1
|
Zlobin AS, Volkova NA, Zinovieva NA, Iolchiev BS, Bagirov VA, Borodin PM, Axenovich TI, Tsepilov YA. Loci Associated with Negative Heterosis for Viability and Meat Productivity in Interspecific Sheep Hybrids. Animals (Basel) 2023; 13:ani13010184. [PMID: 36611792 PMCID: PMC9817718 DOI: 10.3390/ani13010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Negative heterosis can occur on different economically important traits, but the exact biological mechanisms of this phenomenon are still unknown. The present study focuses on determining the genetic factors associated with negative heterosis in interspecific hybrids between domestic sheep (Ovis aries) and argali (Ovis ammon). One locus (rs417431015) associated with viability and two loci (rs413302370, rs402808951) associated with meat productivity were identified. One gene (ARAP2) was prioritized for viability and three for meat productivity (PDE2A, ARAP1, and PCDH15). The loci associated with meat productivity were demonstrated to fit the overdominant inheritance model and could potentially be involved int negative heterosis mechanisms.
Collapse
Affiliation(s)
- Alexander S. Zlobin
- Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences SB RAS, 630090 Novosibirsk, Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | | | - Baylar S. Iolchiev
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | - Vugar A. Bagirov
- L.K. Ernst Federal Science Center for Animal Husbandry, 101000 Moscow, Russia
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | | | - Yakov A. Tsepilov
- Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences SB RAS, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
2
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, Ha E, Liu L, Sakamoto Y, Jo S, Leng RX, Otomo N, Kwon YC, Sheng Y, Sugano N, Hwang MY, Li W, Mukai M, Yoon K, Cai M, Ishigaki K, Chung WT, Huang H, Takahashi D, Lee SS, Wang M, Karino K, Shim SC, Zheng X, Miyamura T, Kang YM, Ye D, Nakamura J, Suh CH, Tang Y, Motomura G, Park YB, Ding H, Kuroda T, Choe JY, Li C, Niiro H, Park Y, Shen C, Miyamoto T, Ahn GY, Fei W, Takeuchi T, Shin JM, Li K, Kawaguchi Y, Lee YK, Wang YF, Amano K, Park DJ, Yang W, Tada Y, Lau YL, Yamaji K, Zhu Z, Shimizu M, Atsumi T, Suzuki A, Sumida T, Okada Y, Matsuda K, Matsuo K, Kochi Y, Yamamoto K, Ohmura K, Kim TH, Yang S, Yamamoto T, Kim BJ, Shen N, Ikegawa S, Lee HS, Zhang X, Terao C, Cui Y, Bae SC. Biological insights into systemic lupus erythematosus through an immune cell-specific transcriptome-wide association study. Ann Rheum Dis 2022; 81:1273-1280. [PMID: 35609976 PMCID: PMC9380500 DOI: 10.1136/annrheumdis-2022-222345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified >100 risk loci for systemic lupus erythematosus (SLE), but the disease genes at most loci remain unclear, hampering translation of these genetic discoveries. We aimed to prioritise genes underlying the 110 SLE loci that were identified in the latest East Asian GWAS meta-analysis. METHODS We built gene expression predictive models in blood B cells, CD4+ and CD8+ T cells, monocytes, natural killer cells and peripheral blood cells of 105 Japanese individuals. We performed a transcriptome-wide association study (TWAS) using data from the latest genome-wide association meta-analysis of 208 370 East Asians and searched for candidate genes using TWAS and three data-driven computational approaches. RESULTS TWAS identified 171 genes for SLE (p<1.0×10-5); 114 (66.7%) showed significance only in a single cell type; 127 (74.3%) were in SLE GWAS loci. TWAS identified a strong association between CD83 and SLE (p<7.7×10-8). Meta-analysis of genetic associations in the existing 208 370 East Asian and additional 1498 cases and 3330 controls found a novel single-variant association at rs72836542 (OR=1.11, p=4.5×10-9) around CD83. For the 110 SLE loci, we identified 276 gene candidates, including 104 genes at recently-identified SLE novel loci. We demonstrated in vitro that putative causal variant rs61759532 exhibited an allele-specific regulatory effect on ACAP1, and that presence of the SLE risk allele decreased ACAP1 expression. CONCLUSIONS Cell-level TWAS in six types of immune cells complemented SLE gene discovery and guided the identification of novel genetic associations. The gene findings shed biological insights into SLE genetic associations.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Leilei Wen
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Lu Liu
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Yuma Sakamoto
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Koga Hospital 21, Kurume, Japan
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Yujun Sheng
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Nobuhiko Sugano
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Weiran Li
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masaya Mukai
- Department of Rheumatology & Clinical Immunology, Sapporo City General Hospital, Hokkaido, Japan
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Minglong Cai
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Won Tae Chung
- Department of Internal Medicine, Dong-A University Hospital, Busan, South Korea
| | - He Huang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Mengwei Wang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Seung-Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Xiaodong Zheng
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Tomoya Miyamura
- Department of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yong-Beom Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Takeshi Kuroda
- Niigata University Health Administration Center, Niigata, Japan
| | - Jung-Yoon Choe
- Department of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Chengxu Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Youngho Park
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, People's Republic of China
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ga-Young Ahn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Wenmin Fei
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jung-Min Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Keke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yeon-Kyung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Koichi Amano
- Department of Rheumatology & Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dae Jin Park
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Zhengwei Zhu
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masato Shimizu
- Hokkaido Medical Center for Rheumatic Diseases, Sapporo, Japan
| | - Takashi Atsumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Sen Yang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| |
Collapse
|
4
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
5
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
6
|
Wang Y, Çil Ç, Harnett MM, Pineda MA. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front Immunol 2022; 12:809896. [PMID: 35095899 PMCID: PMC8790574 DOI: 10.3389/fimmu.2021.809896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom
| |
Collapse
|
7
|
Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J 2021; 40:e107664. [PMID: 34423453 PMCID: PMC8488576 DOI: 10.15252/embj.2021107664] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.
Collapse
Affiliation(s)
- Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Erin P Smith
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kelsey Binder
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.,Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
8
|
Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, Ha E, Liu L, Sakamoto Y, Jo S, Leng RX, Otomo N, Laurynenka V, Kwon YC, Sheng Y, Sugano N, Hwang MY, Li W, Mukai M, Yoon K, Cai M, Ishigaki K, Chung WT, Huang H, Takahashi D, Lee SS, Wang M, Karino K, Shim SC, Zheng X, Miyamura T, Kang YM, Ye D, Nakamura J, Suh CH, Tang Y, Motomura G, Park YB, Ding H, Kuroda T, Choe JY, Li C, Niiro H, Park Y, Shen C, Miyamoto T, Ahn GY, Fei W, Takeuchi T, Shin JM, Li K, Kawaguchi Y, Lee YK, Wang Y, Amano K, Park DJ, Yang W, Tada Y, Yamaji K, Shimizu M, Atsumi T, Suzuki A, Sumida T, Okada Y, Matsuda K, Matsuo K, Kochi Y, Kottyan LC, Weirauch MT, Parameswaran S, Eswar S, Salim H, Chen X, Yamamoto K, Harley JB, Ohmura K, Kim TH, Yang S, Yamamoto T, Kim BJ, Shen N, Ikegawa S, Lee HS, Zhang X, Terao C, Cui Y, Bae SC. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis 2021; 80:632-640. [PMID: 33272962 PMCID: PMC8053352 DOI: 10.1136/annrheumdis-2020-219209] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations. METHODS We newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations. RESULTS We identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10-8). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (rg=-0.242) and non-albumin protein (rg=0.238). CONCLUSION This study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Leilei Wen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Lu Liu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | | | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Viktoryia Laurynenka
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Yujun Sheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Nobuhiko Sugano
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Weiran Li
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Masaya Mukai
- Department of Rheumatology & Clinical Immunology, Sapporo City General Hospital, Hokkaido, Japan
| | - Kyungheon Yoon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Minglong Cai
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Data Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Won Tae Chung
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - He Huang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mengwei Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Seung-Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Xiaodong Zheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Tomoya Miyamura
- Department of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yong-Beom Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
| | - Takeshi Kuroda
- Niigata University Health Administration Center, Niigata, Japan
| | - Jung-Yoon Choe
- Department of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Chengxu Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka City, Japan
| | - Youngho Park
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ga-Young Ahn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Wenmin Fei
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jung-Min Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Keke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yeon-Kyung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Yongfei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Koichi Amano
- Department of Rheumatology & Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dae Jin Park
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masato Shimizu
- Hokkaido Medical Center for Rheumatic Disease, Hokkaido, Japan
| | - Takashi Atsumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPi-iFReC), Osaka University, Osaka, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shruti Eswar
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hanan Salim
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - John B Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical immunology, Kyoto University Graduate school of Medicine, Kyoto, Japan
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Sen Yang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Nan Shen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Xuejun Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| |
Collapse
|
9
|
Lakoduk AM, Kadlecova Z, Schmid SL. A functionally neutral single chain antibody to measure beta-1 integrin uptake and recycling. Traffic 2020; 21:590-602. [PMID: 32613646 PMCID: PMC7442622 DOI: 10.1111/tra.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Integrin‐mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease‐specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure β1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design. The dynamic turnover of integrins through endocytic trafficking pathways has emerged as a key mechanism for cell migration and invasion. Lakoduk et al. report the generation of a functionally neutral and monovalent antibody‐based probe to track and measure endogenous beta‐1 integrin uptake and fast recycling in multiple cell types. Their tool, scFvK20, serves as proof of principle inspiration for future integrin probe design.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zuzana Kadlecova
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Zhang J, Zhang Q, Zhang J, Wang Q. Expression of ACAP1 Is Associated with Tumor Immune Infiltration and Clinical Outcome of Ovarian Cancer. DNA Cell Biol 2020; 39:1545-1557. [PMID: 32456571 DOI: 10.1089/dna.2020.5596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ADP-ribosylation factor (Arf) GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) is an Arf6 GAP that regulates membrane trafficking and is critical for the migratory potential of cells. However, the roles of ACAP1 have not been fully explored and its association with clinicopathological features in ovarian cancer is still unknown. In this study, we systematically analyzed multiple databases, including TISIDB, Tumor Immune Estimation Resource (TIMER2.0), Gene Expression Omnibus (GEO), CORTECON, Kaplan-Meier Plotter and LinkedOmics platforms to reveal the clinical significance and function of ACAP1 in ovarian cancer. We found that the expression of ACAP1 was upregulated in ovarian cancer and high ACAP1 expression predicted poor prognosis. Our data demonstrated that the expression and methylation status of ACAP1 were strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Gene set enrichment analysis (GSEA) analysis also showed that the mechanism of ACAP1 in regulating ovarian cancer was related to a variety of immune-related pathways. In addition, we also revealed that the expression of ACAP1 was altered during cell differentiation and associated with cancer cell stemness markers. Our study highlights the clinical significance of ACAP1 in ovarian cancer and provides insight into the novel function of ACAP1 in regulation of tumor immune microenvironment and cancer cell stemness.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinyi Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Assessment of Arf6 Deletion in PLB-985 Differentiated in Neutrophil-Like Cells and in Mouse Neutrophils: Impact on Adhesion and Migration. Mediators Inflamm 2020; 2020:2713074. [PMID: 32322163 PMCID: PMC7166286 DOI: 10.1155/2020/2713074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoattractant sensing, adhesiveness, and migration are critical events underlying the recruitment of neutrophils (PMNs) to sites of inflammation or infection. Defects in leukocyte adhesion or migration result in immunodeficiency disorders characterized by recurrent infections. In this study, we evaluated the role of Arf6 on PMN adhesion in vitro and on migration to inflammatory sites using PMN-Arf6 conditional knockout (cKO) mice. In PMN-like PLB-985 silenced for Arf6 fMLP-mediated adhesion to the β2 integrin ligands, ICAM-1 and fibrinogen or the β1/β2 integrin ligand fibronectin was significantly reduced. Furthermore, overexpression of wild-type Arf6 promoted basal and fMLP-induced adhesion to immobilized integrin ligands, while overexpression of the dominant-negative Arf6 has the opposite effects. Using the Elane-Cre deleting mouse strains, we report that the level of Arf6 deletion in inflammatory PMNs isolated from the dorsal air pouches was stronger when compared to naïve cells isolated from the bone marrow. In PMN-Arf6 cKO mice, the recruitment of PMNs into the dorsal air pouch injected with LPS or the chemoattractant fMLP was significantly diminished. Impaired cell migration correlated with reduced cell surface expression of CD11a and CD11b in Arf6 cKO PMNs. Our results highlight that Arf6 regulates the activity and possibly the recycling of PMN integrins, and this compromises PMN migration to inflammatory sites.
Collapse
|
12
|
Ren C, Yuan Q, Jian X, Randazzo PA, Tang W, Wu D. Small GTPase ARF6 Is a Coincidence-Detection Code for RPH3A Polarization in Neutrophil Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1012-1021. [PMID: 31924649 PMCID: PMC6994837 DOI: 10.4049/jimmunol.1901080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Cell polarization is a key step for leukocytes adhesion and transmigration during leukocytes' inflammatory infiltration. Polarized localization of plasma membrane (PM) phosphatidylinositol-4-phosphate (PtdIns4P) directs the polarization of RPH3A, which contains a PtdIns4P binding site. Consequently, RPH3A mediates the RAB21 and PIP5K1C90 polarization, which is important for neutrophil adhesion to endothelia during inflammation. However, the mechanism by which RPH3A is recruited only to PM PtdIns4P rather than Golgi PtdIns4P remains unclear. By using ADP-ribosylation factor 6 (ARF6) small interfering RNA, ARF6 dominant-negative mutant ARF6(T27N), and ARF6 activation inhibitor SecinH3, we demonstrate that ARF6 plays an important role in the polarization of RPH3A, RAB21, and PIP5K1C90 in murine neutrophils. PM ARF6 is polarized and colocalized with RPH3A, RAB21, PIP5K1C90, and PM PtdIns4P in mouse and human neutrophils upon integrin stimulation. Additionally, ARF6 binds to RPH3A and enhances the interaction between the PM PtdIns4P and RPH3A. Consistent with functional roles of polarization of RPH3A, Rab21, and PIP5K1C90, ARF6 is also required for neutrophil adhesion on the inflamed endothelial layer. Our study reveals a previously unknown role of ARF6 in neutrophil polarization as being the coincidence-detection code with PM PtdIns4P. Cooperation of ARF6 and PM PtdIns4P direct RPH3A polarization, which is important for neutrophil firm adhesion to endothelia.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, School of Medicine, Yale University, New Haven, CT 06520; and
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, School of Medicine, Yale University, New Haven, CT 06520; and
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, School of Medicine, Yale University, New Haven, CT 06520; and
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, School of Medicine, Yale University, New Haven, CT 06520; and
| |
Collapse
|
13
|
Integrin β1 Promotes Peripheral Entry by Rabies Virus. J Virol 2020; 94:JVI.01819-19. [PMID: 31666383 DOI: 10.1128/jvi.01819-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.
Collapse
|
14
|
McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S. A Negative Feedback Loop Regulates Integrin Inactivation and Promotes Neutrophil Recruitment to Inflammatory Sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1579-1588. [PMID: 31427445 PMCID: PMC6731454 DOI: 10.4049/jimmunol.1900443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.
Collapse
Affiliation(s)
- Barry McCormick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Helen E Craig
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Julia Y Chu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Marta Canel
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Florian Wollweber
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matilda Toivakka
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Melina Michael
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Laura Norton
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jennifer M Felton
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Johanna Ivaska
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
15
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|
16
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
17
|
Lakoduk AM, Roudot P, Mettlen M, Grossman HM, Schmid SL, Chen PH. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. J Cell Biol 2019; 218:1928-1942. [PMID: 31043431 PMCID: PMC6548126 DOI: 10.1083/jcb.201810183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Feedback loops arising from crosstalk between early endocytic trafficking and receptor signaling can be co-opted or amplified in cancer cells to enhance their metastatic abilities. Lakoduk et al. reveal that mutant p53 upregulates dynamin-1 expression and recruitment of the APPL1 signaling scaffold to a spatially localized subpopulation of endosomes to increase receptor recycling and cell migration. Multiple mechanisms contribute to cancer cell progression and metastatic activity, including changes in endocytic trafficking and signaling of cell surface receptors downstream of gain-of-function (GOF) mutant p53. We report that dynamin-1 (Dyn1) is up-regulated at both the mRNA and protein levels in a manner dependent on expression of GOF mutant p53. Dyn1 is required for the recruitment and accumulation of the signaling scaffold, APPL1, to a spatially localized subpopulation of endosomes at the cell perimeter. We developed new tools to quantify peripherally localized early endosomes and measure the rapid recycling of integrins. We report that these perimeter APPL1 endosomes modulate Akt signaling and activate Dyn1 to create a positive feedback loop required for rapid recycling of EGFR and β1 integrins, increased focal adhesion turnover, and cell migration. Thus, Dyn1- and Akt-dependent perimeter APPL1 endosomes function as a nexus that integrates signaling and receptor trafficking, which can be co-opted and amplified in mutant p53–driven cancer cells to increase migration and invasion.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Heather M Grossman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX.,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas TX
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| | - Ping-Hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas TX
| |
Collapse
|
18
|
Ghosh M, Lo R, Ivic I, Aguilera B, Qendro V, Devarakonda C, Shapiro LH. CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, β1 integrin recycling, and cell migration. Sci Signal 2019; 12:12/579/eaav5938. [PMID: 31040262 DOI: 10.1126/scisignal.aav5938] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| | - Robin Lo
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ivan Ivic
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Aguilera
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Veneta Qendro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Charan Devarakonda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
19
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
20
|
Swain S, Roe MM, Sebrell TA, Sidar B, Dankoff J, VanAusdol R, Smythies LE, Smith PD, Bimczok D. CD103 (αE Integrin) Undergoes Endosomal Trafficking in Human Dendritic Cells, but Does Not Mediate Epithelial Adhesion. Front Immunol 2018; 9:2989. [PMID: 30622531 PMCID: PMC6308147 DOI: 10.3389/fimmu.2018.02989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Dendritic cell (DC) expression of CD103, the α subunit of αEβ7 integrin, is thought to enable DC interactions with E-cadherin-expressing gastrointestinal epithelia for improved mucosal immunosurveillance. In the stomach, efficient DC surveillance of the epithelial barrier is crucial for the induction of immune responses to H. pylori, the causative agent of peptic ulcers and gastric cancer. However, gastric DCs express only low levels of surface CD103, as we previously showed. We here tested the hypothesis that intracellular pools of CD103 in human gastric DCs can be redistributed to the cell surface for engagement of epithelial cell-expressed E-cadherin to promote DC-epithelial cell adhesion. In support of our hypothesis, immunofluorescence analysis of tissue sections showed that CD103+ gastric DCs were preferentially localized within the gastric epithelial layer. Flow cytometry and imaging cytometry revealed that human gastric DCs expressed intracellular CD103, corroborating our previous findings in monocyte-derived DCs (MoDCs). Using confocal microscopy, we show that CD103 was present in endosomal compartments, where CD103 partially co-localized with clathrin, early endosome antigen-1 and Rab11, suggesting that CD103 undergoes endosomal trafficking similar to β1 integrins. Dynamic expression of CD103 on human MoDCs was confirmed by internalization assay. To analyze whether DC-expressed CD103 promotes adhesion to E-cadherin, we performed adhesion and spreading assays on E-cadherin-coated glass slides. In MoDCs generated in the presence of retinoic acid, which express increased CD103, intracellular CD103 significantly redistributed toward the E-cadherin-coated glass surface. However, DCs spreading and adhesion did not differ between E-cadherin-coated slides and slides coated with serum alone. In adhesion assays using E-cadherin-positive HT-29 cells, DC binding was significantly improved by addition of Mn2+ and decreased in the presence of EGTA, consistent with the dependence of integrin-based interactions on divalent cations. However, retinoic acid failed to increase DC adhesion, and a CD103 neutralizing antibody was unable to inhibit DC binding to the E-cadherin positive cells. In contrast, a blocking antibody to DC-expressed E-cadherin significantly reduced DC binding to the epithelium. Overall, these data indicate that CD103 engages in DC-epithelial cell interactions upon contact with epithelial E-cadherin, but is not a major driver of DC adhesion to gastrointestinal epithelia.
Collapse
Affiliation(s)
- Steve Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Mandi M. Roe
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Thomas A. Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Barkan Sidar
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, United States
| | - Jennifer Dankoff
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Rachel VanAusdol
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Lesley E. Smythies
- Division of Gastroenterology and Hepatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip D. Smith
- Division of Gastroenterology and Hepatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
21
|
Luo R, Chen PW, Kuo JC, Jenkins L, Jian X, Waterman CM, Randazzo PA. ARAP2 inhibits Akt independently of its effects on focal adhesions. Biol Cell 2018; 110:257-270. [PMID: 30144359 DOI: 10.1111/boc.201800044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION ARAP2, an Arf GTPase-activating protein (Arf GAP) that binds to adaptor protein with PH domain, PTB domain and leucine zipper motifs 1 (APPL1), regulates focal adhesions (FAs). APPL1 affects FA dynamics by regulating Akt. Here, we tested the hypothesis that ARAP2 affects FAs in part by regulating Akt through APPL1. RESULTS We found that ARAP2 controlled FA dynamics dependent on its enzymatic Arf GAP activity. In some cells, ARAP2 also regulated phosphoAkt (pAkt) levels. However, ARAP2 control of FAs did not require Akt and conversely, the effects on pAkt were independent of FAs. Reducing ARAP2 expression reduced the size and number of FAs in U118, HeLa and MDA-MB-231 cells. Decreasing ARAP2 expression increased pAkt in U118 cells and HeLa cells and overexpressing ARAP2 decreased pAkt in U118 cells; in contrast, ARAP2 had no effect on pAkt in MDA-MB-231 cells. An Akt inhibitor did not block the effect of reduced ARAP2 on FAs in U118. Furthermore, the effect of ARAP2 on Akt did not require Arf GAP activity, which is necessary for effects on FAs and integrin traffic. Altering FAs by other means did not induce the same changes in pAkt as those seen by reducing ARAP2 in U118 cells. In addition, we discovered that ARAP2 and APPL1 had co-ordinated effects on pAkt in U118 cells. Reduced APPL1 expression, as for ARAP2, increased pAkt in U118 and the effect of reduced APPL1 expression was reversed by overexpressing ARAP2. Conversely, the effect of reduced ARAP2 expression was reversed by overexpressing APPL1. ARAP2 is an Arf GAP that has previously been reported to affect FAs by regulating Arf6 and integrin trafficking and to bind to the adaptor proteins APPL1. Here, we report that ARAP2 suppresses pAkt levels in cells co-ordinately with APPL1 and independently of GAP activity and its effect on the dynamic behaviour of FAs. CONCLUSIONS We conclude that ARAP2 affects Akt signalling in some cells by a mechanism independent of FAs or membrane traffic. SIGNIFICANCE Our results highlight an Arf GAP-independent function of ARAP2 in regulating Akt activity and distinguish the effect of ARAP2 on Akt from that on FAs and integrin trafficking, which requires regulation of Arf6.
Collapse
Affiliation(s)
- Ruibai Luo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA.,Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Jean-Cheng Kuo
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lisa Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Diggins NL, Kang H, Weaver A, Webb DJ. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J Cell Sci 2018; 131:jcs.207019. [PMID: 29361527 DOI: 10.1242/jcs.207019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5β1 integrin, leading to higher levels of α5β1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep 2017; 7:11431. [PMID: 28900118 PMCID: PMC5595869 DOI: 10.1038/s41598-017-11240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022] Open
Abstract
The small GTPase Arf6 plays pivotal roles in a wide variety of cellular events such as endocytosis, exocytosis, and actin cytoskeleton reorganization. However, the physiological functions of Arf6 at the whole animal level have not yet been thoroughly understood. Here, we show that Arf6 regulates developmental and tumor lymphangiogenesis in mice. Lymphatic endothelial cell (LEC)-specific Arf6 conditional knockout (LEC-Arf6 cKO) mouse embryos exhibit severe skin edema and impairment in the formation of lymphatic vessel network at the mid-gestation stage. Knockdown of Arf6 in human LECs inhibits in vitro capillary tube formation and directed cell migration induced by vascular endothelial growth factor-C (VEGF-C) by inhibiting VEGF-C-induced internalization of β1 integrin. Finally, we found that LEC-Arf6 cKO mice transplanted with B16 melanoma cells attenuated tumor lymphangiogenesis and progression. Collectively, these results demonstrate that Arf6 in LECs plays a crucial role in physiological and pathological lymphangiogenesis.
Collapse
|
24
|
APPL1 is a multifunctional endosomal signaling adaptor protein. Biochem Soc Trans 2017; 45:771-779. [PMID: 28620038 DOI: 10.1042/bst20160191] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022]
Abstract
Endosomal adaptor proteins are important regulators of signaling pathways underlying many biological processes. These adaptors can integrate signals from multiple pathways via localization to specific endosomal compartments, as well as through multiple protein-protein interactions. One such adaptor protein that has been implicated in regulating signaling pathways is the adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes through its Bin-Amphiphysin-Rvs and PH domains, and it coordinates signaling pathways through its interaction with many signaling receptors and proteins through its PTB domain. This review discusses our current understanding of the role of APPL1 in signaling and trafficking, as well as highlights recent work into the function of APPL1 in cell migration and adhesion.
Collapse
|
25
|
Vitali T, Girald-Berlingeri S, Randazzo PA, Chen PW. Arf GAPs: A family of proteins with disparate functions that converge on a common structure, the integrin adhesion complex. Small GTPases 2017; 10:280-288. [PMID: 28362242 DOI: 10.1080/21541248.2017.1299271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ADP-ribosylation factors (Arfs) are members of the Ras GTPase superfamily. The function of Arfs is dependent on GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. Arf GAPs have been shown to be present in integrin adhesion complexes, which include focal adhesions. Integrin adhesion complexes are composed of integrins, scaffolding proteins and signaling proteins and regulate cell proliferation, survival, differentiation and migration. Understanding the role of Arf GAPs in the regulation of integrin adhesion complexes is relevant to understanding normal physiology and cancer. In this review, we will discuss the contribution of the Arf GAP family members to the regulation of integrin adhesion complexes, examining the diverse mechanisms by which they control integrin adhesion complex formation, maturation and dissolution. GIT1 and ARAP2 serve as GAPs for Arf6, regulating Rac1 and other effectors by mechanisms still being defined. In contrast, GIT2 regulates Rac1 independent of Arf6. AGAP2 binds to and regulates focal adhesion kinase (FAK). ARAP2 and ACAP1, both Arf6 GAPs, regulate membrane trafficking of integrins through different endocytic pathways, exerting opposite effects on focal adhesions. ASAP1 not only regulates actin cytoskeleton remodeling through its interaction with nonmuscle myosin 2A, but is also important in integrin recycling. These examples illustrate the diversity and versatility of Arf GAPs as regulators of integrin adhesion complex structure and function.
Collapse
Affiliation(s)
- Teresa Vitali
- a Laboratory of Cell and Molecular Biology , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Sofia Girald-Berlingeri
- a Laboratory of Cell and Molecular Biology , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Paul A Randazzo
- a Laboratory of Cell and Molecular Biology , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Pei-Wen Chen
- b Department of Biology , Williams College , Williamstown , MA , USA
| |
Collapse
|
26
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int J Mol Sci 2017; 18:ijms18010189. [PMID: 28106780 PMCID: PMC5297821 DOI: 10.3390/ijms18010189] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.
Collapse
|
28
|
Chaudhari A, Håversen L, Mobini R, Andersson L, Ståhlman M, Lu E, Rutberg M, Fogelstrand P, Ekroos K, Mardinoglu A, Levin M, Perkins R, Borén J. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1643-1651. [DOI: 10.1016/j.bbalip.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/02/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
|
29
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
30
|
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Cristina Casalou
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Alexandra Faustino
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal.,b ProRegeM PhD Program, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Duarte C Barral
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| |
Collapse
|
31
|
Role of Host Type IA Phosphoinositide 3-Kinase Pathway Components in Invasin-Mediated Internalization of Yersinia enterocolitica. Infect Immun 2016; 84:1826-1841. [PMID: 27068087 DOI: 10.1128/iai.00142-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens subvert mammalian type IA phosphoinositide 3-kinase (PI3K) in order to induce their internalization into host cells. How PI3K promotes internalization is not well understood. Also unclear is whether type IA PI3K affects different pathogens through similar or distinct mechanisms. Here, we performed an RNA interference (RNAi)-based screen to identify components of the type IA PI3K pathway involved in invasin-mediated entry of Yersinia enterocolitica, an enteropathogen that causes enteritis and lymphadenitis. The 69 genes targeted encode known upstream regulators or downstream effectors of PI3K. A similar RNAi screen was previously performed with the food-borne bacterium Listeria monocytogenes The results of the screen with Y. enterocolitica indicate that at least nine members of the PI3K pathway are needed for invasin-mediated entry. Several of these proteins, including centaurin-α1, Dock180, focal adhesion kinase (FAK), Grp1, LL5α, LL5β, and PLD2 (phospholipase D2), were recruited to sites of entry. In addition, centaurin-α1, FAK, PLD2, and mTOR were required for remodeling of the actin cytoskeleton during entry. Six of the human proteins affecting invasin-dependent internalization also promote InlB-mediated entry of L. monocytogenes Our results identify several host proteins that mediate invasin-induced effects on the actin cytoskeleton and indicate that a subset of PI3K pathway components promote internalization of both Y. enterocolitica and L. monocytogenes.
Collapse
|
32
|
Roy NS, Yohe ME, Randazzo PA, Gruschus JM. Allosteric properties of PH domains in Arf regulatory proteins. CELLULAR LOGISTICS 2016; 6:e1181700. [PMID: 27294009 DOI: 10.1080/21592799.2016.1181700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pleckstrin Homology (PH) domains bind phospholipids and proteins. They are critical regulatory elements of a number enzymes including guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) for Ras-superfamily guanine nucleotide binding proteins such as ADP-ribosylation factors (Arfs). Recent studies have indicated that many PH domains may bind more than one ligand cooperatively. Here we discuss the molecular basis of PH domain-dependent allosteric behavior of 2 ADP-ribosylation factor exchange factors, Grp1 and Brag2, cooperative binding of ligands to the PH domains of Grp1 and the Arf GTPase-activating protein, ASAP1, and the consequences for activity of the associated catalytic domains.
Collapse
Affiliation(s)
- Neeladri Sekhar Roy
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Marielle E Yohe
- Genetics Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - James M Gruschus
- Laboratory of Structural Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
33
|
Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking. Blood 2016; 127:1459-67. [PMID: 26738539 DOI: 10.1182/blood-2015-05-648550] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/01/2016] [Indexed: 12/18/2022] Open
Abstract
Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function.
Collapse
|
34
|
Charles R, Namkung Y, Cotton M, Laporte SA, Claing A. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. J Biol Chem 2015; 291:3967-81. [PMID: 26703465 DOI: 10.1074/jbc.m115.684357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.
Collapse
Affiliation(s)
- Ricardo Charles
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Yoon Namkung
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Mathieu Cotton
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Stéphane A Laporte
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Audrey Claing
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| |
Collapse
|
35
|
Sumiyoshi M, Masuda N, Tanuma N, Ogoh H, Imai E, Otsuka M, Hayakawa N, Ohno K, Matsui Y, Hara K, Gotoh R, Suzuki M, Rai S, Tanaka H, Matsumura I, Shima H, Watanabe T. Mice doubly-deficient in the Arf GAPs SMAP1 and SMAP2 exhibit embryonic lethality. FEBS Lett 2015; 589:2754-62. [PMID: 26296315 DOI: 10.1016/j.febslet.2015.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
In mammals, the small Arf GTPase-activating protein (SMAP) subfamily of Arf GTPase-activating proteins consists of closely related members, SMAP1 and SMAP2. These factors reportedly exert distinct functions in membrane trafficking, as manifested by different phenotypes seen in single knockout mice. The present study investigated whether SMAP proteins interact genetically. We report for the first time that simultaneous loss of SMAP1 and SMAP2 promotes apoptosis in the distal region of E7.5 mouse embryos, likely resulting in embryonic lethality. Thus, at least one SMAP gene, either SMAP1 or SMAP2, is required for proper embryogenesis.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Narumi Masuda
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Eri Imai
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mizuki Otsuka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Natsuki Hayakawa
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Kinuyo Ohno
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Kanae Hara
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Risa Gotoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.
| |
Collapse
|
36
|
Chen PW, Jian X, Luo R, Randazzo PA. Simple in vitro assay of Arf GAPs and preparation of Arf proteins as substrates. Methods Cell Biol 2015; 130:69-80. [PMID: 26360029 DOI: 10.1016/bs.mcb.2015.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Defining the interaction of Arf GAPs with specific Arfs is important for understanding their functions in the endocytic system. Cell-based approaches have been valuable for identifying Arfs and Arf GAPs active in the endocytic compartment; however, the cell-based assays have some limitations in establishing relationships among the Arfs and ArfGAPs. Here we describe a simple in vitro assay that will provide a means for comparing Arfs as substrates and serve to complement cell-based studies.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|