1
|
Wiertelak W, Olczak M, Maszczak-Seneczko D. Subcellular imaging of MGAT1/MGAT2 homo- and heteromers in living cells using bioluminescence microscopy. Biochem Biophys Res Commun 2024; 734:150470. [PMID: 39083973 DOI: 10.1016/j.bbrc.2024.150470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Protein-protein interactions (PPIs) play fundamental roles in many biological processes including the functioning of glycosylation machineries present in the endoplasmic reticulum (ER) and Golgi apparatus of mammalian cells. For the last couple of years, we have been successfully employing the most advanced version of the split luciferase complementation assay, termed NanoBiT, to demonstrate PPIs between solute carrier 35 (SLC35) family members with nucleotide sugar transporting activity and functionally related glycosyltransferases. NanoBiT has several unmatched advantages as compared with other strategies for studying PPIs. Firstly, the tendency of the free luciferase fragments to spontaneously associate is strongly reduced. As a consequence, the fragments of the reconstituted luciferase may dissociate upon the disruption of the PPI of interest. Secondly, the recombinant fusion proteins are expressed at low (near-endogenous) levels. Both of these features significantly minimize the possibility of obtaining false positive results. In this study we pushed the boundaries of this already powerful technique even further by coupling it with bioluminescence imaging of PPIs. Specifically, we visualized homo- and heterologous complexes formed by MGAT1 and MGAT2 glycosylation enzymes tagged with NanoBiT fragments and demonstrated ER-to-Golgi transitions between enzyme homo- and heteromers.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland.
| |
Collapse
|
2
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- https://ror.org/035t8zc32 Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
3
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Miyajima R, Manaka H, Honda T, Hashii N, Suzuki M, Komeno M, Takao K, Ishii-Watabe A, Igarashi K, Toida T, Higashi K. Intracellular polyamine depletion induces N-linked galactosylation of the monoclonal antibody produced by CHO DP-12 cells. J Biotechnol 2023; 378:1-10. [PMID: 37922995 DOI: 10.1016/j.jbiotec.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The heterogeneity of the N-linked glycan profile of therapeutic monoclonal antibodies (mAbs) derived from animal cells affects therapeutic efficacy and, therefore, needs to be appropriately controlled during the manufacturing process. In this study, we examined the effects of polyamines on the N-linked glycan profiles of mAbs produced by CHO DP-12 cells. Normal cell growth of CHO DP-12 cells and their growth arrest by α-difluoromethylornithine (DFMO), an inhibitor of the polyamine biosynthetic pathway, was observed when 0.5% fetal bovine serum was added to serum-free medium, despite the presence of cadaverine and aminopropylcadaverine, instead of putrescine and spermidine in cells. Polyamine depletion by DFMO increased IgG galactosylation, accompanied by β1,4-galactosyl transferase 1 (B4GAT1) mRNA elevation. Additionally, IgG production in polyamine-depleted cells was reduced by 30% compared to that in control cells. Therefore, we examined whether polyamine depletion induces an ER stress response. The results indicated increased expression levels of chaperones for glycoprotein folding in polyamine-depleted cells, suggesting that polyamine depletion causes ER stress related to glycoprotein folding. The effect of tunicamycin, an ER stress inducer that inhibits N-glycosylation, on the expression of B4GALT1 mRNA was examined. Tunicamycin treatment increased B4GALT1 mRNA expression. These results suggest that ER stress caused by polyamine depletion induces B4GALT1 mRNA expression, resulting in increased IgG galactosylation in CHO cells. Thus, introducing polyamines, particularly SPD, to serum-free CHO culture medium for CHO cells may contribute to consistent manufacturing and quality control of antibody production.
Collapse
Affiliation(s)
- Rin Miyajima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hitomi Manaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Honda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Masato Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masahiro Komeno
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koichi Takao
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
5
|
Zhang C, Shafaq-Zadah M, Pawling J, Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ, Johannes L, Dennis JW. SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J Biol Chem 2023; 299:105416. [PMID: 37918808 PMCID: PMC10698284 DOI: 10.1016/j.jbc.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.
Collapse
Affiliation(s)
- Cunjie Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, INSERM U1143, CNRS UMR3666, PSL Research University, Paris, France
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Dumitru AV, Stoica EE, Covache-Busuioc RA, Bratu BG, Cirstoiu MM. Unraveling the Intricate Link: Deciphering the Role of the Golgi Apparatus in Breast Cancer Progression. Int J Mol Sci 2023; 24:14073. [PMID: 37762375 PMCID: PMC10531533 DOI: 10.3390/ijms241814073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer represents a paramount global health challenge, warranting intensified exploration of the molecular underpinnings influencing its progression to facilitate the development of precise diagnostic instruments and customized therapeutic regimens. Historically, the Golgi apparatus has been acknowledged for its primary role in protein sorting and trafficking within cellular contexts. However, recent findings suggest a potential link between modifications in Golgi apparatus function and organization and the pathogenesis of breast cancer. This review delivers an exhaustive analysis of this correlation. Specifically, we examine the consequences of disrupted protein glycosylation, compromised protein transport, and inappropriate oncoprotein processing on breast cancer cell dynamics. Furthermore, we delve into the impacts of Golgi-mediated secretory routes on the release of pro-tumorigenic factors during the course of breast cancer evolution. Elucidating the nuanced interplay between the Golgi apparatus and breast cancer can pave the way for innovative therapeutic interventions and the discovery of biomarkers, potentially enhancing the diagnostic, prognostic, and therapeutic paradigms for afflicted patients. The advancement of such research could substantially expedite the realization of these objectives.
Collapse
Affiliation(s)
- Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Evelina-Elena Stoica
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
| | | | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica-Mihaela Cirstoiu
- Department of Obstetrics and Gynaecology, University Emergency Hospital, 050098 Bucharest, Romania;
- Department of Obstetrics and Gynaecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Glendenning LM, Reynero KM, Kukan EN, Long MD, Cobb BA. IgG sialylation occurs via the FcRn-mediated recycling pathway in endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547255. [PMID: 37886533 PMCID: PMC10602034 DOI: 10.1101/2023.06.30.547255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
IgG is a key mediator of immune responses throughout the human body, and the structure of the conserved glycan on the Fc region has been identified as a key inflammatory switch regulating its downstream effects. In particular, the absence of terminal sialic acid has been shown to increase the affinity of IgG for activating Fc receptors, cascading the inflammatory response in a variety of diseases and conditions. Previously, we have shown that IgG sialylation is mediated by B cell-extrinsic processes. Here, we show that the FcRn-mediated recycling pathway within endothelial cells is a critical modulator of IgG sialylation. Building a deeper understanding of how IgG sialylation is regulated will drive the development of novel therapeutics which dynamically tune IgG functionality in vivo.
Collapse
Affiliation(s)
| | - Kalob M Reynero
- Department of Pathology, Case Western Reserve University; Cleveland, OH, 44124, USA
| | - Emily N Kukan
- Department of Pathology, Case Western Reserve University; Cleveland, OH, 44124, USA
| | - Megan D Long
- Department of Pathology, Case Western Reserve University; Cleveland, OH, 44124, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University; Cleveland, OH, 44124, USA
| |
Collapse
|
8
|
N-Glycan on the Non-Consensus N-X-C Glycosylation Site Impacts Activity, Stability, and Localization of the Sd a Synthase B4GALNT2. Int J Mol Sci 2023; 24:ijms24044139. [PMID: 36835549 PMCID: PMC9959560 DOI: 10.3390/ijms24044139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.
Collapse
|
9
|
Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P. β-1,4-Xylan backbone synthesis in higher plants: How complex can it be? FRONTIERS IN PLANT SCIENCE 2023; 13:1076298. [PMID: 36714768 PMCID: PMC9874913 DOI: 10.3389/fpls.2022.1076298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its β-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.
Collapse
|
10
|
Leisico F, Omeiri J, Le Narvor C, Beaudouin J, Hons M, Fenel D, Schoehn G, Couté Y, Bonnaffé D, Sadir R, Lortat-Jacob H, Wild R. Structure of the human heparan sulfate polymerase complex EXT1-EXT2. Nat Commun 2022; 13:7110. [PMID: 36402845 PMCID: PMC9675754 DOI: 10.1038/s41467-022-34882-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.
Collapse
Affiliation(s)
- Francisco Leisico
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Juneina Omeiri
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Christine Le Narvor
- grid.462047.30000 0004 0382 4005Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91405 Orsay, France
| | - Joël Beaudouin
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Michael Hons
- grid.418923.50000 0004 0638 528XEuropean Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Daphna Fenel
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Guy Schoehn
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Yohann Couté
- grid.457348.90000 0004 0630 1517University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - David Bonnaffé
- grid.462047.30000 0004 0382 4005Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91405 Orsay, France
| | - Rabia Sadir
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Hugues Lortat-Jacob
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Rebekka Wild
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| |
Collapse
|
11
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
12
|
Linders PTA, Ioannidis M, ter Beest M, van den Bogaart G. Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chem Biol 2022; 17:240-251. [PMID: 35000377 PMCID: PMC8787756 DOI: 10.1021/acschembio.1c00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many cellular processes
are dependent on correct pH levels, and
this is especially important for the secretory pathway. Defects in
pH homeostasis in distinct organelles cause a wide range of diseases,
including disorders of glycosylation and lysosomal storage diseases.
Ratiometric imaging of the pH-sensitive mutant of green fluorescent
protein, pHLuorin, has allowed for targeted pH measurements in various
organelles, but the required sequential image acquisition is intrinsically
slow and therefore the temporal resolution is unsuitable to follow
the rapid transit of cargo between organelles. Therefore, we applied
fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar
pH with just a single excitation wavelength. We first validated this
method by confirming the pH in multiple compartments along the secretory
pathway and compared the pH values obtained by the FLIM-based measurements
with those obtained by conventional ratiometric imaging. Then, we
analyzed the dynamic pH changes within cells treated with Bafilomycin
A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic
reticulum (ER)–Golgi trafficking. Finally, we followed the
pH changes of newly synthesized molecules of the inflammatory cytokine
tumor necrosis factor-α while they were in transit from the
ER via the Golgi to the plasma membrane. The toolbox we present here
can be applied to measure intracellular pH with high spatial and temporal
resolution and can be used to assess organellar pH in disease models.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Martin ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| |
Collapse
|
13
|
Sun X, Mahajan D, Chen B, Song Z, Lu L. A quantitative study of the Golgi retention of glycosyltransferases. J Cell Sci 2021; 134:272560. [PMID: 34533190 DOI: 10.1242/jcs.258564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
How Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by ectodomain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention rather than retrieval is the primary mechanism for their Golgi localization. We therefore used the Golgi residence time to study Golgi retention of glycosyltransferases quantitatively and systematically. Quantitative analysis of chimeras of ST6GAL1 and either transferrin receptor or tumor necrosis factor α revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, the transmembrane domain and the ectodomain, to Golgi retention. We found that each of the three regions is sufficient for Golgi retention in an additive manner. N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to effects observed for the transmembrane domain. Therefore, the long N-terminal cytosolic tail and transmembrane domain could act as Golgi export signals for transmembrane secretory cargos. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore138668
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| |
Collapse
|
14
|
Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:237-257. [PMID: 34687012 DOI: 10.1007/978-3-030-76912-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbohydrate chains are the most abundant and diverse of nature's biopolymers and represent one of the four fundamental macromolecular building blocks of life together with proteins, nucleic acids, and lipids. Indicative of their essential roles in cells and in multicellular organisms, genes encoding proteins associated with glycosylation account for approximately 2% of the human genome. It has been estimated that 50-80% of all human proteins carry carbohydrate chains-glycans-as part of their structure. Despite cells utilize only nine different monosaccharides for making their glycans, their order and conformational variation in glycan chains together with chain branching differences and frequent post-synthetic modifications can give rise to an enormous repertoire of different glycan structures of which few thousand is estimated to carry important structural or functional information for a cell. Thus, glycans are immensely versatile encoders of multicellular life. Yet, glycans do not represent a random collection of unpredictable structures but rather, a collection of predetermined but still dynamic entities that are present at defined quantities in each glycosylation site of a given protein in a cell, tissue, or organism.In this chapter, we will give an overview of what is currently known about N-glycan synthesis in higher eukaryotes, focusing not only on the processes themselves but also on factors that will affect or can affect the final outcome-the dynamicity and heterogeneity of the N-glycome. We hope that this review will help understand the molecular details underneath this diversity, and in addition, be helpful for those who plan to produce optimally glycosylated antibody-based therapeutics.
Collapse
Affiliation(s)
- Teemu Viinikangas
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
15
|
Morris G, Athan E, Walder K, Bortolasci CC, O'Neil A, Marx W, Berk M, Carvalho AF, Maes M, Puri BK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262:118541. [PMID: 33035581 PMCID: PMC7537668 DOI: 10.1016/j.lfs.2020.118541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
The possibility is examined that immunomodulatory pharmacotherapy may be clinically useful in managing the pandemic coronavirus disease 2019 (COVID-19), known to result from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded RNA virus. The dominant route of cell entry of the coronavirus is via phagocytosis, with ensconcement in endosomes thereafter proceeding via the endosomal pathway, involving transfer from early (EEs) to late endosomes (LEs) and ultimately into lysosomes via endolysosomal fusion. EE to LE transportation is a rate-limiting step for coronaviruses. Hence inhibition or dysregulation of endosomal trafficking could potentially inhibit SARS-CoV-2 replication. Furthermore, the acidic luminal pH of the endolysosomal system is critical for the activity of numerous pH-sensitive hydrolytic enzymes. Golgi sub-compartments and Golgi-derived secretory vesicles also depend on being mildly acidic for optimal function and structure. Activation of endosomal toll-like receptors by viral RNA can upregulate inflammatory mediators and contribute to a systemic inflammatory cytokine storm, associated with a worsened clinical outcome in COVID-19. Such endosomal toll-like receptors could be inhibited by the use of pharmacological agents which increase endosomal pH, thereby reducing the activity of acid-dependent endosomal proteases required for their activity and/or assembly, leading to suppression of antigen-presenting cell activity, decreased autoantibody secretion, decreased nuclear factor-kappa B activity and decreased pro-inflammatory cytokine production. It is also noteworthy that SARS-CoV-2 inhibits autophagy, predisposing infected cells to apoptosis. It is therefore also suggested that further pharmacological inhibition of autophagy might encourage the apoptotic clearance of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Eugene Athan
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Infectious Disease, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Wolf Marx
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
16
|
N-glycosylation of the human β1,4-galactosyltransferase 4 is crucial for its activity and Golgi localization. Glycoconj J 2020; 37:577-588. [PMID: 32827291 PMCID: PMC7501111 DOI: 10.1007/s10719-020-09941-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
β1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.
Collapse
|
17
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Wiertelak W, Sosicka P, Olczak M, Maszczak-Seneczko D. Analysis of homologous and heterologous interactions between UDP-galactose transporter and beta-1,4-galactosyltransferase 1 using NanoBiT. Anal Biochem 2020; 593:113599. [PMID: 32004544 DOI: 10.1016/j.ab.2020.113599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Split luciferase complementation assay is one of the approaches enabling identification and analysis of protein-protein interactions in vivo. The NanoBiT technology is the most recent improvement of this strategy. Nucleotide sugar transporters and glycosyltransferases of the Golgi apparatus are the key players in glycosylation. Here we demonstrate the applicability of the NanoBiT system for studying homooligomerization of these proteins. We also report and discuss a novel heterologous interaction between UDP-galactose transporter and beta-1,4-galactosyltransferase 1.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland.
| |
Collapse
|
19
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
20
|
Khoder-Agha F, Harrus D, Brysbaert G, Lensink MF, Harduin-Lepers A, Glumoff T, Kellokumpu S. Assembly of B4GALT1/ST6GAL1 heteromers in the Golgi membranes involves lateral interactions via highly charged surface domains. J Biol Chem 2019; 294:14383-14393. [PMID: 31395657 DOI: 10.1074/jbc.ra119.009539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
β-1,4-Galactosyltransferase 1 (B4GALT1) and ST6 β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) catalyze the successive addition of terminal β-1,4-linked galactose and α-2,6-linked sialic acid to N-glycans. Their exclusive interaction in the Golgi compartment is a prerequisite for their full catalytic activity, whereas a lack of this interaction is associated with cancers and hypoxia. To date, no structural information exists that shows how glycosyltransferases functionally assemble with each other. Using molecular docking simulations to predict interaction surfaces, along with mutagenesis screens and high-throughput FRET analyses in live cells to validate these predictions, we show here that B4GALT1 and ST6GAL1 interact via highly charged noncatalytic surfaces, leaving the active sites exposed and accessible for donor and acceptor substrate binding. Moreover, we found that the assembly of ST6GAL1 homomers in the endoplasmic reticulum before ST6GAL1 activation in the Golgi utilizes the same noncatalytic surface, whereas B4GALT1 uses its active-site surface for assembly, which silences its catalytic activity. Last, we show that the homomeric and heteromeric B4GALT1/ST6GAL1 complexes can assemble laterally in the Golgi membranes without forming cross-cisternal contacts between enzyme molecules residing in the opposite membranes of each Golgi cisterna. Our results provide detailed mechanistic insights into the regulation of glycosyltransferase interactions, the transitions between B4GALT1 and ST6GAL1 homo- and heteromers in the Golgi, and cooperative B4GALT1/ST6GAL1 function in N-glycan synthesis.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Guillaume Brysbaert
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marc F Lensink
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| |
Collapse
|
21
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
22
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
Khoder-Agha F, Sosicka P, Escriva Conde M, Hassinen A, Glumoff T, Olczak M, Kellokumpu S. N-acetylglucosaminyltransferases and nucleotide sugar transporters form multi-enzyme-multi-transporter assemblies in golgi membranes in vivo. Cell Mol Life Sci 2019; 76:1821-1832. [PMID: 30737517 PMCID: PMC6453868 DOI: 10.1007/s00018-019-03032-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
Abstract
Branching and processing of N-glycans in the medial-Golgi rely both on the transport of the donor UDP-N-acetylglucosamine (UDP-GlcNAc) to the Golgi lumen by the SLC35A3 nucleotide sugar transporter (NST) as well as on the addition of the GlcNAc residue to terminal mannoses in nascent N-glycans by several linkage-specific N-acetyl-glucosaminyltransferases (MGAT1-MGAT5). Previous data indicate that the MGATs and NSTs both form higher order assemblies in the Golgi membranes. Here, we investigate their specific and mutual interactions using high-throughput FRET- and BiFC-based interaction screens. We show that MGAT1, MGAT2, MGAT3, MGAT4B (but not MGAT5) and Golgi alpha-mannosidase IIX (MAN2A2) form several distinct molecular assemblies with each other and that the MAN2A2 acts as a central hub for the interactions. Similar assemblies were also detected between the NSTs SLC35A2, SLC35A3, and SLC35A4. Using in vivo BiFC-based FRET interaction screens, we also identified novel ternary complexes between the MGATs themselves or between the MGATs and the NSTs. These findings suggest that the MGATs and the NSTs self-assemble into multi-enzyme/multi-transporter complexes in the Golgi membranes in vivo to facilitate efficient synthesis of complex N-glycans.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
| | - Paulina Sosicka
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maria Escriva Conde
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
- Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
- Institute of Molecular Medicine, Helsinki, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, 90220, Oulu, Finland.
| |
Collapse
|
24
|
Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol 2019; 24:101182. [PMID: 30959459 PMCID: PMC6454061 DOI: 10.1016/j.redox.2019.101182] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylation, a common modification of cellular proteins and lipids, is often altered in diseases and pathophysiological states such as hypoxia, yet the underlying molecular causes remain poorly understood. By utilizing lectin microarray glycan profiling, Golgi pH and redox screens, we show here that hypoxia inhibits terminal sialylation of N- and O-linked glycans in a HIF- independent manner by lowering Golgi oxidative potential. This redox state change was accompanied by loss of two surface-exposed disulfide bonds in the catalytic domain of the α-2,6-sialyltransferase (ST6Gal-I) and its ability to functionally interact with B4GalT-I, an enzyme adding the preceding galactose to complex N-glycans. Mutagenesis of selected cysteine residues in ST6Gal-I mimicked these effects, and also rendered the enzyme inactive. Cells expressing the inactive mutant, but not those expressing the wild type ST6Gal-I, were able to proliferate and migrate normally, supporting the view that inactivation of the ST6Gal-I help cells to adapt to hypoxic environment. Structure comparisons revealed similar disulfide bonds also in ST3Gal-I, suggesting that this O-glycan and glycolipid modifying sialyltransferase is also sensitive to hypoxia and thereby contribute to attenuated sialylation of O-linked glycans in hypoxic cells. Collectively, these findings unveil a previously unknown redox switch in the Golgi apparatus that is responsible for the catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I.
Collapse
Affiliation(s)
- Antti Hassinen
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Fawzi Khoder-Agha
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Elham Khosrowabadi
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Daniela Mennerich
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Deborah Harrus
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maxence Noel
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Elitsa Y Dimova
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Tuomo Glumoff
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Sakari Kellokumpu
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland.
| |
Collapse
|
25
|
Lee JH, Kim J, Park J, Heo WD, Lee GM. Analysis of Golgi pH in Chinese hamster ovary cells using ratiometric pH‐sensitive fluorescent proteins. Biotechnol Bioeng 2019; 116:1006-1016. [DOI: 10.1002/bit.26920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jong Hyun Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jihoon Kim
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jong‐Ho Park
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Won Do Heo
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| |
Collapse
|
26
|
Harrus D, Khoder-Agha F, Peltoniemi M, Hassinen A, Ruddock L, Kellokumpu S, Glumoff T. The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS One 2018; 13:e0205571. [PMID: 30352055 PMCID: PMC6198961 DOI: 10.1371/journal.pone.0205571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022] Open
Abstract
Most glycosyltransferases, including B4GalT1 (EC 2.4.1.38), are known to assemble into enzyme homomers and functionally relevant heteromers in vivo. However, it remains unclear why and how these enzymes interact at the molecular/atomic level. Here, we solved the crystal structure of the wild-type human B4GalT1 homodimer. We also show that B4GalT1 exists in a dynamic equilibrium between monomer and dimer, since a purified monomer reappears as a mixture of both and as we obtained crystal forms of the monomer and dimer assemblies in the same crystallization conditions. These two crystal forms revealed the unliganded B4GalT1 in both the open and the closed conformation of the Trp loop and the lid regions, responsible for donor and acceptor substrate binding, respectively. The present structures also show the lid region in full in an open conformation, as well as a new conformation for the GlcNAc acceptor loop (residues 272–288). The physiological relevance of the homodimer in the crystal was validated by targeted mutagenesis studies coupled with FRET assays. These showed that changing key catalytic amino acids impaired homomer formation in vivo. The wild-type human B4GalT1 structure also explains why the variant proteins used for crystallization in earlier studies failed to reveal the homodimers described in this study.
Collapse
Affiliation(s)
- Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Fawzi Khoder-Agha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Miika Peltoniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, Oulu, Finland
- * E-mail:
| |
Collapse
|
27
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
28
|
Metabolic engineering of mammalian cells to produce heparan sulfates. Emerg Top Life Sci 2018; 2:443-452. [DOI: 10.1042/etls20180007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan produced by all mammalian cells that plays important roles in physiology and various pathologies. Heparin is a highly sulfated form of HS that is used clinically as an anticoagulant. Heparin and HSs may also have therapeutic benefits for a wide variety of other indications. Cultured mammalian cells produce HS and, through genetic modification, have been used to elucidate the biosynthetic pathway. Recently, metabolic engineering has been used to produce HS from cultured mammalian cells for clinical purposes. This review describes the HS biosynthetic pathway and its manipulation through metabolic engineering to produce bioengineered HSs. We also discuss current challenges and opportunities to advance the field of HS metabolic engineering.
Collapse
|
29
|
Tykesson E, Hassinen A, Zielinska K, Thelin MA, Frati G, Ellervik U, Westergren-Thorsson G, Malmström A, Kellokumpu S, Maccarana M. Dermatan sulfate epimerase 1 and dermatan 4- O-sulfotransferase 1 form complexes that generate long epimerized 4- O-sulfated blocks. J Biol Chem 2018; 293:13725-13735. [PMID: 29976758 DOI: 10.1074/jbc.ra118.003875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/11/2018] [Indexed: 01/14/2023] Open
Abstract
During the biosynthesis of chondroitin/dermatan sulfate (CS/DS), a variable fraction of glucuronic acid is converted to iduronic acid through the activities of two epimerases, dermatan sulfate epimerases 1 (DS-epi1) and 2 (DS-epi2). Previous in vitro studies indicated that without association with other enzymes, DS-epi1 activity produces structures that have only a few adjacent iduronic acid units. In vivo, concomitant with epimerization, dermatan 4-O-sulfotransferase 1 (D4ST1) sulfates the GalNAc adjacent to iduronic acid. This sulfation facilitates DS-epi1 activity and enables the formation of long blocks of sulfated iduronic acid-containing domains, which can be major components of CS/DS. In this report, we used recombinant enzymes to confirm the concerted action of DS-epi1 and D4ST1. Confocal microscopy revealed that these two enzymes colocalize to the Golgi, and FRET experiments indicated that they physically interact. Furthermore, FRET, immunoprecipitation, and cross-linking experiments also revealed that DS-epi1, DS-epi2, and D4ST1 form homomers and are all part of a hetero-oligomeric complex where D4ST1 directly interacts with DS-epi1, but not with DS-epi2. The cooperation of DS-epi1 with D4ST1 may therefore explain the processive mode of the formation of iduronic acid blocks. In conclusion, the iduronic acid-forming enzymes operate in complexes, similar to other enzymes active in glycosaminoglycan biosynthesis. This knowledge shed light on regulatory mechanisms controlling the biosynthesis of the structurally diverse CS/DS molecule.
Collapse
Affiliation(s)
- Emil Tykesson
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland, and
| | - Katarzyna Zielinska
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden
| | - Martin A Thelin
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden
| | - Giacomo Frati
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden
| | - Ulf Ellervik
- Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | | | - Anders Malmström
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland
| | - Marco Maccarana
- From the Department of Experimental Medical Science, Lund University, SE-221 00, Lund, Sweden,
| |
Collapse
|
30
|
Blondeel EJM, Aucoin MG. Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Biotechnol Adv 2018; 36:1505-1523. [PMID: 29913209 DOI: 10.1016/j.biotechadv.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Glycosylation is a critical quality attribute (CQA) of many therapeutic proteins, particularly monoclonal antibodies (mAbs), and is a major consideration in the approval of biosimilar biologics due to its effects to therapeutic efficacy. Glycosylation generates a distribution of glycoforms, resulting in glycoproteins with inherent molecule-to-molecule heterogeneity, capable of activating (or failing to activate) different effector functions of the immune system. Glycoforms can be affected by the supplementation of nucleotide-sugar precursors, and related components, to culture growth medium, affecting the metabolism of glycosylation. These supplementations has been demonstrated to increase nucleotide-sugar intracellular pools, and impact glycoform distributions, but with varied results. These variations can be attributed to five key factors: Differences between cell platforms (enzyme/transporter expression levels); differences between recombinant proteins produced (glycan-site accessibility); the fermentation and sampling timeline (glucose availability and exoglycosidase accumulation); glutamine levels (affecting ammonia levels, which impact Golgi pH, as well as UDP-GlcNAc pools); and finally, a lack of standardized metrics for observing shifts in glycoform distributions (glycosylation indices) across different experiments. The purpose of this review is to provide detail and clarity on the state of the art of supplementation strategies for nucleotide-sugar precursors for affecting glycosylation in cell culture processes, and to apply glycosylation indices for standardized comparisons across the field.
Collapse
Affiliation(s)
- Eric J M Blondeel
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
31
|
Demetriou M, Nabi IR, Dennis JW. Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1732.1se] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia
| | - James W. Dennis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital
- Department of Molecular Genetics, & Department of Laboratory Medicine and Pathology, Department of Medicine, University of Toronto
| |
Collapse
|
32
|
Benedetti E, Pučić-Baković M, Keser T, Wahl A, Hassinen A, Yang JY, Liu L, Trbojević-Akmačić I, Razdorov G, Štambuk J, Klarić L, Ugrina I, Selman MHJ, Wuhrer M, Rudan I, Polasek O, Hayward C, Grallert H, Strauch K, Peters A, Meitinger T, Gieger C, Vilaj M, Boons GJ, Moremen KW, Ovchinnikova T, Bovin N, Kellokumpu S, Theis FJ, Lauc G, Krumsiek J. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat Commun 2017; 8:1483. [PMID: 29133956 PMCID: PMC5684356 DOI: 10.1038/s41467-017-01525-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin G (IgG) is a major effector molecule of the human immune response, and aberrations in IgG glycosylation are linked to various diseases. However, the molecular mechanisms underlying protein glycosylation are still poorly understood. We present a data-driven approach to infer reactions in the IgG glycosylation pathway using large-scale mass-spectrometry measurements. Gaussian graphical models are used to construct association networks from four cohorts. We find that glycan pairs with high partial correlations represent enzymatic reactions in the known glycosylation pathway, and then predict new biochemical reactions using a rule-based approach. Validation is performed using data from a GWAS and results from three in vitro experiments. We show that one predicted reaction is enzymatically feasible and that one rejected reaction does not occur in vitro. Moreover, in contrast to previous knowledge, enzymes involved in our predictions colocalize in the Golgi of two cell lines, further confirming the in silico predictions.
Collapse
Affiliation(s)
- Elisa Benedetti
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Annika Wahl
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | | | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Lucija Klarić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Ivo Ugrina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
- Intellomics Ltd., 10000 Zagreb, Croatia
| | | | - Manfred Wuhrer
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, EH8 9AG Edinburgh, UK
| | - Ozren Polasek
- University of Split School of Medicine, 21000 Split, Croatia
- Gen-info Ltd., 10000 Zagreb, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Harald Grallert
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians Universität, 81577 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology 2, Research Unit Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology 2, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Tatiana Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Mathematics, Technical University Munich, 85748 Garching bei München, Germany
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues involved in homodimerisation. Biochem J 2017; 474:2803-2816. [DOI: 10.1042/bcj20170124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and β4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of β4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on β4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation
Collapse
|
34
|
Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers. Int J Mol Sci 2017; 18:ijms18071361. [PMID: 28672878 PMCID: PMC5535854 DOI: 10.3390/ijms18071361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that the enzymes in the biosynthetic pathway for the synthesis of heparan sulfate moieties of heparan sulfate proteoglycans (HSPGs) are epigenetically regulated at many levels. As the exact composition of the heparan sulfate portion of the resulting HSPG molecules is critical to the broad spectrum of biological processes involved in oncogenesis, the epigenetic regulation of heparan sulfate biosynthesis has far-reaching effects on many cellular activities related to cancer progression. Given the current focus on developing new anti-cancer therapeutics focused on epigenetic targets, it is important to understand the effects that these emerging therapeutics may have on the synthesis of HSPGs as alterations in HSPG composition may have profound and unanticipated effects. As an introduction, this review will briefly summarize the variety of important roles which HSPGs play in a wide-spectrum of cancer-related cellular and physiological functions and then describe the biosynthesis of the heparan sulfate chains of HSPGs, including how alterations observed in cancer cells serve as potential biomarkers. This review will then focus on detailing the multiple levels of epigenetic regulation of the enzymes in the heparan sulfate synthesis pathway with a particular focus on regulation by miRNA and effects of epigenetic therapies on HSPGs. We will also explore the use of lectins to detect differences in heparan sulfate composition and preview their potential diagnostic and prognostic use in the clinic.
Collapse
|
35
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
36
|
McDonald AG, Hayes JM, Davey GP. Metabolic flux control in glycosylation. Curr Opin Struct Biol 2016; 40:97-103. [DOI: 10.1016/j.sbi.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
|
37
|
Karsten U, Goletz S. What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? BIOCHEMISTRY (MOSCOW) 2016; 80:801-7. [PMID: 26541995 DOI: 10.1134/s0006297915070019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malignant transformation is tightly connected with changes in the glycosylation of proteins and lipids, which in turn are contributing to the invasive and metastatic behavior of tumor cells. One example of such changes is demasking of the otherwise hidden core-1 structure, also known as Thomsen-Friedenreich antigen, which is a highly tumor-specific glycotope and potentially a cancer stem cell marker. This review summarizes what is known about the mechanism(s) of its expression on tumor cells. New data reveal a close connection between tumor metabolism and Golgi function. Based on these data, we suggest that the expression of this antigen is also a marker of aerobic glycolysis.
Collapse
Affiliation(s)
- U Karsten
- Glycotope GmbH, Berlin-Buch, D-13125, Germany.
| | | |
Collapse
|
38
|
Massarweh A, Bosco M, Iatmanen-Harbi S, Tessier C, Amana L, Busca P, Chantret I, Gravier-Pelletier C, Moore SEH. Brefeldin A promotes the appearance of oligosaccharyl phosphates derived from Glc3Man9GlcNAc2-PP-dolichol within the endomembrane system of HepG2 cells. J Lipid Res 2016; 57:1477-91. [PMID: 27281477 DOI: 10.1194/jlr.m068551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 01/04/2023] Open
Abstract
We reported an oligosaccharide diphosphodolichol (DLO) diphosphatase (DLODP) that generates dolichyl-phosphate and oligosaccharyl phosphates (OSPs) from DLO in vitro. This enzyme could underlie cytoplasmic OSP generation and promote dolichyl-phosphate recycling from truncated endoplasmic reticulum (ER)-generated DLO intermediates. However, during subcellular fractionation, DLODP distribution is closer to that of a Golgi apparatus (GA) marker than those of ER markers. Here, we examined the effect of brefeldin A (BFA), which fuses the GA with the ER on OSP metabolism. In order to increase the steady state level of truncated DLO while allowing formation of mature DLO (Glc3Man9GlcNAc2-PP-dolichol), dolichyl-P-mannose Man7GlcNAc2-PP-dolichol mannosyltransferase was partially downregulated in HepG2 cells. We show that BFA provokes GA endomannosidase trimming of Glc3Man9GlcNAc2-PP-dolichol to yield a Man8GlcNAc2-PP-dolichol structure that does not give rise to cytoplasmic Man8GlcNAc2-P. BFA also strikingly increased OSP derived from mature DLO within the endomembrane system without affecting levels of Man7GlcNAc2-PP-dolichol or cytoplasmic Man7GlcNAc2-P. The BFA-provoked increase in endomembrane-situated OSP is sensitive to nocodazole, and BFA causes partial redistribution of DLODP activity from GA- to ER-containing regions of density gradients. These findings are consistent with BFA-provoked microtubule-dependent GA-to-ER transport of a previously reported DLODP that acts to generate a novel endomembrane-situated OSP population.
Collapse
Affiliation(s)
- Ahmad Massarweh
- INSERM U1149, Paris, France Université Denis Diderot, Paris 7, Paris, France Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Michaël Bosco
- Université Paris Descartes, CICB-Paris, CNRS UMR8601, LCBPT, Paris, France
| | | | - Clarice Tessier
- INSERM U1149, Paris, France Université Denis Diderot, Paris 7, Paris, France
| | - Laura Amana
- INSERM U1149, Paris, France Université Denis Diderot, Paris 7, Paris, France
| | - Patricia Busca
- Université Paris Descartes, CICB-Paris, CNRS UMR8601, LCBPT, Paris, France
| | - Isabelle Chantret
- INSERM U1149, Paris, France Université Denis Diderot, Paris 7, Paris, France
| | | | - Stuart E H Moore
- INSERM U1149, Paris, France Université Denis Diderot, Paris 7, Paris, France
| |
Collapse
|
39
|
Fisher P, Ungar D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front Cell Dev Biol 2016; 4:15. [PMID: 27014691 PMCID: PMC4781848 DOI: 10.3389/fcell.2016.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York York, UK
| | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
40
|
Kellokumpu S, Hassinen A, Glumoff T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 2016; 73:305-25. [PMID: 26474840 PMCID: PMC7079781 DOI: 10.1007/s00018-015-2066-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most common and complex cellular modification of proteins and lipids. It is critical for multicellular life and its abrogation often leads to a devastating disease. Yet, the underlying mechanistic details of glycosylation in both health and disease remain unclear. Partly, this is due to the complexity and dynamicity of glycan modifications, and the fact that not all the players are taken into account. Since late 1960s, a vast number of studies have demonstrated that glycosyltransferases typically form homomeric and heteromeric complexes with each other in yeast, plant and animal cells. To propagate their acceptance, we will summarize here accumulated data for their prevalence and potential functional importance for glycosylation focusing mainly on their mutual interactions, the protein domains mediating these interactions, and enzymatic activity changes that occur upon complex formation. Finally, we will highlight the few existing 3D structures of these enzyme complexes to pinpoint their individual nature and to emphasize that their lack is the main obstacle for more detailed understanding of how these enzyme complexes interact and function in a eukaryotic cell.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| |
Collapse
|
41
|
In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. J Mol Biol 2016; 428:332-343. [DOI: 10.1016/j.jmb.2015.09.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022]
|
42
|
Huang HH, Hassinen A, Sundaram S, Spiess AN, Kellokumpu S, Stanley P. GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain. eLife 2015; 4. [PMID: 26371870 PMCID: PMC4572887 DOI: 10.7554/elife.08916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022] Open
Abstract
Mouse GnT1IP-L, and membrane-bound GnT1IP-S (MGAT4D) expressed in cultured cells
inhibit MGAT1, the N-acetylglucosaminyltransferase that initiates the synthesis of
hybrid and complex N-glycans. However, it is not known where in the secretory pathway
GnT1IP-L inhibits MGAT1, nor whether GnT1IP-L inhibits other N-glycan branching
N-acetylglucosaminyltransferases of the medial Golgi. We show here that the luminal
domain of GnT1IP-L contains its inhibitory activity. Retention of GnT1IP-L in the
endoplasmic reticulum (ER) via the N-terminal region of human invariant chain p33,
with or without C-terminal KDEL, markedly reduced inhibitory activity. Dynamic
fluorescent resonance energy transfer (FRET) and bimolecular fluorescence
complementation (BiFC) assays revealed homomeric interactions for GnT1IP-L in the ER,
and heteromeric interactions with MGAT1 in the Golgi. GnT1IP-L did not generate a
FRET signal with MGAT2, MGAT3, MGAT4B or MGAT5 medial Golgi GlcNAc-tranferases.
GnT1IP/Mgat4d transcripts are expressed predominantly in
spermatocytes and spermatids in mouse, and are reduced in men with impaired
spermatogenesis. DOI:http://dx.doi.org/10.7554/eLife.08916.001 Proteins are made up of chains of amino acids that fold into three-dimensional shapes
and many are assembled in a cell compartment known as the endoplasmic reticulum. From
here, these new proteins move to another compartment called the Golgi, where they may
be further modified before they are transported to their final destination in the
cell. One way that proteins may be modified is known as glycosylation, in which sugar
molecules are attached to specific amino acids. Some sugar molecules can act as
labels that ensure the new proteins are transported to the correct destination in the
cell. For proteins that are delivered to the surface of the cell, the sugar molecules
can also play important roles in communication with other cells. A simple sugar molecule, or a complex arrangement of many sugar molecules, may be
attached to an amino acid by glycosylation. An enzyme called MGAT1 controls the
synthesis of sugars called complex N-glycans in the Golgi. In 2010, researchers
reported that a glycoprotein called GnT1IP-L binds to MGAT1 and inhibits its
activity, thereby blocking the production of complex N-glycans. GnT1IP-L was found in
the endoplasmic reticulum and Golgi, but it was not clear how it inhibits MGAT1. Huang et al.—including some of the researchers from the 2010 study—have
now investigated the activity of GnT1IP-L in cells grown in the laboratory using
several biochemical techniques. The experiments show that GnT1IP-L only binds to
MGAT1 when both proteins are in the Golgi. There are three sections (or
‘domains’) in GnT1IP-L, but Huang et al. found that only the domain
that is on the inside of the Golgi is involved in this interaction. Previous work indicated that GnT1IP-L may be involved in the formation of sperm in
mice. Huang et al. have now analyzed previously published data on samples of testis
tissue from human patients and found that the gene that encodes GnT1IP-L is present
in very low amounts in patients whose sperm do not develop properly. Huang et al.'s findings suggest that GnT1IP-L may inhibit MGAT1 to control the
glycosylation of proteins in the Golgi of developing sperm. The next step is to test
this hypothesis by generating mutant mice that lack GnT1IP-L, or to make GnT1P-L in
other cells in which it is not normally made, to find out if this affects the
production of sperm. DOI:http://dx.doi.org/10.7554/eLife.08916.002
Collapse
Affiliation(s)
- Hung-Hsiang Huang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Subha Sundaram
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| | | | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
43
|
Abstract
We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function.
Collapse
|
44
|
Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 2015; 5:2003-22. [PMID: 26308067 PMCID: PMC4598785 DOI: 10.3390/biom5032003] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Box 1066, Blindern OSLO 0316, Norway.
| |
Collapse
|
45
|
Critical role of evolutionarily conserved glycosylation at Asn211 in the intracellular trafficking and activity of sialyltransferase ST3Gal-II. Biochem J 2015; 469:83-95. [DOI: 10.1042/bj20150072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
ST3Gal-II is largely responsible for ganglioside terminal α2,3-sialylation in mammals. We demonstrated that ST3Gal-II mainly distributes in proximal Golgi compartments and that the inhibition of N-glycosylation and oligosaccharide trimming is critical for its enzymatic activity and intracellular distribution.
Collapse
|