1
|
Li Y, Zhang J, Zhang Y, Zhang B, Wang Z, Wu C, Zhou Z, Chang X. Integrated metabolomic and transcriptomic analysis reveals perturbed glycerophospholipid metabolism in mouse neural stem cells exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115411. [PMID: 37660531 DOI: 10.1016/j.ecoenv.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Cadmium (Cd) is a ubiquitous heavy metal with neurotoxicity. Our previous study reported that Cd could inhibit the proliferation of mouse neural stem cells (mNSCs). However, the underlying mechanisms are obscure. In recent years, the rapid growth of multi-omics techniques enables us to explore the cellular responses that occurred after toxicant exposure at the molecular level. In this study, we used a combination of metabolomics and transcriptomics approaches to investigate the effects of exposure to Cd on mNSCs. After treatment with Cd, the metabolites and transcripts in mNSCs changed significantly with 110 differentially expressed metabolites and 2135 differentially expressed genes identified, respectively. The altered metabolites were mainly involved in glycerophospholipid metabolism, arginine and proline metabolism, arginine biosynthesis, glyoxylate and dicarboxylate metabolism. Meanwhile, the transcriptomic data demonstrated perturbed membrane function and signal transduction. Furthermore, integrated analysis of metabolomic and transcriptomic data suggested that glycerophospholipid metabolism might be the major metabolic pathway affected by Cd in mNSCs. More interestingly, the supplementation of lysophosphatidylethanolamine (LPE) attenuated Cd-induced mitochondrial impairment and the inhibition of cell proliferation and differentiation in mNSCs, further supporting our analysis. Overall, the study provides new insights into the mechanisms of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Yixi Li
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiming Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuwei Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Bing Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zheng Wang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Chunhua Wu
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiuli Chang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2023; 89:101207. [PMID: 36464139 DOI: 10.1016/j.plipres.2022.101207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phospholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease and the return to homeostasis. These recent major developments have helped to establish the concept of membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for this enzyme as a target for therapeutic intervention.
Collapse
|
3
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
iPLA2-VIA is required for healthy aging of neurons, muscle, and the female germline in Drosophila melanogaster. PLoS One 2021; 16:e0256738. [PMID: 34506510 PMCID: PMC8432841 DOI: 10.1371/journal.pone.0256738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative disease (ND) is a growing health burden worldwide, but its causes and treatments remain elusive. Although most cases of ND are sporadic, rare familial cases have been attributed to single genes, which can be investigated in animal models. We have generated a new mutation in the calcium-independent phospholipase A2 (iPLA2) VIA gene CG6718, the Drosophila melanogaster ortholog of human PLA2G6/PARK14, mutations in which cause a suite of NDs collectively called PLA2G6-associated neurodegeneration (PLAN). Our mutants display age-related loss of climbing ability, a symptom of neurodegeneration in flies. Although phospholipase activity commonly is presumed to underlie iPLA2-VIA function, locomotor decline in our mutants is rescued by a transgene carrying a serine-to-alanine mutation in the catalytic residue, suggesting that important functional aspects are independent of phospholipase activity. Additionally, we find that iPLA2-VIA knockdown in either muscle or neurons phenocopies locomotor decline with age, demonstrating its necessity in both neuronal and non-neuronal tissues. Furthermore, RNA in situ hybridization shows high endogenous iPLA2-VIA mRNA expression in adult germ cells, and transgenic HA-tagged iPLA2-VIA colocalizes with mitochondria there. Mutant males are fertile with normal spermatogenesis, while fertility is reduced in mutant females. Mutant female germ cells display age-related mitochondrial aggregation, loss of mitochondrial potential, and elevated cell death. These results suggest that iPLA2-VIA is critical for mitochondrial integrity in the Drosophila female germline, which may provide a novel context to investigate its functions with parallels to PLAN.
Collapse
|
5
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
6
|
Phospholipase iPLA 2β averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 2021; 17:465-476. [PMID: 33542532 PMCID: PMC8152680 DOI: 10.1038/s41589-020-00734-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2β (iPLA2β, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2β averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2β expression and a PD-relevant phenotype. Thus, iPLA2β is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.
Collapse
|
7
|
Barinotti A, Radin M, Cecchi I, Foddai SG, Rubini E, Roccatello D, Sciascia S, Menegatti E. Genetic Factors in Antiphospholipid Syndrome: Preliminary Experience with Whole Exome Sequencing. Int J Mol Sci 2020; 21:E9551. [PMID: 33333988 PMCID: PMC7765384 DOI: 10.3390/ijms21249551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
As in many autoimmune diseases, the pathogenesis of the antiphospholipid syndrome (APS) is the result of a complex interplay between predisposing genes and triggering environmental factors, leading to a loss of self-tolerance and immune-mediated tissue damage. While the first genetic studies in APS focused primarily on the human leukocytes antigen system (HLA) region, more recent data highlighted the role of other genes in APS susceptibility, including those involved in the immune response and in the hemostatic process. In order to join this intriguing debate, we analyzed the single-nucleotide polymorphisms (SNPs) derived from the whole exome sequencing (WES) of two siblings affected by APS and compared our findings with the available literature. We identified genes encoding proteins involved in the hemostatic process, the immune response, and the phospholipid metabolism (PLA2G6, HSPG2, BCL3, ZFAT, ATP2B2, CRTC3, and ADCY3) of potential interest when debating the pathogenesis of the syndrome. The study of the selected SNPs in a larger cohort of APS patients and the integration of WES results with the network-based approaches will help decipher the genetic risk factors involved in the diverse clinical features of APS.
Collapse
Affiliation(s)
- Alice Barinotti
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Silvia Grazietta Foddai
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| | - Elena Rubini
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital and University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital and University of Turin, 10154 Turin, Italy
| | - Elisa Menegatti
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
8
|
Abstract
The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.
Collapse
|
9
|
Metabolic Effects of Selective Deletion of Group VIA Phospholipase A 2 from Macrophages or Pancreatic Islet Beta-Cells. Biomolecules 2020; 10:biom10101455. [PMID: 33080873 PMCID: PMC7602969 DOI: 10.3390/biom10101455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
To examine the role of group VIA phospholipase A2 (iPLA2β) in specific cell lineages in insulin secretion and insulin action, we prepared mice with a selective iPLA2β deficiency in cells of myelomonocytic lineage, including macrophages (MØ-iPLA2β-KO), or in insulin-secreting β-cells (β-Cell-iPLA2β-KO), respectively. MØ-iPLA2β-KO mice exhibited normal glucose tolerance when fed standard chow and better glucose tolerance than floxed-iPLA2β control mice after consuming a high-fat diet (HFD). MØ-iPLA2β-KO mice exhibited normal glucose-stimulated insulin secretion (GSIS) in vivo and from isolated islets ex vivo compared to controls. Male MØ-iPLA2β-KO mice exhibited enhanced insulin responsivity vs. controls after a prolonged HFD. In contrast, β-cell-iPLA2β-KO mice exhibited impaired glucose tolerance when fed standard chow, and glucose tolerance deteriorated further when introduced to a HFD. β-Cell-iPLA2β-KO mice exhibited impaired GSIS in vivo and from isolated islets ex vivo vs. controls. β-Cell-iPLA2β-KO mice also exhibited an enhanced insulin responsivity compared to controls. These findings suggest that MØ iPLA2β participates in HFD-induced deterioration in glucose tolerance and that this mainly reflects an effect on insulin responsivity rather than on insulin secretion. In contrast, β-cell iPLA2β plays a role in GSIS and also appears to confer some protection against deterioration in β-cell functions induced by a HFD.
Collapse
|
10
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Tyurina YY, Tyurin VA, Anthonymuthu T, Amoscato AA, Sparvero LJ, Nesterova AM, Baynard ML, Sun W, He R, Khaitovich P, Vladimirov YA, Gabrilovich DI, Bayır H, Kagan VE. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids 2019; 221:93-107. [PMID: 30928338 PMCID: PMC6714565 DOI: 10.1016/j.chemphyslip.2019.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Anastasiia M Nesterova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Matthew L Baynard
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Wanyang Sun
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | - RongRong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | | | - Yuri A Vladimirov
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Li J, Du H, Zhang M, Zhang Z, Teng F, Zhao Y, Zhang W, Yu Y, Feng L, Cui X, Zhang M, Lu T, Guan F, Chen L. Amorphous solid dispersion of Berberine mitigates apoptosis via iPLA 2β/Cardiolipin/Opa1 pathway in db/db mice and in Palmitate-treated MIN6 β-cells. Int J Biol Sci 2019; 15:1533-1545. [PMID: 31337982 PMCID: PMC6643135 DOI: 10.7150/ijbs.32020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
Aims: Berberine (BBR) improves beta-cell function in Type 2 diabetes (T2D) because of its anti-apoptotic activity, and our laboratory developed a new preparation named Huang-Gui Solid Dispersion (HGSD) to improve the oral bioavailability of BBR. However, the mechanism by which BBR inhibits beta-cell apoptosis is unclear. We hypothesized that the Group VIA Ca2+-Independent Phospholipase A2 (iPLA2β)/Cardiolipin(CL)/Opa1 signaling pathway could exert a protective role in T2D by regulating beta-cell apoptosis and that HGSD could inhibit β-cell apoptosis through iPLA2β/CL/Opa1 upregulation. Methods: We examined how iPLA2β and BBR regulated apoptosis and insulin secretion through CL/Opa1 in vivo and in vitro. In in vitro studies, we developed Palmitate(PA)-induced apoptotic cell death model in mouse insulinoma cells (MIN6). iPLA2β overexpression and silencing technology were used to examine how the iPLA2β/CL/Opa1 interaction may play an important role in BBR treatment. In in vivo studies, db/db mice were used as a diabetic animal model. The pancreatic islet function and morphology, beta-cell apoptosis and mitochondrial injury were examined to explore the effects of HGSD. The expression of iPLA2β/CL/Opa1 was measured to explore whether the signaling pathway was damaged in T2D and was involved in HGSD treatment. Results: The overexpression of iPLA2β and BBR treatment significantly attenuated Palmitate- induced mitochondrial injury and apoptotic death compared with Palmitate-treated MIN6 cell. In addition, iPLA2β silencing could simultaneously partly abolish the anti-apoptotic effect of BBR and decrease CL/Opa1 signaling in MIN6 cells. Moreover, HGSD treatment significantly decreased beta-cell apoptosis and resulted in the upregulation of iPLA2β/CL/Opa1 compared to those of the db/db mice. Conclusion: The results indicated that the regulation of iPLA2β/CL/Opa1 by HGSD may prevent beta-cell apoptosis and may improve islet beta-cell function in Type 2 diabetic mice and in palmitate-treated MIN6 cells.
Collapse
Affiliation(s)
- Junnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongwei Du
- Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin University, Changchun 130021, China
| | - Meishuang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhi Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fei Teng
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yali Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wenyou Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linjing Feng
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xinming Cui
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tzongshi Lu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Fengying Guan
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Li Chen
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Xu C, Yang X, Sun L, Yang T, Cai C, Wang P, Jiang J, Qing Y, Hu X, Wang D, Wang P, Cui G, Zhang J, Li Y, Ji F, Liu C, Wan C. An investigation of calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in schizophrenia. Psychiatry Res 2019; 273:782-787. [PMID: 31207866 DOI: 10.1016/j.psychres.2019.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
Evidence indicates that abnormal phospholipase A2 (PLA2) levels and niacin insensitivity are present in individuals with schizophrenia. This study was designed to determine whether differences in plasma calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) exist between those with schizophrenia and healthy controls, and to explore the correlation between PLA2s and the niacin skin reaction in schizophrenic patients. We performed ELISA experiments to measure the concentrations of plasma iPLA2 and cPLA2 and we conducted a series of niacin skin tests on schizophrenic patients from the Chinese Han population. In addition, a meta-analysis of the relationship between PLA2 and schizophrenia was conducted. The plasma concentration of iPLA2 in patients with schizophrenia was significantly higher than that in healthy controls while the plasma concentration of cPLA2 did not differ. The meta-analysis also revealed that the activity level of iPLA2 in individuals with schizophrenia was higher than that in healthy controls, whereas that of cPLA2 was not. Furthermore, a significant positive correlation was found between the concentration of iPLA2 and the score for the skin flushing response within 20 min. The abnormal plasma iPLA2 concentration and its relationship with the niacin skin test in schizophrenic patients has contributed to a deeper understanding of the pathology of schizophrenia, which may in turn provide new insights into the clinical diagnoses and treatment of schizophrenia.
Collapse
Affiliation(s)
- Chuangye Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Changqun Cai
- The Fourth People's Hospital of Wuhu, Wuhu 241002, China
| | - Peng Wang
- The Fourth People's Hospital of Wuhu, Wuhu 241002, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pengkun Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China; Collaborative Innovation Center of Genetics and Development, Shanghai, China.
| |
Collapse
|
14
|
Zhu X, Gan-Schreier H, Otto AC, Cheng Y, Staffer S, Tuma-Kellner S, Ganzha A, Liebisch G, Chamulitrat W. iPla2β deficiency in mice fed with MCD diet does not correct the defect of phospholipid remodeling but attenuates hepatocellular injury via an inhibition of lipid uptake genes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:677-687. [PMID: 30735854 DOI: 10.1016/j.bbalip.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Group VIA calcium-independent phospholipase A2 (iPla2β) is among modifier genes of non-alcoholic fatty liver disease which leads to non-alcoholic steatohepatitis (NASH). Consistently, iPla2β deletion protects hepatic steatosis and obesity in genetic ob/ob and obese mice chronically fed with high-fat diet by replenishing the loss of hepatic phospholipids (PL). As mouse feeding with methionine- and choline-deficient (MCD) diet is a model of lean NASH, we tested whether iPla2β-null mice could still be protected since PL syntheses are disturbed. MCD-diet feeding of female wild-type for 5 weeks induced hepatic steatosis with a severe reduction of body and visceral fat weights concomitant with a decrease of hepatic phosphatidylcholine. These parameters were not altered in MCD-fed iPla2β-null mice. However, iPla2β deficiency attenuated MCD-induced elevation of serum transaminase activities and hepatic expression of fatty-acid translocase Cd36, fatty-acid binding protein-4, peroxisome-proliferator activated receptorγ, and HDL-uptake scavenger receptor B type 1. The reduction of lipid uptake genes was consistent with a decrease of hepatic esterified and unesterified fatty acids and cholesterol esters. On the contrary, iPla2β deficiency under MCD did not have any effects on inflammasomes and pro-inflammatory markers but exacerbated hepatic expression of myofibroblast α-smooth muscle actin and vimentin. Thus, without any rescue of PL loss, iPla2β inactivation attenuated hepatocellular injury in MCD-induced NASH with a novel mechanism of lipid uptake inhibition. Taken together, we have shown that iPla2β mediates hepatic steatosis and lipotoxicity in hepatocytes in both obese and lean NASH, but elicits exacerbated liver fibrosis in lean NASH likely by affecting other cell types.
Collapse
Affiliation(s)
- Xingya Zhu
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Christin Otto
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Yuting Cheng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Alexandra Ganzha
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Tafazzin-dependent cardiolipin composition in C6 glioma cells correlates with changes in mitochondrial and cellular functions, and cellular proliferation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:452-465. [PMID: 30639735 DOI: 10.1016/j.bbalip.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/07/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022]
Abstract
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.
Collapse
|
16
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
17
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
18
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
19
|
Ashley JW, Hancock WD, Nelson AJ, Bone RN, Tse HM, Wohltmann M, Turk J, Ramanadham S. Polarization of Macrophages toward M2 Phenotype Is Favored by Reduction in iPLA2β (Group VIA Phospholipase A2). J Biol Chem 2016; 291:23268-23281. [PMID: 27650501 DOI: 10.1074/jbc.m116.754945] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/06/2022] Open
Abstract
Macrophages are important in innate and adaptive immunity. Macrophage participation in inflammation or tissue repair is directed by various extracellular signals and mediated by multiple intracellular pathways. Activation of group VIA phospholipase A2 (iPLA2β) causes accumulation of arachidonic acid, lysophospholipids, and eicosanoids that can promote inflammation and pathologic states. We examined the role of iPLA2β in peritoneal macrophage immune function by comparing wild type (WT) and iPLA2β-/- mouse macrophages. Compared with WT, iPLA2β-/- macrophages exhibited reduced proinflammatory M1 markers when classically activated. In contrast, anti-inflammatory M2 markers were elevated under naïve conditions and induced to higher levels by alternative activation in iPLA2β-/- macrophages compared with WT. Induction of eicosanoid (12-lipoxygenase (12-LO) and cyclooxygenase 2 (COX2))- and reactive oxygen species (NADPH oxidase 4 (NOX4))-generating enzymes by classical activation pathways was also blunted in iPLA2β-/- macrophages compared with WT. The effects of inhibitors of iPLA2β, COX2, or 12-LO to reduce M1 polarization were greater than those to enhance M2 polarization. Certain lipids (lysophosphatidylcholine, lysophosphatidic acid, and prostaglandin E2) recapitulated M1 phenotype in iPLA2β-/- macrophages, but none tested promoted M2 phenotype. These findings suggest that (a) lipids generated by iPLA2β and subsequently oxidized by cyclooxygenase and 12-LO favor macrophage inflammatory M1 polarization, and (b) the absence of iPLA2β promotes macrophage M2 polarization. Reducing macrophage iPLA2β activity and thereby attenuating macrophage M1 polarization might cause a shift from an inflammatory to a recovery/repair milieu.
Collapse
Affiliation(s)
- Jason W Ashley
- From the Department of Biology, Eastern Washington University, Cheney, Washington 99004
| | - William D Hancock
- Department of Cell, Developmental, and Integrative Biology.,Comprehensive Diabetes Center, and
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology.,Comprehensive Diabetes Center, and
| | - Robert N Bone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, and
| | - Hubert M Tse
- Comprehensive Diabetes Center, and.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Wohltmann
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, .,Comprehensive Diabetes Center, and
| |
Collapse
|
20
|
Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:3-7. [PMID: 27556952 DOI: 10.1016/j.bbalip.2016.08.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Abstract
Among mitochondrial lipids, cardiolipin occupies a unique place. It is the only phospholipid that is specific to mitochondria and although it is merely a minor component, accounting for 10-20% of the total phospholipid content, cardiolipin plays an important role in the molecular organization, and thus the function of the cristae. This review covers the formation of cardiolipin, a phospholipid dimer containing two phosphatidyl residues, and its assembly into mitochondrial membranes. While a large body of literature exists on this topic, the review focuses on papers that appeared in the past three years. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
21
|
Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci 2015; 60:3590-602. [PMID: 26182903 DOI: 10.1007/s10620-015-3807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease results from a combination of dysfunction of intestinal epithelial barrier and dysregulation of mucosal immune system. iPLA2β has multiple homeostatic functions and shown to play a role in membrane remodeling, cell proliferation, monocyte chemotaxis, and apoptosis. The latter may render chronic inflammation and susceptibility for acute injury. AIMS We aim to evaluate whether an inactivation of iPLA2β would enhance the pathogenesis of experimental colitis induced by dextran sodium sulfate. METHODS iPLA2β-null male mice were administered dextran sodium sulfate in drinking water for 7 days followed by normal water for 3 days. At day 10, mice were killed, and harvested colon and ileum were subjected for evaluation by histology, immunohistochemistry, and quantitative RT-PCR. RESULTS Dextran sodium sulfate administration caused a significant increase in histological scores and cleaved caspase 3 (+) apoptosis concomitant with a decrease in colon length and crypt cell Ki67 (+) proliferation in iPLA2β-null mice in a greater extent than in control littermates. This sensitization by iPLA2β deficiency was associated with an increase in accumulation of F4/80 (+) macrophages, and expression of proinflammatory cytokines and chemokines, while the number of mucin-containing goblet cells and mucus layer thickness was decreased. Some of these abnormalities were also observed in the ileum. CONCLUSIONS An inactivation of iPLA2β exacerbated pathogenesis of experimental colitis by promoting intestinal epithelial cell apoptosis, inhibiting crypt cell regeneration, and causing damage to mucus barrier allowing an activation of innate immune response. Thus, iPLA2β may represent a susceptible gene for the development of inflammatory bowel disease.
Collapse
|
22
|
Petan T, Križaj I. Is iPLA2β a Novel Target for the Development of New Strategies to Alleviate Inflammatory Bowel Disease? Dig Dis Sci 2015; 60:3504-6. [PMID: 26391270 DOI: 10.1007/s10620-015-3874-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia. .,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Gdula-Argasińska J, Czepiel J, Totoń-Żurańska J, Wołkow P, Librowski T, Czapkiewicz A, Perucki W, Woźniakiewicz M, Woźniakiewicz A. n-3 Fatty acids regulate the inflammatory-state related genes in the lung epithelial cells exposed to polycyclic aromatic hydrocarbons. Pharmacol Rep 2015; 68:319-28. [PMID: 26922534 DOI: 10.1016/j.pharep.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic airway inflammation is coordinated by a complex of inflammatory mediators, including eicosanoids. The aim of this study was to evaluate the impact of polycyclic aromatic hydrocarbons (PAHs) on the human lung epithelial carcinoma A549 cells supplemented with docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. METHODS We analyzed the influence of DHA, EPA and/or benzo(a)pyrene (BaP), chrysene (Chr), fluoranthene (Flu) and benzo(a)anthracene (Baa) treatment on the fatty acids (FAs) profile and the formation of isoprostanes. We studied the cyclooxygenase-2, FP-receptor, peroxisome proliferator-activated receptors PPARδ and PPARγ, transcription factor NF-кB p50 and p65 expression by Western blot, phospholipase A2 (cPLA2) activity, as well as aryl hydrocarbon receptor (AHR), cytochrome P450 (CYP1A1), phospholipase A2 (PLA2G4A) and prostaglandin synthase 2 (PTGS2) gene expression by qRT-PCR. RESULTS DHA or EPA supplementation and BaP or Baa treatment resulted in a higher level of PGF3α. COX-2 expression was decreased while PPARδ expression and cPLA2 activity was increased after fatty acid supplementation and PAHs treatment. DHA and EPA up-regulated AHR and PLA2G4A genes. CONCLUSIONS Supplementation with n-3 FAs resulted in changes of inflammatory-state related genes in the lung epithelial cells exposed to PAHs. The altered profile of lipid mediators from n-3 FA as well as repression of the COX-2 protein by n-3 PUFAs in A549 cells incubated with PAHs suggests anti-inflammatory and pro-resolving properties of DHA and EPA. It remains to be shown whether these pleiotropic and protective actions of n-3 FAs contribute to fish oil's therapeutic effect in asthma.
Collapse
Affiliation(s)
- Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland.
| | - Jacek Czepiel
- Department of Infectious Diseases, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland; Center for Medical Genomics-OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Wołkow
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland; Center for Medical Genomics-OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Kraków, Poland
| | - William Perucki
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Michał Woźniakiewicz
- Laboratory of Forensic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Kraków, Poland
| | - Aneta Woźniakiewicz
- Laboratory of Forensic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
24
|
Shibagaki K, Okamoto K, Katsuta O, Nakamura M. Beneficial protective effect of pramipexole on light-induced retinal damage in mice. Exp Eye Res 2015. [PMID: 26213307 DOI: 10.1016/j.exer.2015.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the effects of pramipexole, a potent dopamine receptor D2/D3 agonist, on light-induced retinal damage in mice, H2O2-induced retinal pigment epithelium ARPE-19 cell injury in humans, and hydroxyl radical scavenging activity in a cell-free system. Pramipexole (0.1 and 1 mg/kg body weight) was orally administered to mice 1 h before light exposure (5000 lux, 2 h). Electrophysiological and morphologic studies were performed to evaluate the effects of the pramipexole on light-induced retinal damage in mice. Pramipexole significantly prevented the reduction of the a- and b-wave electroretinogram (ERG) amplitudes caused by light exposure in a dose-dependent manner. In parallel, damage to the inner and outer segments (IS/OS) of the photoreceptors, loss of photoreceptor nuclei, and the number of Tdt-mediated dUTP nick-end labeling (TUNEL)-positive cells in the outer nuclear layer (ONL) caused by light exposure were notably ameliorated by pramipexole. Additionally, pramipexole suppressed H2O2-induced ARPE-19 cell death in vitro in a concentration-dependent manner. The effect of pramipexole was significant at concentrations of 10(-6) M or higher. Pramipexole also significantly prevented H2O2-induced activation of caspases-3/7 and the intracellular accumulation of reactive oxygen species (ROS) in a concentration-dependent manner ranging from 10(-5) to 10(-3) M. Furthermore, pramipexole increased the scavenging activity toward a hydroxyl radical generated from H2O2 in a Fenton reaction. Our results suggest that pramipexole protects against light-induced retinal damage as an antioxidant and that it may be a novel and effective therapy for retinal degenerative disorders, such as dry age-related macular degeneration.
Collapse
Affiliation(s)
- Keiichi Shibagaki
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Kazuyoshi Okamoto
- Corporate Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| | - Osamu Katsuta
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| | - Masatsugu Nakamura
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| |
Collapse
|
25
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Chen H, Tian M, Jin L, Jia H, Jin Y. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 2014; 284:824-832. [PMID: 25451294 DOI: 10.1016/j.neuroscience.2014.10.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.
Collapse
Affiliation(s)
- H Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - M Tian
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - L Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - H Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Y Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
27
|
Legrand-Poels S, Esser N, L'homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 2014; 92:131-41. [PMID: 25175736 DOI: 10.1016/j.bcp.2014.08.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet or synthesized endogenously. In addition to serving as an important source of energy, they produce a variety of both beneficial and detrimental effects. They play essential roles as structural components of all cell membranes and as signaling molecules regulating metabolic pathways through binding to nuclear or membrane receptors. However, under conditions of FFAs overload, they become toxic, inducing ROS production, ER stress, apoptosis and inflammation. SFAs (saturated fatty acids), unlike UFAs (unsaturated fatty acids), have recently been proposed as triggers of the NLRP3 inflammasome, a molecular platform mediating the processing of IL-1β in response to infection and stress conditions. Interestingly, UFAs, especially ω-3 FAs, inhibit NLRP3 inflammasome activation in various settings. We focus on emerging models of NLRP3 inflammasome activation with a special emphasis on the molecular mechanisms by which FFAs modulate the activation of this complex. Taking into consideration the current literature and FFA properties, we discuss the putative involvement of mitochondria and the role of cardiolipin, a mitochondrial phospholipid, proposed to be sensed by NLRP3 after release, exposure and/or oxidation. Finally, we review how this SFA-mediated NLRP3 inflammasome activation contributes to the development of both insulin resistance and deficiency associated with obesity/type 2 diabetes. In this context, we highlight the potential clinical use of ω-3 FAs as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sylvie Legrand-Poels
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium.
| | - Nathalie Esser
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium; University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Laurent L'homme
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| | - André Scheen
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Nicolas Paquot
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Jacques Piette
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| |
Collapse
|