1
|
Shahidullah M, Mandal A, Delamere NA. TRPV1-dependent NKCC1 activation in mouse lens involves integrin and the tubulin cytoskeleton. J Cell Physiol 2024; 239:e31369. [PMID: 39014912 DOI: 10.1002/jcp.31369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Previously we showed hyperosmotic solution caused TRPV1-dependent NKCC1 activation in the lens by a mechanism that involved ERK1/2 signaling. In various tissues, integrins and the cytoskeletal network play a role in responses to osmotic stress. Here, we examined the association between integrins and TRPV1-dependent activation of NKCC1 in mouse lens epithelium. Wild-type (WT) lenses exposed to the integrin agonist leukadherin-1 (LA-1) for 10 min displayed a ~33% increase in the bumetanide-sensitive rate of Rb uptake indicating NKCC activation. Paclitaxel, a microtubule stabilizing agent, abolished the Rb uptake response. In primary cultured lens epithelium LA-1 caused a robust ERK1/2 activation response that was almost fully suppressed by paclitaxel. The TRPV1 agonist capsaicin caused a similar ERK1/2 activation response. Consistent with an association between integrins and TRPV1, the TRPV1 antagonist A889425 prevented the Rb uptake response to LA-1 as did the ERK inhibitor U0126. LA-1 did not increase Rb uptake by lenses from TRPV1 knockout mice. In cells exposed to a hyperosmotic stimulus, both the ERK1/2 activation and Rb uptake responses were prevented by paclitaxel. Taken together, the findings suggest TRPV1 activation is associated with integrins and the tubulin cytoskeleton. This aligned with the observation that LA-1 elicited a robust cytoplasmic calcium rise in cells from WT lenses but failed to increase calcium in cells from TRPV1 knockout lenses. The results are consistent with the notion that integrin activation by LA-1, or a hyperosmotic stimulus, causes TRPV1 channel opening and the consequent downstream activation of the ERK1/2 and NKCC1 responses.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona, USA
| | - Amritlal Mandal
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Shatunova S, Aktar R, Peiris M, Lee JYP, Vetter I, Starobova H. The role of the gut microbiome in neuroinflammation and chemotherapy-induced peripheral neuropathy. Eur J Pharmacol 2024; 979:176818. [PMID: 39029779 DOI: 10.1016/j.ejphar.2024.176818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Svetlana Shatunova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jia Yu Peppermint Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; The School of Pharmacy, The University of Queensland, Woollsiana, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
3
|
Xiao XY, Chen YM, Zhu J, Yin MY, Huang CN, Qin HM, Liu SX, Xiao Y, Fang HW, Zhuang T, Chen Y. The synergistic anti-nociceptive effects of nefopam and gabapentinoids in inflammatory, osteoarthritis, and neuropathic pain mouse models. Eur J Pharmacol 2024; 977:176738. [PMID: 38876275 DOI: 10.1016/j.ejphar.2024.176738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.
Collapse
Affiliation(s)
- Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ming-Yue Yin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shu-Xian Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Heng-Wei Fang
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Huang 黄玉莹 Y, Shao 邵建英 JY, Chen 陈红 H, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons. J Neurosci 2024; 44:e0392242024. [PMID: 38886057 PMCID: PMC11255431 DOI: 10.1523/jneurosci.0392-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao 邵建英
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jing-Jing Zhou 周京京
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
5
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Gao W, Lu J, Yang Z, Li E, Cao Y, Xie L. Mitotic Functions and Characters of KIF11 in Cancers. Biomolecules 2024; 14:386. [PMID: 38672404 PMCID: PMC11047945 DOI: 10.3390/biom14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.
Collapse
Affiliation(s)
| | | | | | | | - Yufei Cao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| | - Lei Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| |
Collapse
|
8
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
9
|
Huang 黄玉莹 Y, Chen 陈红 H, Shao 邵建英 JY, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Constitutive KCC2 Cell- and Synapse-Specifically Regulates NMDA Receptor Activity in the Spinal Cord. J Neurosci 2024; 44:e1943232023. [PMID: 38124193 PMCID: PMC10860486 DOI: 10.1523/jneurosci.1943-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
K+-Cl- cotransporter-2 (KCC2) critically controls neuronal chloride homeostasis and maintains normal synaptic inhibition by GABA and glycine. Nerve injury diminishes synaptic inhibition in the spinal cord via KCC2 impairment. However, how KCC2 regulates nociceptive input to spinal excitatory and inhibitory neurons remains elusive. Here, we show that basal GABA reversal potentials were significantly more depolarized in vesicular GABA transporter (VGAT)-expressing inhibitory neurons than those in vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons in spinal cords of male and female mice. Strikingly, inhibiting KCC2 with VU0463271 increased currents elicited by puff NMDA and the NMDAR-mediated frequency of mEPSCs in VGluT2, but not in VGAT, dorsal horn neurons. Notably, VU0463271 had no effect on EPSCs monosynaptically evoked from the dorsal root in VGluT2 neurons. Furthermore, VU0463271 augmented α2δ-1-NMDAR interactions and their protein levels in spinal cord synaptosomes. In Cacna2d1 KO mice, VU0463271 had no effect on puff NMDA currents or the mEPSC frequency in dorsal horn neurons. Disrupting α2δ-1-NMDAR interactions with α2δ-1 C-terminus mimicking peptide diminished VU0463271-induced potentiation in the mEPSC frequency and puff NMDA currents in VGluT2 neurons. Additionally, intrathecal injection of VU0463271 reduced mechanical and thermal thresholds in wild-type mice, but not in Cacna2d1 KO mice. VU0463271-induced pain hypersensitivity in mice was abrogated by co-treatment with the NMDAR antagonist, pregabalin (an α2δ-1 inhibitory ligand), or α2δ-1 C-terminus mimicking peptide. Our findings suggest that KCC2 controls presynaptic and postsynaptic NMDAR activity specifically in excitatory dorsal horn neurons. KCC2 impairment preferentially potentiates nociceptive transmission between spinal excitatory interneurons via α2δ-1-bound NMDARs.Significance statementImpaired function of potassium-chloride cotransporter-2 (KCC2), a key regulator of neuronal inhibition, in the spinal cord plays a major role in neuropathic pain. This study unveils that KCC2 controls spinal nociceptive synaptic strength via NMDA receptors in a cell type- and synapse type-specific manner. KCC2 inhibition preferentially augments presynaptic and postsynaptic NMDA receptor activity in spinal excitatory interneurons via α2δ-1 (previously known as a calcium channel subunit). Importantly, spinal KCC2 impairment triggers pain hypersensitivity through α2δ-1-coupled NMDA receptors. These findings pinpoint the cell and molecular substrates for the reciprocal relationship between spinal synaptic inhibition and excitation in chronic neuropathic pain. Targeting both KCC2 and α2δ-1–NMDA receptor complexes could be an effective strategy in managing neuropathic pain conditions.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| | - Hong Chen 陈红
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| | - Jian-Ying Shao 邵建英
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| | - Jing-Jing Zhou 周京京
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| | - Shao-Rui Chen 陈少瑞
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| | - Hui-Lin Pan 潘惠麟
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas
| |
Collapse
|
10
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Jin D, Chen H, Zhou MH, Chen SR, Pan HL. mGluR5 from Primary Sensory Neurons Promotes Opioid-Induced Hyperalgesia and Tolerance by Interacting with and Potentiating Synaptic NMDA Receptors. J Neurosci 2023; 43:5593-5607. [PMID: 37451981 PMCID: PMC10401648 DOI: 10.1523/jneurosci.0601-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with μ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
13
|
Akbar S, Subhan F, Akbar A, Habib F, Shahbaz N, Ahmad A, Wadood A, Salman S. Targeting Anti-Inflammatory Pathways to Treat Diabetes-Induced Neuropathy by 6-Hydroxyflavanone. Nutrients 2023; 15:nu15112552. [PMID: 37299516 DOI: 10.3390/nu15112552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
It is evident that inflammation and metabolic syndrome instigated by diabetes mellitus can precipitate diabetes-induced neuropathy (DIN) and pain. In order to find an effective therapeutic method for diabetes-related problems, a multi-target-directed ligand model was used. 6-Hydroxyflavanone (6-HF) carrying anti-inflammatory and anti-neuropathic pain potential due to its quadruplicate mechanisms, targeting cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and opioid and GABA-A receptors was investigated. The anti-inflammatory potential of the test drug was confirmed utilizing in silico, in vitro, and in vivo tests. A molecular simulation approach was utilized to observe the interaction of 6-HF with the inflammatory enzyme COX-2 as well as opioid and GABA-A receptors. The same was confirmed via in vitro COX-2 and 5-LOX inhibitory assays. In vivo tests were performed to analyze the thermal anti-nociception in the hot-plate analgesiometer and anti-inflammatory action in the carrageenan-induced paw edema model in rodents. The potential anti-nociceptive effect of 6-HF was evaluated in the DIN model in rats. The Naloxone and Pentylenetetrazole (PTZ) antagonists were used to confirm the underlying mechanism of 6-HF. The molecular modeling studies revealed a favorable interaction of 6-HF with the identified protein molecules. In vitro inhibitory studies revealed that 6-HF inhibited the COX-2 and 5-LOX enzymes significantly. The 6-HF at dosages of 15, 30, and 60 mg/kg substantially reduced heat nociception in a hot plate analgesiometer as well as carrageenan-induced paw edema in rodent models. The authors discovered that 6-HF had anti-nociception properties in a streptozotocin-induced diabetic neuropathy model. According to the findings of this study, 6-HF was demonstrated to diminish inflammation caused by diabetes as well as its anti-nociception effect in DIN.
Collapse
Affiliation(s)
- Shehla Akbar
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Aroosha Akbar
- North West Institute of Health Sciences, Peshawar 25000, Pakistan
| | - Faiza Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Naila Shahbaz
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Shankar Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| |
Collapse
|
14
|
Huang Y, Chen H, Jin D, Chen SR, Pan HL. NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain. J Neurosci 2023; 43:3933-3948. [PMID: 37185237 PMCID: PMC10217996 DOI: 10.1523/jneurosci.0183-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
15
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
16
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
17
|
Zhou JJ, Shao JY, Chen SR, Pan HL. Calcineurin Controls Hypothalamic NMDA Receptor Activity and Sympathetic Outflow. Circ Res 2022; 131:345-360. [PMID: 35862168 PMCID: PMC9357136 DOI: 10.1161/circresaha.122.320976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor–induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone.
Objective:
We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN.
Methods and Results:
Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment–induced hypertension in conscious rats.
Conclusions:
Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor–induced hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Nasirinezhad F, Zarepour L, Hadjighassem M, Gharaylou Z, Majedi H, Ramezani F. Analgesic Effect of Bumetanide on Neuropathic Pain in Patients With Spinal Cord Injury. Basic Clin Neurosci 2021; 12:409-420. [PMID: 34917299 PMCID: PMC8666921 DOI: 10.32598/bcn.12.3.2049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The current study evaluated the analgesic effects of bumetanide as an adjunctive in the management of neuropathic pain following Spinal Cord Injury (SCI). The peripheral expression of Na-K-Cl Cotransporter-1 (NKCC1) and K-Cl Cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) was assessed as a possible biomarker indicating central mechanisms underlying the observed response. Methods Through an open-label, single-arm, pilot trial of bumetanide (2 mg/d), an add-on treatment was conducted on 14 SCI patients for 19 weeks. This study consisted of 3 phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, 9 patients completed the study. The primary outcome variables were the endpoint pain score using the Numeric Rating Scale (NRS), and also the short-form of the McGill pain questionnaire. Secondary endpoints included the short-form of the health survey that assesses the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. Results Bumetanide treatment significantly decreased average pain intensity according to the NRS and the short-form of the McGill pain questionnaire scores. Baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P<0.05). In the current study, pain improvement was accompanied by the greater mean change from the baseline (improvement) for the overall quality of life. Conclusion These data highlighted the analgesic effect of bumetanide on neuropathic pain and indicated the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.
Collapse
Affiliation(s)
- Farinaz Nasirinezhad
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Zarepour
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossin Majedi
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Wang C, Hao H, He K, An Y, Pu Z, Gamper N, Zhang H, Du X. Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia. Front Pharmacol 2021; 12:702218. [PMID: 34385921 PMCID: PMC8354334 DOI: 10.3389/fphar.2021.702218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic “gate” within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.
Collapse
Affiliation(s)
- Caixue Wang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Han Hao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kaitong He
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yating An
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Pu
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
22
|
Gazzo G, Melchior M, Caussaint A, Gieré C, Lelièvre V, Poisbeau P. Overexpression of chloride importer NKCC1 contributes to the sensory-affective and sociability phenotype of rats following neonatal maternal separation. Brain Behav Immun 2021; 92:193-202. [PMID: 33316378 DOI: 10.1016/j.bbi.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Early life stress is known to affect the development of the nervous system and its function at a later age. It increases the risk to develop psychiatric disorders as well as chronic pain and its associated affective comorbidities across the lifespan. GABAergic inhibition is important for the regulation of central function and related behaviors, including nociception, anxiety or social interactions, and requires low intracellular chloride levels. Of particular interest, the oxytocinergic (OTergic) system exerts potent anxiolytic, analgesic and pro-social properties and is known to be involved in the regulation of chloride homeostasis and to be impaired following early life stress. METHODS We used behavioral measures to evaluate anxiety, social interactions and pain responses in a rat model of neonatal maternal separation (NMS). Using quantitative PCR, we investigated whether NMS was associated with alterations in the expression of chloride transporters in the cerebrum and spinal cord. Finally, we evaluated the contribution of OTergic signaling and neuro-inflammatory processes in the observed phenotype. RESULTS NMS animals displayed a long-lasting upregulation of chloride importer Na-K-Cl cotransporter type 1 (NKCC1) expression in the cerebrum and spinal cord. Neonatal administration of the NKCC1 inhibitor bumetanide or oxytocin successfully normalized the anxiety-like symptoms and the lack of social preference observed in NMS animals. Phenotypic alterations were associated with a pro-inflammatory state which could contribute to NKCC1 upregulation. CONCLUSIONS This work suggests that an impaired chloride homeostasis, linked to oxytocin signaling dysfunction and to neuro-inflammatory processes, could contribute to the sensori-affective phenotype following NMS.
Collapse
Affiliation(s)
- Géraldine Gazzo
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Andréa Caussaint
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Clémence Gieré
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Vincent Lelièvre
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France.
| |
Collapse
|
23
|
Zarepour L, Gharaylou Z, Hadjighassem M, Shafaghi L, Majedi H, Behzad E, Hosseindoost S, Ramezani F, Nasirinezhad F. Preliminary study of analgesic effect of bumetanide on neuropathic pain in patients with spinal cord injury. J Clin Neurosci 2020; 81:477-484. [PMID: 33222966 DOI: 10.1016/j.jocn.2020.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND/OBJECTIVE The current study evaluated the analgesic effects of bumetanide as an adjunctive treatment in managing neuropathic pain following spinal cord injury. The peripheral expression level of Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) assessed as a possible biomarker indicating central underlying mechanisms. METHODS This open-label, single-arm, pilot trial of bumetanide (2 mg/day) is an add-on treatment conducted in 14 SCI patients for 19 weeks. The whole duration consisted of three phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, nine patients completed the study. The primary outcome variables were the endpoint pain score measured by the numeric rating scale (NRS), and the short-form McGill Pain Questionnaire. Secondary endpoints included the Short-Form Health Survey that measures the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. RESULTS Bumetanide treatment significantly reduced average pain intensity according to the NRS and the short form of the McGill Pain Questionnaire scores. The baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P < 0.05). Through the current study, pain improvement accompanied by the more significant mean change from the baseline for the overall quality of life. CONCLUSION These data might be a piece of preliminary evidence for the analgesic effect of bumetanide on neuropathic pain and could support the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.
Collapse
Affiliation(s)
- Leila Zarepour
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saereh Hosseindoost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain 2020; 15:1744806919847366. [PMID: 30977423 PMCID: PMC6509976 DOI: 10.1177/1744806919847366] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
Collapse
Affiliation(s)
- Caijuan Li
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanying Lei
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Tian
- 3 Department of Anesthesiology, Haikou Affiliated Hospital of Xiangya Medical School, Central South University, Haikou People's Hospital, Haikou, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Senzhu Bao
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain 2020; 160:1459-1468. [PMID: 30720585 DOI: 10.1097/j.pain.0000000000001512] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms responsible for the persistence of chemotherapy-induced peripheral neuropathy (CIPN) in a significant proportion of cancer survivors are still unknown. Our previous findings show that CD8 T cells are necessary for the resolution of paclitaxel-induced mechanical allodynia in male mice. In this study, we demonstrate that CD8 T cells are not only essential for resolving cisplatin-induced mechanical allodynia, but also to normalize spontaneous pain, numbness, and the reduction in intraepidermal nerve fiber density in male and female mice. Resolution of CIPN was not observed in Rag2 mice that lack T and B cells. Reconstitution of Rag2 mice with CD8 T cells before cisplatin treatment normalized the resolution of CIPN. In vivo education of CD8 T cells by cisplatin was necessary to induce resolution of CIPN in Rag2 mice because adoptive transfer of CD8 T cells from naive wild-type mice to Rag2 mice after completion of chemotherapy did not promote resolution of established CIPN. The CD8 T-cell-dependent resolution of CIPN does not require epitope recognition by the T-cell receptor. Moreover, adoptive transfer of cisplatin-educated CD8 T cells to Rag2 mice prevented CIPN development induced by either cisplatin or paclitaxel, indicating that the activity of the educated CD8 T is not cisplatin specific. In conclusion, resolution of CIPN requires in vivo education of CD8 T cells by exposure to cisplatin. Future studies should examine whether ex vivo CD8 T cell education could be applied as a therapeutic strategy for treating or preventing CIPN in patients.
Collapse
|
26
|
Calcineurin Inhibition Causes α2δ-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. J Neurosci 2020; 40:3707-3719. [PMID: 32269108 DOI: 10.1523/jneurosci.0282-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2δ-1-GluN1 complexes in the spinal cord and the level of α2δ-1-bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide completely reversed the effects of FK506. In α2δ-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2δ-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2δ-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2δ-1-bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2δ-1 and NMDARs and their synaptic trafficking in the spinal cord. α2δ-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2δ-1 or disrupting α2δ-1-NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2δ-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.
Collapse
|
27
|
Neonatal vincristine administration modulates intrinsic neuronal excitability in the rat dorsal root ganglion and spinal dorsal horn during adolescence. Pain 2019; 160:645-657. [PMID: 30681983 DOI: 10.1097/j.pain.0000000000001444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our recent work has shown that the early-life administration of vincristine (VNC), commonly used to treat pediatric cancers, evokes mechanical pain hypersensitivity in rats that emerges during adolescence and persists into adulthood. However, the underlying mechanisms remain unclear, as nothing is known about how neonatal VNC treatment influences peripheral and central nociceptive processing at the cellular level. Here, we used in vitro intracellular microelectrode and whole-cell patch-clamp recordings to evaluate the consequences of early-life VNC administration on the intrinsic membrane properties of adolescent dorsal root ganglion and spinal superficial dorsal horn neurons. The results demonstrate that VNC treatment increased the prevalence and rate of repetitive firing in both large- and medium-diameter sensory neurons, while reducing repetitive firing in small-diameter neurons, in comparison with vehicle-treated littermate controls. By contrast, passive membrane properties and peripheral conduction velocities were similar between experimental groups across all classes of primary afferents. Within the adolescent superficial dorsal horn, neonatal VNC exposure significantly enhanced the intrinsic membrane excitability of lamina I spinoparabrachial neurons, as evidenced by a decrease in rheobase and elevation of repetitive firing frequency compared with controls. Meanwhile, putative interneurons within lamina I exhibited a reduction in repetitive action potential discharge after early-life chemotherapy. Collectively, these findings suggest that neonatal VNC treatment evokes cell type-specific changes in intrinsic excitability at multiple levels of the ascending pain pathway. Overall, this work lays an essential foundation for the future exploration of the ionic mechanisms that drive chemotherapy-induced chronic pain in children and adolescents.
Collapse
|
28
|
Deng M, Chen SR, Pan HL. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci 2019; 76:1889-1899. [PMID: 30788514 PMCID: PMC6482077 DOI: 10.1007/s00018-019-03047-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.
Collapse
Affiliation(s)
- Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Ganugula R, Deng M, Arora M, Pan HL, Kumar MNVR. Polyester Nanoparticle Encapsulation Mitigates Paclitaxel-Induced Peripheral Neuropathy. ACS Chem Neurosci 2019; 10:1801-1812. [PMID: 30609902 DOI: 10.1021/acschemneuro.8b00703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy utilizing cytotoxic drugs, such as paclitaxel (PTX), is still a commonly used therapeutic approach to treat both localized and metastasized cancers. Unlike traditional regimens in which PTX is administered at the maximum tolerated dose, alternative regimens like metronomic dosing are beneficial by administering PTX more frequently and in much lower doses exploiting antiangiogenic and immunomodulatory effects. However, PTX-induced peripheral neuropathy and lack of patient compliant dosage forms of PTX are major roadblocks for the successful implementation of metronomic regimens. Because of the success of polyester nanoparticle drug delivery, we explored the potential of nanoparticle-encapsulated paclitaxel (nPTX) in alleviating peripheral neuropathy using a rat model. Rats were injected intraperitoneally with 2 mg/kg body weight of PTX or nPTX on four alternate days, and neuropathic pain and neuronal damage were characterized using behavioral assessments, histology, and immunohistochemistry. The reduction in tactile and nociceptive pressure thresholds was significantly less in nPTX-treated rats than in PTX-treated rats over a 16-day study period. Histological analysis showed that the degree of dorsal root ganglion (DRG) degeneration and reduction in motor neurons in the spinal cord was significantly lower in the nPTX group than the PTX group. Further, immunofluorescence data reveals that nPTX-treated rats had an increased density of a neuronal marker, β-tubulin-III, reduced TUNEL positive cells, and increased high molecular weight neurofilament in the spinal cord, DRG, and sciatic nerves compared with PTX-treated rats. Therefore, this work has important implications in improving risk-benefit profile of PTX, paving the way for metronomic regimens.
Collapse
Affiliation(s)
- R. Ganugula
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| | - M. Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M. Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| | - H.-L. Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, Reynolds Medical Building, TAMU Mail Stop 1114, College Station, Texas 77843, United States
| |
Collapse
|
30
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. J Neurosci 2018; 38:6090-6101. [PMID: 29875269 DOI: 10.1523/jneurosci.2616-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Nerve injury-induced hyperactivity of primary sensory neurons in the dorsal root ganglion (DRG) contributes to chronic pain development, but the underlying epigenetic mechanisms remain poorly understood. Here we determined genome-wide changes in DNA methylation in the nervous system in neuropathic pain. Spinal nerve ligation (SNL), but not paclitaxel treatment, in male Sprague Dawley rats induced a consistent low-level hypomethylation in the CpG sites in the DRG during the acute and chronic phases of neuropathic pain. DNA methylation remodeling in the DRG occurred early after SNL and persisted for at least 3 weeks. SNL caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands, in introns, intergenic regions, and repetitive sequences. In contrast, SNL caused more gains of methylation in the spinal cord and prefrontal cortex. The DNA methylation changes in the injured DRGs recapitulated developmental reprogramming at the neonatal stage. Methylation reprogramming was correlated with increased gene expression variability. A diet deficient in methyl donors induced hypomethylation and pain hypersensitivity. Intrathecal administration of the DNA methyltransferase inhibitor RG108 caused long-lasting pain hypersensitivity. DNA methylation reprogramming in the DRG thus contributes to nerve injury-induced chronic pain. Restoring DNA methylation may represent a new therapeutic approach to treat neuropathic pain.SIGNIFICANCE STATEMENT Epigenetic mechanisms are critically involved in the transition from acute to chronic pain after nerve injury. However, genome-wide changes in DNA methylation in the nervous system and their roles in neuropathic pain development remain unclear. Here we used digital restriction enzyme analysis of methylation to quantitatively determine genome-wide DNA methylation changes caused by nerve injury. We showed that nerve injury caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands in the dorsal root ganglion. Reducing DNA methylation induced pain hypersensitivity, whereas increasing DNA methylation attenuated neuropathic pain. These findings extend our understanding of the epigenetic mechanism of chronic neuropathic pain and suggest new strategies to treat nerve injury-induced chronic pain.
Collapse
|
32
|
Schulte JT, Wierenga CJ, Bruining H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci Biobehav Rev 2018; 90:260-271. [PMID: 29729285 DOI: 10.1016/j.neubiorev.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
Neuronal chloride regulation is a determinant factor for the dynamic tuning of GABAergic inhibition during and beyond brain development. This regulation is mainly dependent on the two co-transporters K+/Cl- co-transporter KCC2 and Na+/K+/Cl- co-transporter NKCC1, whose activity can decrease or increase neuronal chloride concentrations respectively. Altered expression and/or activity of either of these co-transporters has been associated with a wide variety of brain disorders including developmental disorders, epilepsy, schizophrenia and stroke. Here, we review current knowledge on chloride transporter expression and activity regulation and highlight the intriguing potential for existing and future interventions to support chloride homeostasis across a wide range of mental disorders and neurological conditions.
Collapse
Affiliation(s)
- Joran T Schulte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands
| | - Corette J Wierenga
- Division of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands.
| |
Collapse
|
33
|
Xie JD, Chen SR, Pan HL. Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain. J Biol Chem 2017; 292:20644-20654. [PMID: 29074619 DOI: 10.1074/jbc.m117.818476] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chemotherapeutic drugs such as paclitaxel cause painful peripheral neuropathy in many cancer patients and survivors. Although NMDA receptors (NMDARs) at primary afferent terminals are known to be critically involved in chemotherapy-induced chronic pain, the upstream signaling mechanism that leads to presynaptic NMDAR activation is unclear. Group I metabotropic glutamate receptors (mGluRs) play a role in synaptic plasticity and NMDAR regulation. Here we report that the Group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of monosynaptic EPSCs evoked from the dorsal root. DHPG also reduced the paired-pulse ratio of evoked EPSCs in spinal dorsal horn neurons. These effects were blocked by the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), but not by an mGluR1 antagonist. MPEP normalized the frequency of miniature EPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats but had no effect in vehicle-treated rats. Furthermore, mGluR5 protein levels in the dorsal root ganglion and spinal cord synaptosomes were significantly higher in paclitaxel- than in vehicle-treated rats. Inhibiting protein kinase C (PKC) or blocking NMDARs abolished DHPG-induced increases in the miniature EPSC frequency of spinal dorsal horn neurons in vehicle- and paclitaxel-treated rats. Moreover, intrathecal administration of MPEP reversed pain hypersensitivity caused by paclitaxel treatment. Our findings suggest that paclitaxel-induced painful neuropathy is associated with increased presynaptic mGluR5 activity at the spinal cord level, which serves as upstream signaling for PKC-mediated tonic activation of NMDARs. mGluR5 is therefore a promising target for reducing chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing-Dun Xie
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and.,the Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shao-Rui Chen
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Hui-Lin Pan
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|
34
|
Liu Z, Liang Y, Wang H, Lu Z, Chen J, Huang Q, Sheng L, Ma Y, Du H, Gong Q. LncRNA expression in the spinal cord modulated by minocycline in a mouse model of spared nerve injury. J Pain Res 2017; 10:2503-2514. [PMID: 29123421 PMCID: PMC5661508 DOI: 10.2147/jpr.s147055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain is a common and refractory chronic pain that affects millions of people worldwide. Its underlying mechanisms are still unclear, but they may involve long noncoding RNAs (lncRNAs), which play crucial roles in a variety of biological functions, including nociception. We used microarrays to investigate the possible interactions between lncRNAs and neuropathic pain and identified 22,213 lncRNAs and 19,528 mRNAs in the spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. The abundance levels of 183 lncRNAs and 102 mRNAs were significantly modulated by both SNI and administration of minocycline. A quantitative real-time polymerase chain reaction analysis validated expression changes in three lncRNAs (NR_015491, ENSMUST00000174263, and ENSMUST00000146263). Class distribution analysis of differentially expressed lncRNAs revealed intergenic lncRNAs as the largest category. Functional analysis indicated that SNI-induced gene regulations might be involved in the activities of cytokines (IL17A and IL17F) and chemokines (CCL2, CCL5, and CCL7), whereas minocycline might exert a pain-alleviating effect on mice through actin binding, thereby regulating nociception by controlling the cytoskeleton. Thus, lncRNAs might be responsible for SNI-induced neuropathic pain and the attenuation caused by minocycline. Our study could implicate lncRNAs as potential targets for future treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Liang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghua Wang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhe Lu
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Chen
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaodong Huang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Sheng
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yinghong Ma
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiying Du
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingjuan Gong
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Andoh T, Uta D, Kato M, Toume K, Komatsu K, Kuraishi Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. Biol Pharm Bull 2017; 40:473-478. [PMID: 28381802 DOI: 10.1248/bpb.b16-00899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent that causes peripheral neuropathy as its major dose-limiting side effect. However, the peripheral neuropathy is difficult to manage. A study we recently conducted showed that repetitive administration of aucubin as a prophylactic inhibits paclitaxel-induced mechanical allodynia. However, the mechanisms underlying the anti-allodynic activity of aucubin, which is a major component of Plantaginis Semen, was unclear. In addition to mechanical allodynia, aucubin inhibited spontaneous and mechanical stimuli-induced firing in spinal dorsal horn neurons; however, catalpol, a metabolite of aucubin, did not show these effects. Furthermore, paclitaxel induced the expression of CCAAT/enhancer-binding protein homologous protein, a marker of endoplasmic reticulum (ER) stress, in the sciatic nerve and a Schwann cell line (LY-PPB6 cells); however, this effect was inhibited by aucubin. These results suggest that aucubin inhibits paclitaxel-induced mechanical allodynia through the inhibition of ER stress in peripheral Schwann cells.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | | | |
Collapse
|
36
|
Yousuf MS, Zubkow K, Tenorio G, Kerr B. The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE). Neuroscience 2017; 344:178-186. [PMID: 28057537 DOI: 10.1016/j.neuroscience.2016.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Patients with multiple sclerosis (MS) often complain of neuropathic pain. According to the Gate Control Theory of Pain, spinal networks of GABAergic inhibitory interneurons are important in modulating nociceptive inputs from the periphery. Na+-K+-2Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) generally dictate the tone of GABA/glycine inhibition by regulating intracellular chloride concentrations. In this study, we investigated the role of NKCC1 and KCC2 in neuropathic pain observed in the animal model, experimental autoimmune encephalomyelitis (EAE), a commonly used model to study the pathophysiology of MS. Quantitative real-time polymerase chain reactions (qRT-PCR) analysis revealed no change in NKCC1 mRNA transcripts in dorsal root ganglia throughout EAE disease course. However, NKCC1 and KCC2 mRNA levels in the dorsal spinal cord were significantly reduced at disease onset and peak only to recover by the chronic time point. Similarly, Western blot data revealed a significant downregulation of NKCC1 and KCC2 in the dorsal spinal cord at disease onset but an upregulation of NKCC1 protein in the dorsal root ganglia at this time point. Treatment with bumetanide, an NKCC inhibitor, had no effect on mechanical hypersensitivity seen in mice with EAE even though it reversed the changes in the levels of NKCC1 and KCC2. We noted that bumetanide treatment, while effective at reversing the changes in monomeric KCC2 levels was ineffective at reversing the changes in oligomeric KCC2 which remained repressed. These results indicate that mechanical hypersensitivity in EAE is not mediated by altered levels of NKCC1.
Collapse
MESH Headings
- Animals
- Bumetanide/pharmacology
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Gene Expression/drug effects
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Neuralgia/pathology
- Peptide Fragments
- RNA, Messenger/metabolism
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 2/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Symporters/metabolism
- K Cl- Cotransporters
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kasia Zubkow
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Bradley Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
37
|
Gao Y, Zhou JJ, Zhu Y, Kosten T, Li DP. Chronic Unpredictable Mild Stress Induces Loss of GABA Inhibition in Corticotrophin-Releasing Hormone-Expressing Neurons through NKCC1 Upregulation. Neuroendocrinology 2017; 104:194-208. [PMID: 27077366 PMCID: PMC5065755 DOI: 10.1159/000446114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/12/2016] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Prolonged and repeated stresses cause hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) are an essential component of the HPA axis. MATERIALS AND METHODS Chronic unpredictable mild stress (CUMS) was induced in Sprague-Dawley rats. GABA reversal potentials (EGABA) were determined by using gramicidin-perforated recordings in identified PVN-CRH neurons through expressing enhanced green fluorescent protein driven by the CRH promoter. Plasma corticosterone (CORT) levels were measured in rats implanted with a cannula targeting the lateral ventricles and PVN. RESULTS Blocking the GABAA receptor in the PVN with gabazine significantly increased plasma CORT levels in unstressed rats but did not change CORT levels in CUMS rats. CUMS caused a depolarizing shift in EGABA in PVN-CRH neurons compared with EGABA in PVN-CRH neurons in unstressed rats. Furthermore, CUMS induced a long-lasting increase in expression levels of the cation chloride cotransporter Na+-K+-Cl--Cl- (NKCC1) in the PVN but a transient decrease in expression levels of K+-Cl--Cl- in the PVN, which returned to the basal level 5 days after CUMS treatment. The NKCC1 inhibitor bumetanide decreased the basal firing activity of PVN-CRH neurons and normalized EGABA and the gabazine-induced excitatory effect on PVN-CRH neurons in CUMS rats. In addition, central administration of bumetanide decreased basal circulating CORT levels in CUMS rats. CONCLUSIONS These data suggest that chronic stress impairs GABAergic inhibition, resulting in HPA axis hyperactivity through upregulation of NKCC1.
Collapse
Affiliation(s)
- Yonggang Gao
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center
| | - Jing-Jing Zhou
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center
| | - Yun Zhu
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center
| | | | - De-Pei Li
- Department of Critical Care, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
38
|
Xie JD, Chen SR, Chen H, Zeng WA, Pan HL. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. J Biol Chem 2016; 291:19364-73. [PMID: 27458019 DOI: 10.1074/jbc.m116.732347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Painful peripheral neuropathy is a severe adverse effect of chemotherapeutic drugs such as paclitaxel (Taxol). The glutamate N-methyl-d-aspartate receptors (NMDARs) are critically involved in the synaptic plasticity associated with neuropathic pain. However, paclitaxel treatment does not alter the postsynaptic NMDAR activity of spinal dorsal horn neurons. In this study, we determined whether paclitaxel affects presynaptic NMDAR activity by recording excitatory postsynaptic currents (EPSCs) of dorsal horn neurons in spinal cord slices. In paclitaxel-treated rats, the baseline frequency of miniature EPSCs (mEPSCs) was significantly increased; the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) completely normalized this frequency. Also, AP5 significantly reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation and reversed the reduction in the paired-pulse ratio of evoked EPSCs in paclitaxel-treated rats. Blocking GluN2A-containing, but not GluN2B-containing, NMDARs largely decreased the frequency of mEPSCs and the amplitude of evoked EPSCs of dorsal horn neurons in paclitaxel-treated rats. Furthermore, inhibition of protein kinase C fully reversed the increased frequency of mEPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats. Paclitaxel treatment significantly increased the protein level of GluN2A and phosphorylated GluN1 in the dorsal root ganglion. In addition, intrathecal injection of AP5 or systemic administration of memantine profoundly attenuated pain hypersensitivity induced by paclitaxel. Our findings indicate that paclitaxel treatment induces tonic activation of presynaptic NMDARs in the spinal cord through protein kinase C to potentiate nociceptive input from primary afferent nerves. Targeting presynaptic NMDARs at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing-Dun Xie
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Hong Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|
39
|
Li L, Chen SR, Chen H, Wen L, Hittelman WN, Xie JD, Pan HL. Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain. Cell Rep 2016; 15:1376-1383. [PMID: 27160909 PMCID: PMC4871741 DOI: 10.1016/j.celrep.2016.04.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/07/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic neuropathic pain is a debilitating condition that remains difficult to treat. Diminished synaptic inhibition by GABA and glycine and increased NMDA receptor (NMDAR) activity in the spinal dorsal horn are key mechanisms underlying neuropathic pain. However, the reciprocal relationship between synaptic inhibition and excitation in neuropathic pain is unclear. Here, we show that intrathecal delivery of K(+)-Cl(-) cotransporter-2 (KCC2) using lentiviral vectors produces a complete and long-lasting reversal of pain hypersensitivity induced by nerve injury. KCC2 gene transfer restores Cl(-) homeostasis disrupted by nerve injury in both spinal dorsal horn and primary sensory neurons. Remarkably, restoring Cl(-) homeostasis normalizes both presynaptic and postsynaptic NMDAR activity increased by nerve injury in the spinal dorsal horn. Our findings indicate that nerve injury recruits NMDAR-mediated signaling pathways through the disruption of Cl(-) homeostasis in spinal dorsal horn and primary sensory neurons. Lentiviral vector-mediated KCC2 expression is a promising gene therapy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lingyong Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Wen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing-Dun Xie
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Pittman SK, Gracias NG, Fehrenbacher JC. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons. Exp Neurol 2016; 279:104-115. [PMID: 26883566 DOI: 10.1016/j.expneurol.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States; Indiana University School of Medicine, Department of Anesthesiology, United States.
| |
Collapse
|
41
|
Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats. Exp Neurol 2015; 273:263-72. [DOI: 10.1016/j.expneurol.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 01/08/2023]
|
42
|
Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2. Int J Cell Biol 2015; 2015:505294. [PMID: 26351455 PMCID: PMC4553341 DOI: 10.1155/2015/505294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022] Open
Abstract
The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active.
Collapse
|
43
|
Bráz JM, Wang X, Guan Z, Rubenstein JL, Basbaum AI. Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity. Pain 2015; 156:1084-1091. [PMID: 25760475 PMCID: PMC4431911 DOI: 10.1097/j.pain.0000000000000152] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decreased spinal cord GABAergic inhibition is a major contributor to the persistent neuropathic pain that can follow peripheral nerve injury. Recently, we reported that restoring spinal cord GABAergic signaling by intraspinal transplantation of cortical precursors of GABAergic interneurons from the embryonic medial ganglionic eminence (MGE) can reverse the mechanical hypersensitivity (allodynia) that characterizes a neuropathic pain model in the mouse. We show that MGE cell transplants are also effective against both the mechanical allodynia and the heat hyperalgesia produced in a paclitaxel-induced chemotherapy model of neuropathic pain. To test the necessity of GABA release by the transplants, we also studied the utility of transplanting MGE cells from mice with a deletion of VGAT, the vesicular GABA transporter. Transplants from these mice, in which GABA is synthesized but cannot be stored or released, had no effect on mechanical hypersensitivity or heat hyperalgesia in the paclitaxel model. Taken together, these results demonstrate the therapeutic potential of GABAergic precursor cell transplantation in diverse neuropathic pain models and support our contention that restoration of inhibitory controls through release of GABA from the transplants is their mode of action.
Collapse
Affiliation(s)
- João M Bráz
- Departments of Anatomy Anesthesia and Critical Care Department of Psychiatry, The Nina Ireland Laboratory Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
45
|
Yadav R, Yan X, Maixner DW, Gao M, Weng HR. Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel. J Neurochem 2015; 133:857-69. [PMID: 25827582 DOI: 10.1111/jnc.13103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/24/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life-saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel-induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT-1 but not GAT-3. In the spinal dorsal horn, GAT-1 was expressed at presynaptic terminals and astrocytes while GAT-3 was only expressed in astrocytes. In rats with paclitaxel-induced neuropathic pain, the protein expression of GAT-1 was increased while GAT-3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel-induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT-1 but not GAT-3 transporters. Paclitaxel-induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT-1 inhibitor. These findings suggest that targeting GAT-1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel-induced neuropathic pain. Patients receiving paclitaxel for cancer therapy often develop neuropathic pain and have a reduced quality of life. In this study, we demonstrated that animals treated with paclitaxel develop neuropathic pain, have enhancements of GABA transporter-1 protein expression and global GABA uptake, as well as suppression of GABAergic tonic inhibition in the spinal dorsal horn. Pharmacological inhibition of GABA transporter-1 ameliorates the paclitaxel-induced suppression of GABAergic tonic inhibition and neuropathic pain. Thus, targeting GAT-1 transporters for reversing GABAergic disinhibition in the spinal dorsal horn could be a useful approach for treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA.,Department of Cardiovascular Medicine, the Third Hospital of Wuhan, Wuhan, Hubei Province, China
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Mei Gao
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| |
Collapse
|