1
|
Yang N, Wessoly L, Meng Y, Kiefer MF, Chen Y, Vahrenbrink M, Wulff S, Li C, Schreier JW, Steinhoff JS, Oster M, Sommerfeld M, Wowro SJ, Petricek KM, Flores RE, Ziros PG, Sykiotis GP, Wirth EK, Schupp M. The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice. Antioxid Redox Signal 2025; 42:463-479. [PMID: 39761014 DOI: 10.1089/ars.2023.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aims: Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of H2O2 to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis. RetSat is highly expressed in metabolically active organs where it regulates lipid metabolism and the production of reactive oxygen species. Due to the high expression of RetSat in the thyroid gland and its role in peroxide sensitivity, we investigated the regulation and function of RetSat in the thyroid gland in appropriate mouse models. Results: RetSat is strongly expressed in thyrocytes, induced by hypothyroidism, and decreased by iodide overload in mice. Thyrocyte-specific deletion of RetSat increased circulating thyroid-stimulating hormone levels, altered thyroid morphology, and disturbed metabolic homeostasis in a diet- and sex-dependent manner without major effects on the concentrations of circulating TH. Moreover, deletion of RetSat increased TG protein levels but lowered TG iodination upon iodide overload. In cultured thyrocytes, acute RetSat depletion altered the expression of genes involved in TH biosynthesis and the response to endoplasmic reticulum stress. Innovation: This is the first report that specifically dissects the regulation and function of the oxidoreductase RetSat in the thyroid gland. Conclusion: Deletion of RetSat in thyrocytes induces compensatory feedback mechanisms to maintain TH homeostasis in mice. We conclude that RetSat in the thyroid gland is required for TH biosynthesis and secretion and metabolic homeostasis in mice. Antioxid. Redox Signal. 42, 463-479.
Collapse
Affiliation(s)
- Na Yang
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Wessoly
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yueming Meng
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie F Kiefer
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yingfu Chen
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Madita Vahrenbrink
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chen Li
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonah W Schreier
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia S Steinhoff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Moritz Oster
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Sommerfeld
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eva K Wirth
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Cai Y, Xu H, Deng K, Yang H, Zhao B, Zhang C, Li S, Wei Z, Wang Z, Wang F, Zhang Y. A novel nuclear receptor NR1D1 suppresses HSD17B12 transcription to regulate granulosa cell apoptosis and autophagy via the AMPK pathway in sheep. Int J Biol Macromol 2025; 306:141271. [PMID: 39986531 DOI: 10.1016/j.ijbiomac.2025.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Dominant follicular development and atresia are governed by the proliferation of granulosa cells (GCs), a process influenced by the delicate balance between apoptosis and autophagy. Oxidative stress, a pivotal catalyst of GCs apoptosis, modulates gene expression through epigenetic mechanisms, including chromatin remodeling. Nevertheless, the regulatory mechanisms underpinning GCs functionality in relation to prolificacy remain inadequately elucidated. In this study, we discovered that the chromatin accessibility of nuclear receptor subfamily 1 group D member 1 (NR1D1) was markedly enhanced in dominant follicular GCs from low-prolificacy sheep, as evidenced by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), which correlated with elevated NR1D1 transcript levels. Remarkably, NR1D1 emerged as a novel regulator of follicular development, exhibiting heightened expression in dominant follicles. The overexpression of NR1D1 induced cell cycle arrest, autophagy activation, and mitochondrial dysfunction via the AMPK pathway, while its knockdown fostered GCs survival and functionality. Furthermore, NR1D1 inhibits the transcription of HSD17B12, thereby contributing to oxidative stress (ROS)-induced apoptosis, as demonstrated by CUT&Tag-qPCR and dual luciferase assays. The downregulation of HSD17B12 partially alleviated the effects of NR1D1 knockdown on GCs functionality. These findings indicate that NR1D1 orchestrates GCs proliferation and apoptosis through the suppression of HSD17B12 and the activation of the AMPK pathway, establishing NR1D1 as a novel transcription factor implicated in follicular development and ovarian function, with significant implications for prolificacy.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Xu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chong Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanglai Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyou Wei
- Taicang Agricultural and rural science & Technology Service Center, and Enterprise Graduate workstation, Taicang 215400, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Vriend J, Glogowska A. Transcription of Clock Genes in Medulloblastoma. Cancers (Basel) 2025; 17:575. [PMID: 40002179 PMCID: PMC11852889 DOI: 10.3390/cancers17040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
We investigated the transcription of circadian clock genes in publicly available datasets of gene expression in medulloblastoma (MB) tissues using the R2 Genomics Analysis and Visualization Platform. Differential expression of the core clock genes among the four consensus subgroups of MB (defined in 2012 as Group 3, Group 4, the SHH group, and the WNT group) included the core clock genes (CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, BMAL1, BMAL2, NR1D1, and TIMELESS) and genes which encode proteins that regulate the transcription of clock genes (CIPC, FBXL21, and USP2). The over-expression of several clock genes, including CIPC, was found in individuals with the isochromosome 17q chromosomal aberration in MB Group 3 and Group 4. The most significant biological pathways associated with clock gene expression were ribosome subunits, phototransduction, GABAergic synapse, WNT signaling pathway, and the Fanconi anemia pathway. Survival analysis of clock genes was examined using the Kaplan-Meier method and the Cox proportional hazards regression model through the R2 Genomics Platform. Two clock genes most significantly related to survival were CRY1 and USP2. The data suggest that several clock proteins, including CRY1 and USP2, be investigated as potential therapeutic targets in MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | | |
Collapse
|
4
|
Jan M, Jimenez S, Hor CN, Dijk DJ, Skeldon AC, Franken P. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Cell Syst 2024; 15:610-627.e8. [PMID: 38986625 DOI: 10.1016/j.cels.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maxime Jan
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
| | - Sonia Jimenez
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Charlotte N Hor
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK
| | - Anne C Skeldon
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK; School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - Paul Franken
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Ji C, Ou Y, Yu W, Lv J, Zhang F, Li H, Gu Z, Li J, Zhong Z, Wang H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. J Genet Genomics 2024; 51:61-74. [PMID: 37328030 DOI: 10.1016/j.jgg.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Thyroid-stimulating hormone (TSH) is important for the thyroid gland, development, growth, and metabolism. Defects in TSH production or the thyrotrope cells within the pituitary gland cause congenital hypothyroidism (CH), resulting in growth retardation and neurocognitive impairment. While human TSH is known to display rhythmicity, the molecular mechanisms underlying the circadian regulation of TSH and the effects of TSH-thyroid hormone (TH) signaling on the circadian clock remain elusive. Here we show that TSH, thyroxine (T4), triiodothyronine (T3), and tshba display rhythmicity in both larval and adult zebrafish and tshba is regulated directly by the circadian clock via both E'-box and D-box. Zebrafish tshba-/- mutants manifest congenital hypothyroidism, with the characteristics of low levels of T4 and T3 and growth retardation. Loss or overexpression of tshba alters the rhythmicity of locomotor activities and expression of core circadian clock genes and hypothalamic-pituitary-thyroid (HPT) axis-related genes. Furthermore, TSH-TH signaling regulates clock2/npas2 via the thyroid response element (TRE) in its promoter, and transcriptome analysis reveals extensive functions of Tshba in zebrafish. Together, our results demonstrate that zebrafish tshba is a direct target of the circadian clock and in turn plays critical roles in circadian regulation along with other functions.
Collapse
Affiliation(s)
- Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Ou
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangjianfei Yu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxin Lv
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanmiao Zhang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huashan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyun Gu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayuan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
7
|
Yang R, Cao J, Speakman JR, Zhao Z. Limits to sustained energy intake. XXXIII. Thyroid hormones play important roles in milk production but do not define the heat dissipation limit in Swiss mice. J Exp Biol 2023; 226:jeb245393. [PMID: 37767758 DOI: 10.1242/jeb.245393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The limits to sustained energy intake set physiological upper boundaries that affect many aspects of human and animal performance. The mechanisms underlying these limits, however, remain unclear. We exposed Swiss mice to either supplementary thyroid hormones (THs) or the inhibitor methimazole during lactation at 21 or 32.5°C, and measured food intake, resting metabolic rate (RMR), milk energy output (MEO), serum THs and mammary gland gene expression of females, and litter size and mass of their offspring. Lactating females developed hyperthyroidism following exposure to supplementary THs at 21°C, but they did not significantly change body temperature, asymptotic food intake, RMR or MEO, and litter and mass were unaffected. Hypothyroidism, induced by either methimazole or 32.5°C exposure, significantly decreased asymptotic food intake, RMR and MEO, resulting in significantly decreased litter size and litter mass. Furthermore, gene expression of key genes in the mammary gland was significantly decreased by either methimazole or heat exposure, including gene expression of THs and prolactin receptors, and Stat5a and Stat5b. This suggests that endogenous THs are necessary to maintain sustained energy intake and MEO. Suppression of the thyroid axis seems to be an essential aspect of the mechanism by which mice at 32.5°C reduce their lactation performance to avoid overheating. However, THs do not define the upper limit to sustained energy intake and MEO at peak lactation at 21°C. Another, as yet unknown, factor prevents supplementary thyroxine exerting any stimulatory metabolic impacts on lactating mice at 21°C.
Collapse
Affiliation(s)
- Rui Yang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Peng Z, Ziros PG, Martini T, Liao XH, Stoop R, Refetoff S, Albrecht U, Sykiotis GP, Kellenberger S. ASIC1a affects hypothalamic signaling and regulates the daily rhythm of body temperature in mice. Commun Biol 2023; 6:857. [PMID: 37591947 PMCID: PMC10435469 DOI: 10.1038/s42003-023-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone β mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.
Collapse
Affiliation(s)
- Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tomaz Martini
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Hôpital de Cery, Lausanne University Hospital, Lausanne, Switzerland
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Fribourg, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Cheung LYM, Menage L, Rizzoti K, Hamilton G, Dumontet T, Basham K, Daly AZ, Brinkmeier ML, Masser BE, Treier M, Cobb J, Delogu A, Lovell-Badge R, Hammer GD, Camper SA. Novel Candidate Regulators and Developmental Trajectory of Pituitary Thyrotropes. Endocrinology 2023; 164:bqad076. [PMID: 37183548 PMCID: PMC10227867 DOI: 10.1210/endocr/bqad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The pituitary gland regulates growth, metabolism, reproduction, the stress response, uterine contractions, lactation, and water retention. It secretes hormones in response to hypothalamic input, end organ feedback, and diurnal cues. The mechanisms by which pituitary stem cells are recruited to proliferate, maintain quiescence, or differentiate into specific cell types, especially thyrotropes, are not well understood. We used single-cell RNA sequencing in juvenile P7 mouse pituitary cells to identify novel factors in pituitary cell populations, with a focus on thyrotropes and rare subtypes. We first observed cells coexpressing markers of both thyrotropes and gonadotropes, such as Pou1f1 and Nr5a1. This was validated in vivo by both immunohistochemistry and lineage tracing of thyrotropes derived from Nr5a1-Cre; mTmG mice and demonstrates that Nr5a1-progenitors give rise to a proportion of thyrotropes during development. Our data set also identifies novel factors expressed in pars distalis and pars tuberalis thyrotropes, including the Shox2b isoform in all thyrotropes and Sox14 specifically in Pou1f1-negative pars tuberalis thyrotropes. We have therefore used single-cell transcriptomics to determine a novel developmental trajectory for thyrotropes and potential novel regulators of thyrotrope populations.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy Menage
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Greg Hamilton
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaitlin Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Current affiliation: Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandre Z Daly
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Current affiliation is Vanguard, Valley Forge, PA 19482, USA
| | | | - Bailey E Masser
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mathias Treier
- Max Delbrϋck Center for Molecular Medicine (MDC), 13092 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Alessio Delogu
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
11
|
Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 2022; 45:471-482. [PMID: 35466006 PMCID: PMC9117496 DOI: 10.1016/j.tins.2022.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
The circadian clock provides cue-independent anticipatory signals for diurnal rhythms of baseline glucose levels and glucose tolerance. The central circadian clock is located in the hypothalamic suprachiasmatic nucleus (SCN), which comprises primarily GABAergic neurons. The SCN clock regulates physiological diurnal rhythms of endogenous glucose production (EGP) and hepatic insulin sensitivity through neurohumoral mechanisms. Disruption of the molecular circadian clock is associated with the extended dawn phenomenon (DP) in type 2 diabetes (T2D), referring to hyperglycemia in the early morning without nocturnal hypoglycemia. The DP affects nearly half of patients with diabetes, with poorly defined etiology and a lack of targeted therapy. Here we review neural and secreted factors in physiological diurnal rhythms of glucose metabolism and their pathological implications for the DP.
Collapse
|
12
|
Circadian Rhythm Modulates the Therapeutic Activity of Pulsed Electromagnetic Fields on Intervertebral Disc Degeneration in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9067611. [PMID: 35368872 PMCID: PMC8975688 DOI: 10.1155/2022/9067611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
Circadian rhythm (CR) imparts significant benefits in treating multiple diseases, such as heart diseases and arthritis. But the CR effect on intervertebral disc degeneration (IVDD) therapy remains unclear. Recent studies revealed that pulsed electromagnetic fields (PEMF) are capable of alleviating IVDD. In this study, we evaluated the CR-mediated regulation of PEMF therapeutic effect on IVDD induced by rat tail disc needle puncture. Our results demonstrated that the daytime PEMF stimulation (DPEMF) is more effective than the nighttime PEMF (NPEMF) in delaying IVDD. Moreover, the rats treated with DPEMF maintained better disc stability and histology after 8 weeks, relative to NPEMF. CR and PEMF cotherapies were also examined in cellular models, whereby serum shock was used to induce different levels of clock gene expression in the nucleus pulposus (NP), thus imitating CR in vitro. PEMF at ZT8 (higher level of clock gene expression) correlated with a higher extracellular matrix (ECM) component expression, compared to ZT20 (lower level of clock gene expression). Taken together, these data suggest a strong role of CR in regulating the beneficial effect of PEMF on IVDD. Our findings provide a potential clinical significance of CR in optimizing PEMF positive effects on IVDD.
Collapse
|
13
|
Essfeld F, Reinwald H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Transcriptomic profiling of clobetasol propionate-induced immunosuppression in challenged zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113346. [PMID: 35228030 DOI: 10.1016/j.ecoenv.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.
Collapse
Affiliation(s)
- Fabian Essfeld
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
14
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
15
|
Iijima M, Takemi S, Aizawa S, Sakai T, Sakata I. The suppressive effect of REVERBs on ghrelin and GOAT transcription in gastric ghrelin-producing cells. Neuropeptides 2021; 90:102187. [PMID: 34450431 DOI: 10.1016/j.npep.2021.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gut peptide with a unique structure, which is modified by a medium chain fatty acid at the third serine by ghrelin O-acyl transferase (GOAT). It is well known that the major source of plasma ghrelin is the stomach, but the transcriptional regulation of gastric ghrelin and GOAT is incompletely understood. Here, we studied the involvement of the nuclear receptors REV-ERBα and REV-ERBβ on ghrelin and GOAT gene expression in vivo and in vitro. Reverse-transcriptase polymerase chain reaction analysis showed that REV-ERBα and REV-ERBβ mRNAs were expressed in the stomach and a stomach-derived ghrelin cell line (SG-1 cells). In vivo experiments with mice revealed the circadian rhythm of ghrelin, GOAT, and REV-ERBs. The peak expression of ghrelin and GOAT mRNAs occurred at Zeitgeber time (ZT) 4, whereas that of REV-ERBα and REV-ERBβ was observed at ZT8 and ZT12, respectively. Treatment of SG-1 cells with SR9009, a REV-ERB agonist, led to a significant reduction in ghrelin and GOAT mRNA levels. Overexpression of REV-ERBα and REV-ERBβ decreased ghrelin and GOAT mRNA levels in SG-1 cells. In contrast, small-interfering RNA (siRNA)-mediated double-knockdown of REV-ERBα and REV-ERBβ in SG-1 cells led to the upregulation in the expression of ghrelin and GOAT mRNAs. These results suggest that REV-ERBs suppress ghrelin and GOAT mRNA expression.
Collapse
Affiliation(s)
- Mio Iijima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530, Japan
| | - Takafumi Sakai
- Professor emeritus, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|
16
|
Kim BH, Joo Y, Kim MS, Choe HK, Tong Q, Kwon O. Effects of Intermittent Fasting on the Circulating Levels and Circadian Rhythms of Hormones. Endocrinol Metab (Seoul) 2021; 36:745-756. [PMID: 34474513 PMCID: PMC8419605 DOI: 10.3803/enm.2021.405] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 01/09/2023] Open
Abstract
Intermittent fasting has become an increasingly popular strategy in losing weight and associated reduction in obesity-related medical complications. Overwhelming studies support metabolic improvements from intermittent fasting in blood glucose levels, cardiac and brain function, and other health benefits, in addition to weight loss. However, concerns have also been raised on side effects including muscle loss, ketosis, and electrolyte imbalance. Of particular concern, the effect of intermittent fasting on hormonal circadian rhythms has received little attention. Given the known importance of circadian hormonal changes to normal physiology, potential detrimental effects by dysregulation of hormonal changes deserve careful discussions. In this review, we describe the changes in circadian rhythms of hormones caused by intermittent fasting. We covered major hormones commonly pathophysiologically involved in clinical endocrinology, including insulin, thyroid hormones, and glucocorticoids. Given that intermittent fasting could alter both the level and frequency of hormone secretion, decisions on practicing intermittent fasting should take more considerations on potential detrimental consequences versus beneficial effects pertaining to individual health conditions.
Collapse
Affiliation(s)
- Bo Hye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul,
Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul,
Korea
| | - Yena Joo
- Seoul National University College of Medicine, Seoul,
Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu,
Korea
| | - Qingchun Tong
- Brown Institute of Molecular Medicine and Department of Neurobiology and Anatomy, McGovern Medical School of UTHealth, and MD Anderson Cancer Center & UTHealth Graduate School of Biomedical Sciences, Houston, TX,
USA
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul,
Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul,
Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
17
|
Daly AZ, Mortensen AH, Bando H, Camper SA. Pituitary Tumors and Immortalized Cell Lines Generated by Cre-Inducible Expression of SV40 T Antigen. Endocrinology 2021; 162:6219492. [PMID: 33837405 PMCID: PMC8183496 DOI: 10.1210/endocr/bqab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Targeted oncogenesis is the process of driving tumor formation by engineering transgenic mice that express an oncogene under the control of a cell-type specific promoter. Such tumors can be adapted to cell culture, providing immortalized cell lines. To make it feasible to follow the process of tumorigenesis and increase the opportunity for generating cell lines, we developed a mouse strain that expresses SV40 T antigens in response to Cre-recombinase. Using CRISPR/Cas9 we inserted a cassette with coding sequences for SV40 T antigens and an internal ribosome entry site with green fluorescent protein cassette (IRES-GFP) into the Rosa26 locus, downstream from a stop sequence flanked by loxP sites: Rosa26LSL-SV40-GFP. These mice were mated with previously established Prop1-cre and Tshb-cre transgenic lines. Both the Rosa26LSL-SV40-GFP/+; Prop1-cre and Rosa26LSL-SV40-GFP/+; Tshb-cre mice developed fully penetrant dwarfism and large tumors by 4 weeks. Tumors from both of these mouse lines were adapted to growth in cell culture. We have established a progenitor-like cell line (PIT-P1) that expresses Sox2 and Pitx1, and a thyrotrope-like cell line (PIT-T1) that expresses Pou1f1 and Cga. These studies demonstrate the utility of the novel, Rosa26LSL-SV40-GFP mouse line for reliable targeted oncogenesis and development of unique cell lines.
Collapse
Affiliation(s)
| | | | - Hironori Bando
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sally A Camper
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: Sally A. Camper, Ph.D., 5704 Medical Science Building II, 1301 Catherine St, Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Daly AZ, Dudley LA, Peel MT, Liebhaber SA, Parker SCJ, Camper SA. Multi-omic profiling of pituitary thyrotropic cells and progenitors. BMC Biol 2021; 19:76. [PMID: 33858413 PMCID: PMC8051135 DOI: 10.1186/s12915-021-01009-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pituitary gland is a neuroendocrine organ containing diverse cell types specialized in secreting hormones that regulate physiology. Pituitary thyrotropes produce thyroid-stimulating hormone (TSH), a critical factor for growth and maintenance of metabolism. The transcription factors POU1F1 and GATA2 have been implicated in thyrotrope fate, but the transcriptomic and epigenomic landscapes of these neuroendocrine cells have not been characterized. The goal of this work was to discover transcriptional regulatory elements that drive thyrotrope fate. RESULTS We identified the transcription factors and epigenomic changes in chromatin that are associated with differentiation of POU1F1-expressing progenitors into thyrotropes using cell lines that represent an undifferentiated Pou1f1 lineage progenitor (GHF-T1) and a committed thyrotrope line that produces TSH (TαT1). We compared RNA-seq, ATAC-seq, histone modification (H3K27Ac, H3K4Me1, and H3K27Me3), and POU1F1 binding in these cell lines. POU1F1 binding sites are commonly associated with bZIP transcription factor consensus binding sites in GHF-T1 cells and Helix-Turn-Helix (HTH) or basic Helix-Loop-Helix (bHLH) factors in TαT1 cells, suggesting that these classes of transcription factors may recruit or cooperate with POU1F1 binding at unique sites. We validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and Tshb by transfection in TαT1 cells. Finally, we confirmed that an enhancer element near Tshb can drive expression in thyrotropes of transgenic mice, and we demonstrate that GATA2 enhances Tshb expression through this element. CONCLUSION These results extend the ENCODE multi-omic profiling approach to the pituitary gland, which should be valuable for understanding pituitary development and disease pathogenesis.
Collapse
Affiliation(s)
- Alexandre Z Daly
- Department Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lindsey A Dudley
- Department Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Michael T Peel
- Department Genetics, University of Pennsylvania Perelman School of Medicine, Ann Arbor, MI, 48109, USA.,Incyte, Wilmington, DE, 19803, USA
| | - Stephen A Liebhaber
- Department Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department Genetics, University of Pennsylvania Perelman School of Medicine, Ann Arbor, MI, 48109, USA
| | - Stephen C J Parker
- Department Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sally A Camper
- Department Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Ikegami K, Refetoff S, Van Cauter E, Yoshimura T. Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol 2019; 15:590-600. [PMID: 31406343 PMCID: PMC7288350 DOI: 10.1038/s41574-019-0237-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Circadian rhythmicity is an approximately 24-h cell-autonomous period driven by transcription-translation feedback loops of specific genes, which are referred to as 'circadian clock genes'. In mammals, the central circadian pacemaker, which is located in the hypothalamic suprachiasmatic nucleus, controls peripheral circadian clocks. The circadian system regulates virtually all physiological processes, which are further modulated by changes in the external environment, such as light exposure and the timing of food intake. Chronic circadian disruption caused by shift work, travel across time zones or irregular sleep-wake cycles has long-term consequences for our health and is an important lifestyle factor that contributes to the risk of obesity, type 2 diabetes mellitus and cancer. Although the hypothalamic-pituitary-thyroid axis is under the control of the circadian clock via the suprachiasmatic nucleus pacemaker, daily TSH secretion profiles are disrupted in some patients with hypothyroidism and hyperthyroidism. Disruption of circadian rhythms has been recognized as a perturbation of the endocrine system and of cell cycle progression. Expression profiles of circadian clock genes are abnormal in well-differentiated thyroid cancer but not in the benign nodules or a healthy thyroid. Therefore, the characterization of the thyroid clock machinery might improve the preoperative diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago School of Medicine, Chicago, IL, USA
- Department of Paediatrics and Committee on Genetics, The University of Chicago, Chicago, IL, USA
| | - Eve Van Cauter
- Department of Medicine, The University of Chicago School of Medicine, Chicago, IL, USA
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
20
|
Bargi-Souza P, Peliciari-Garcia RA, Nunes MT. Disruption of the Pituitary Circadian Clock Induced by Hypothyroidism and Hyperthyroidism: Consequences on Daily Pituitary Hormone Expression Profiles. Thyroid 2019; 29:502-512. [PMID: 30747053 DOI: 10.1089/thy.2018.0578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The secretion of pituitary hormones oscillates throughout the 24-hour period, indicating that circadian clock-mediated mechanisms regulate this process in the gland. Additionally, pituitary hormone synthesis has been shown to be altered in hypo- and hyperthyroidism. Although thyroid hormones can modulate the other peripheral clocks, the interaction between thyroid hormone levels and circadian clock gene expression in the anterior pituitary has yet to be elucidated. METHODS Male Wistar rats were divided into three groups: control, hypothyroid, and hyperthyroid. Following the experimental procedures, animals were euthanized every three hours over the course of a 24-hour period. The anterior pituitary glands were excised and processed for mRNA expression analysis by quantitative reverse transcriptase polymerase chain reaction. One- and two-way analysis of variance as well as cosinor analysis were used to evaluate the time-of-day-dependent differential expression for each gene in each experimental group and their interactions. RESULTS Hyperthyroidism increased the mRNA expression of core clock genes and thyrotrophic embryonic factor (Tef), as well as the mesor and amplitude of brain and muscle Arnt-like protein-1 (Bmal1) and the mesor of nuclear receptor subfamily 1 (Nr1d1) group D member 1, when compared to euthyroid animals. Hypothyroidism disrupted the circadian expression pattern of Bmal1 and period circadian regulator 2 (Per2) and decreased the mesor of Nr1d1 and Tef. Furthermore, it was observed that the pituitary content of Dio2 mRNA was unaltered in hyperthyroidism but substantially elevated in hypothyroidism during the light phase. The upregulated expression was associated with an increased mesor and amplitude, along with an advanced acrophase. The gene expression of all the pituitary hormones was found to be altered in hypo- and hyperthyroidism. Moreover, prolactin (Prl) and luteinizing hormone beta subunit (Lhb) displayed circadian expression patterns in the control group, which were disrupted in both the hypo- and hyperthyroid states. CONCLUSION Taken together, the data demonstrate that hypo- and hyperthyroidism alter circadian clock gene expression in the anterior pituitary. This suggests that triiodothyronine plays an important role in the regulation of pituitary gland homeostasis, which could ultimately influence the rhythmic synthesis and/or secretion of all the anterior pituitary hormones.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo A Peliciari-Garcia
- 2 Morphophysiology and Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Maria Tereza Nunes
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Circadian regulation of endocrine systems. Auton Neurosci 2019; 216:1-8. [DOI: 10.1016/j.autneu.2018.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/05/2023]
|
22
|
Bargi-Souza P, Goulart-Silva F, Nunes MT. Posttranscriptional actions of triiodothyronine on Tshb expression in TαT1 cells: New insights into molecular mechanisms of negative feedback. Mol Cell Endocrinol 2018; 478:45-52. [PMID: 30031103 DOI: 10.1016/j.mce.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022]
Abstract
Rapid actions of triiodothyronine (T3) on thyrotropin (TSH) synthesis and secretion have been described in hypothyroid male rats. However, the molecular mechanisms remain unknown. TαT1 cells, a thyrotroph cell line, was used herein to characterize the possible non-genomic actions of T3 on the expression of alpha (Cga) and Tshb genes, and the posttranscriptional processing and translation of both transcripts. The involvement of αVβ3 integrin was also assessed. T3 quickly reduced Tshb mRNA content, poly(A) tail length and its association with ribosomes. The effect of T3 on Tshb gene expression was detected even in the presence of a transcription inhibitor. The decrease in Tshb mRNA content and polyadenylation depend on T3 interaction with αVβ3 integrin, while T3 reduced Cga mRNA content by transcriptional action. The translational rate of both transcripts was reduced by a mechanism, which does not depend on T3-αVβ3 integrin interaction. Results indicate that, in parallel with the inhibitory transcriptional action in Cga and Tshb gene expression, T3 rapidly triggers additional posttranscriptional mechanisms, reducing the TSH synthesis. These non-genomic actions partially depend on T3-αVβ3 integrin interaction at the plasma membrane of thyrotrophs and add new insights to the molecular mechanisms involved in T3 negative feedback loop.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
23
|
Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:3187-3206. [PMID: 30121811 DOI: 10.1007/s10620-018-5242-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in industrialized nations and is strongly associated with the metabolic syndrome. The prevalence of NAFLD continues to rise along with the epidemic of the metabolic syndrome. Metabolic homeostasis is linked to the circadian clock (rhythm), with multiple signaling pathways in organs regulated by circadian clock genes, and recent studies of circadian clock gene functions suggest that disruption of the circadian rhythm is associated with significant morbidity and mortality, including the metabolic syndrome. In the industrialized world, various human behaviors and activities such as work and eating patterns, jet lag, and sleep deprivation interfere with the circadian rhythm, leading to perturbations in metabolism and development of the metabolic syndrome. In this review, we discuss how disruption of the circadian rhythm is associated with various metabolic conditions that comprise the metabolic syndrome and NAFLD.
Collapse
|
24
|
Ikegami K, Yoshimura T. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models. Best Pract Res Clin Endocrinol Metab 2017; 31:475-485. [PMID: 29223282 DOI: 10.1016/j.beem.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Seasonal Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
25
|
Dibner C, Sadowski SM, Triponez F, Philippe J. The search for preoperative biomarkers for thyroid carcinoma: application of the thyroid circadian clock properties. Biomark Med 2017; 11:285-293. [DOI: 10.2217/bmm-2016-0316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that alterations in the molecular clocks underlying the circadian time-keeping system might be connected to changes in cell cycle, resulting in oncogenic transformation. The hypothalamic–pituitary–thyroid axis is driven by a circadian clock at several levels, with an endocrine feedback loop regulating thyroid-stimulating hormone. Changes in the expression levels of circadian and cell cycle markers may correlate with clinic-pathological characteristics in differentiated follicular thyroid carcinomas. Here we summarize recent advances in exploring complex regulation of the thyroid gland transcriptome and function by the circadian oscillator. We particularly focus on clinical implications of the parallel assessment of the circadian clock, cell-cycle and cell functionality markers in human thyroid tissue, which might help improving preoperative diagnostics of thyroid malignancies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension & Nutrition, Department of Medical Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Frederic Triponez
- Thoracic & Endocrine Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Tomić M, Bargi-Souza P, Leiva-Salcedo E, Nunes MT, Stojilkovic SS. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells. Cell Calcium 2015; 58:598-605. [PMID: 26453278 DOI: 10.1016/j.ceca.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/20/2015] [Indexed: 01/14/2023]
Abstract
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.
Collapse
Affiliation(s)
- Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Paula Bargi-Souza
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States; Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States.
| |
Collapse
|
28
|
Lin XW, Blum ID, Storch KF. Clocks within the Master Gland: Hypophyseal Rhythms and Their Physiological Significance. J Biol Rhythms 2015; 30:263-76. [PMID: 25926680 DOI: 10.1177/0748730415580881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Various aspects of mammalian endocrine physiology show a time-of-day variation with a period of 24 h, which represents an adaptation to the daily environmental fluctuations resulting from the rotation of the earth. These 24-h rhythms in hormone abundance and consequently hormone function may rely on rhythmic signals produced by the master circadian clock, which resides in the suprachiasmatic nucleus and is thought to chiefly dictate the pattern of rest and activity in mammals in conjunction with the light/dark (LD) cycle. However, it is likely that clocks intrinsic to elements of the endocrine axes also contribute to the 24-h rhythms in hormone function. Here we review the evidence for rhythm generation in the endocrine master gland, the pituitary, and its physiological significance in the context of endocrine axes regulation and function.
Collapse
Affiliation(s)
- Xue-Wei Lin
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Ian David Blum
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Hardman JA, Haslam IS, Farjo N, Farjo B, Paus R. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle. PLoS One 2015; 10:e0121878. [PMID: 25822259 PMCID: PMC4379003 DOI: 10.1371/journal.pone.0121878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/18/2015] [Indexed: 02/01/2023] Open
Abstract
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Collapse
Affiliation(s)
- Jonathan A. Hardman
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Doctoral Training Centre in Integrative Systems Biology, Manchester Interdisciplinary Bio centre, University of Manchester, Manchester, United Kingdom
| | - Iain S. Haslam
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nilofer Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Bessam Farjo
- The Farjo Hair Institute, Manchester, United Kingdom
| | - Ralf Paus
- The Dermatology Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Muenster, Muenster, Germany
| |
Collapse
|
30
|
Philippe J, Dibner C. Thyroid circadian timing: roles in physiology and thyroid malignancies. J Biol Rhythms 2014; 30:76-83. [PMID: 25411240 DOI: 10.1177/0748730414557634] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The circadian clock represents an anticipatory mechanism, well preserved in evolution. It has a critical impact on most aspects of the physiology of light-sensitive organisms. These rhythmic processes are governed by environmental cues (fluctuations in light intensity and temperature), an internal circadian timing system, and interactions between this timekeeping system and environmental signals. Endocrine body rhythms, including hypothalamic-pituitary-thyroid (HPT) axis rhythms, are tightly regulated by the circadian system. Although the circadian profiles of thyroid-releasing hormone (TRH), thyroid-stimulating hormone (TSH), thyroxine (T4), and triiodothyronine (T3) in blood have been well described, relatively few studies have analyzed molecular mechanisms governing the circadian regulation of HPT axis function. In this review, we will discuss the latest findings in the area of complex regulation of thyroid gland function by the circadian oscillator. We will also highlight the molecular makeup of the human thyroid oscillator as well as the potential link between thyroid malignant transformation and alterations in the clockwork.
Collapse
Affiliation(s)
- Jacques Philippe
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 2014; 10:582-91. [PMID: 25135573 PMCID: PMC4578869 DOI: 10.1038/nrendo.2014.143] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone action is predominantly mediated by thyroid hormone receptors (THRs), which are encoded by the thyroid hormone receptor α (THRA) and thyroid hormone receptor β (THRB) genes. Patients with mutations in THRB present with resistance to thyroid hormone β (RTHβ), which is a disorder characterized by elevated levels of thyroid hormone, normal or elevated levels of TSH and goitre. Mechanistic insights about the contributions of THRβ to various processes, including colour vision, development of the cochlea and the cerebellum, and normal functioning of the adult liver and heart, have been obtained by either introducing human THRB mutations into mice or by deletion of the mouse Thrb gene. The introduction of the same mutations that mimic human THRβ alterations into the mouse Thra and Thrb genes resulted in distinct phenotypes, which suggests that THRA and THRB might have non-overlapping functions in human physiology. These studies also suggested that THRA mutations might not be lethal. Seven patients with mutations in THRα have since been described. These patients have RTHα and presented with major abnormalities in growth and gastrointestinal function. The hypothalamic-pituitary-thyroid axis in these individuals is minimally affected, which suggests that the central T3 feedback loop is not impaired in patients with RTHα, in stark contrast to patients with RTHβ.
Collapse
Affiliation(s)
- Tânia M Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, S/N, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Aniket R Sidhaye
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Abstract
Mood regulation is known to be affected by the change of seasons. Recent research findings have suggested that mood regulation may be influenced by the function of circadian clocks. In addition, the activity of brown adipocytes has been hypothesized to contribute to mood regulation. Here, the overarching link to mood disorders might be the circadian clock protein nuclear receptor subfamily 1, group D, member 1.
Collapse
Affiliation(s)
- Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare , Helsinki , Finland
| |
Collapse
|