biallelic loss-of-function mutations in TBC1D32. RESULTS The Finnish patients harboured compound heterozygous loss-of-function variants (c.1165_1166dup p.(Gln390Phefs*32) and c.2151del p.(Lys717Asnfs*29)) in TBC1D32; the Pakistani proband carried a known pathogenic homozygous TBC1D32 splice-site variant c.1372 + 1G > A p.(Arg411_Gly458del), as did a fetus with a cleft lip and partial intestinal malrotation from a terminated pregnancy within the same pedigree. TBC1D32 was expressed in the developing hypothalamus, Rathke's pouch, and areas of the hindbrain. TBC1D32 interacted with proteins implicated in cilium assembly, Shh signaling, and brain development. CONCLUSIONS Biallelic TBC1D32 variants underlie syndromic hypopituitarism, and the underlying mechanism may be via disrupted Shh signaling.
Collapse
Affiliation(s)
- Johanna Hietamäki
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sandy Ayoub
- North West Thames Regional Genetic Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Anna-Pauliina Iivonen
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Andrew J Buckton
- London North Genomic Laboratory Hub, Great Ormond Street Hospital NHS Trust, London, UK
| | - Tiina Laine
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Johanna Känsäkoski
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Hero
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Päivi J Miettinen
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - Emma Wakeling
- North West Thames Regional Genetic Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular Basis of Rare Diseases Section, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Taneli Raivio
- Pediatric Research Center, Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
- Department of Physiology, Medicum Unit, and Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, Bush WS, Gifford KA, Chibnik LB, Mukherjee S, De Jager PL, Kukull W, Crane PK, Resnick SM, Keene CD, Montine TJ, Schellenberg GD, Deming Y, Chao MJ, Huentelman M, Martin ER, Hamilton-Nelson K, Shaw LM, Trojanowski JQ, Peskind ER, Cruchaga C, Pericak-Vance MA, Goate AM, Cox NJ, Haines JL, Zetterberg H, Blennow K, Larson EB, Johnson SC, Albert M, Bennett DA, Schneider JA, Jefferson AL, Hohman TJ. Sex differences in the genetic predictors of Alzheimer's pathology. Brain 2019; 142:2581-2589. [PMID: 31497858 PMCID: PMC6736148 DOI: 10.1093/brain/awz206] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
Autopsy measures of Alzheimer's disease neuropathology have been leveraged as endophenotypes in previous genome-wide association studies (GWAS). However, despite evidence of sex differences in Alzheimer's disease risk, sex-stratified models have not been incorporated into previous GWAS analyses. We looked for sex-specific genetic associations with Alzheimer's disease endophenotypes from six brain bank data repositories. The pooled dataset included 2701 males and 3275 females, the majority of whom were diagnosed with Alzheimer's disease at autopsy (70%). Sex-stratified GWAS were performed within each dataset and then meta-analysed. Loci that reached genome-wide significance (P < 5 × 10-8) in stratified models were further assessed for sex interactions. Additional analyses were performed in independent datasets leveraging cognitive, neuroimaging and CSF endophenotypes, along with age-at-onset data. Outside of the APOE region, one locus on chromosome 7 (rs34331204) showed a sex-specific association with neurofibrillary tangles among males (P = 2.5 × 10-8) but not females (P = 0.85, sex-interaction P = 2.9 × 10-4). In follow-up analyses, rs34331204 was also associated with hippocampal volume, executive function, and age-at-onset only among males. These results implicate a novel locus that confers male-specific protection from tau pathology and highlight the value of assessing genetic associations in a sex-specific manner.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gary Beecham
- John T MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Brian Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Cell Circuits Program, Broad Institute, Cambridge MA, USA
| | - Walter Kukull
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Chao
- Ronald M Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Eden R Martin
- John T MacDonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Kara Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Alison M Goate
- Ronald M Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Marilyn Albert
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Xu SS, Xu LG, Yuan C, Li SN, Chen T, Wang W, Li C, Cao L, Rao H. FKBP8 inhibits virus-induced RLR-VISA signaling. J Med Virol 2019; 91:482-492. [PMID: 30267576 DOI: 10.1002/jmv.25327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial antiviral signal protein mitochondrial antiviral signaling protein, also known as virus-induced signaling adaptor (VISA), plays a key role in regulating host innate immune signaling pathways. This study identifies FK506 binding protein 8 (FKBP8) as a candidate interacting protein of VISA through the yeast two-hybrid technique. The interaction of FKBP8 with VISA, retinoic acid inducible protein 1 (RIG-I), and IFN regulatory factor 3 (IRF3) was confirmed during viral infection in mammalian cells by coimmunoprecipitation. Overexpression of FKBP8 using a eukaryotic expression plasmid significantly attenuated Sendai virus-induced activation of the promoter interferons β (IFN-β), and transcription factors nuclear factor κ-light chain enhancer of activated B cells (NF-κB) and IFN-stimulated response element (ISRE). Overexpression of FKBP8 also decreased dimer-IRF3 activity, but enhanced virus replication. Conversely, knockdown of FKBP8 expression by RNA interference showed opposite effects. Further studies indicated that FKBP8 acts as a negative interacting partner to regulate RLR-VISA signaling by acting on VISA and TANK binding kinase 1 (TBK1). Additionally, FKBP8 played a negative role on virus-induced signaling by inhibiting the formation of TBK1-IRF3 and VISA-TRAF3 complexes. Notably, FKBP8 also promoted the degradation of TBK1, RIG-I, and TRAF3 resulting from FKBP8 reinforced Sendai virus-induced endogenous polyubiquitination of RIG-I, TBK1, and TNF receptor-associated factor 3 (TRAF3). Therefore, a novel function of FKBP8 in innate immunity antiviral signaling regulation was revealed in this study.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
10
|
Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7:34389. [PMID: 29916806 PMCID: PMC6044906 DOI: 10.7554/elife.34389] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seiya Mizuno
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Atsuko Shimada
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Satoru Takahashi
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alex von Kreigsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Arsenault PR, Song D, Bergkamp M, Ravaschiere AM, Navalsky BE, Lieberman PM, Lee FS. Identification of Small-Molecule PHD2 Zinc Finger Inhibitors that Activate Hypoxia Inducible Factor. Chembiochem 2016; 17:2316-2323. [PMID: 27770548 DOI: 10.1002/cbic.201600493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 02/06/2023]
Abstract
The prolyl hydroxylase domain (PHD) protein:hypoxia inducible factor (HIF) pathway is the main pathway by which changes in oxygen concentration are transduced to changes in gene expression. In mammals, there are three PHD paralogues, and PHD2 has emerged as a particularly critical one for regulating HIF target genes such as erythropoietin (EPO), which controls red cell mass and hematocrit. PHD2 is distinctive among the three PHDs in that it contains an N-terminal MYND-type zinc finger. We have proposed that this zinc finger binds a Pro-Xaa-Leu-Glu (PXLE) motif found in proteins of the HSP90 pathway to facilitate HIF-α hydroxylation. Targeting this motif could provide a means of specifically inhibiting this PHD isoform. Here, we screened a library of chemical compounds for their capacity to inhibit the zinc finger of PHD2. We identified compounds that, in vitro, can inhibit PHD2 binding to a PXLE-containing peptide and induce activation of HIF. Injection of one of these compounds into mice induces an increase in hematocrit. This study offers proof of principle that inhibition of the zinc finger of PHD2 can provide a means of selectively targeting PHD2 to activate the HIF pathway.
Collapse
Affiliation(s)
- Patrick R Arsenault
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Daisheng Song
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Marian Bergkamp
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew M Ravaschiere
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Bradleigh E Navalsky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA, 19104, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 605 Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|