1
|
Shi SM, Suh RJ, Shon DJ, Garcia FJ, Buff JK, Atkins M, Li L, Lu N, Sun B, Luo J, To NS, Cheung TH, McNerney MW, Heiman M, Bertozzi CR, Wyss-Coray T. Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature 2025; 639:985-994. [PMID: 40011765 PMCID: PMC11946907 DOI: 10.1038/s41586-025-08589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
The blood-brain barrier (BBB) is highly specialized to protect the brain from harmful circulating factors in the blood and maintain brain homeostasis1,2. The brain endothelial glycocalyx layer, a carbohydrate-rich meshwork composed primarily of proteoglycans, glycoproteins and glycolipids that coats the BBB lumen, is a key structural component of the BBB3,4. This layer forms the first interface between the blood and brain vasculature, yet little is known about its composition and roles in supporting BBB function in homeostatic and diseased states. Here we find that the brain endothelial glycocalyx is highly dysregulated during ageing and neurodegenerative disease. We identify significant perturbation in an underexplored class of densely O-glycosylated proteins known as mucin-domain glycoproteins. We demonstrate that ageing- and disease-associated aberrations in brain endothelial mucin-domain glycoproteins lead to dysregulated BBB function and, in severe cases, brain haemorrhaging in mice. Finally, we demonstrate that we can improve BBB function and reduce neuroinflammation and cognitive deficits in aged mice by restoring core 1 mucin-type O-glycans to the brain endothelium using adeno-associated viruses. Cumulatively, our findings provide a detailed compositional and structural mapping of the ageing brain endothelial glycocalyx layer and reveal important consequences of ageing- and disease-associated glycocalyx dysregulation on BBB integrity and brain health.
Collapse
Affiliation(s)
- Sophia M Shi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Suh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - D Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Francisco J Garcia
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Josephine K Buff
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ning-Sum To
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tom H Cheung
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
- MIRECC, Department of Veterans Affairs, Palo Alto, CA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Tony Wyss-Coray
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Swanson L, DeGuara S, Wang W, Yin F, Saini T, Weiss RJ, Selleck SB. Altering heparan sulfate suppresses cell abnormalities and neuron loss in Drosophila presenilin model of Alzheimer Disease. iScience 2024; 27:110256. [PMID: 39109174 PMCID: PMC11302002 DOI: 10.1016/j.isci.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert J. Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard Mueller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie O'Donnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey Swanson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sophia DeGuara
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Wang
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Tripti Saini
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ryan J. Weiss
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
McMillan IO, Gearing M, Wang L. Vascular Heparan Sulfate and Amyloid-β in Alzheimer's Disease Patients. Int J Mol Sci 2024; 25:3964. [PMID: 38612775 PMCID: PMC11012074 DOI: 10.3390/ijms25073964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| | - Marla Gearing
- Department of Pathology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA;
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| |
Collapse
|
4
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Marino C, Perez‐Corredor P, O'Hare M, Heuer A, Chmielewska N, Gordon H, Chandrahas AS, Gonzalez‐Buendia L, Delgado‐Tirado S, Doan TH, Vanderleest TE, Arevalo‐Alquichire S, Obar RA, Ortiz‐Cordero C, Villegas A, Sepulveda‐Falla D, Kim LA, Lopera F, Mahley R, Huang Y, Quiroz YT, Arboleda‐Velasquez JF. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. Alzheimers Dement 2024; 20:819-836. [PMID: 37791598 PMCID: PMC10916992 DOI: 10.1002/alz.13436] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION We discovered that the APOE3 Christchurch (APOE3Ch) variant may provide resistance to Alzheimer's disease (AD). This resistance may be due to reduced pathological interactions between ApoE3Ch and heparan sulfate proteoglycans (HSPGs). METHODS We developed and characterized the binding, structure, and preclinical efficacy of novel antibodies targeting human ApoE-HSPG interactions. RESULTS We found that one of these antibodies, called 7C11, preferentially bound ApoE4, a major risk factor for sporadic AD, and disrupts heparin-ApoE4 interactions. We also determined the crystal structure of a Fab fragment of 7C11 and used computer modeling to predict how it would bind to ApoE. When we tested 7C11 in mouse models, we found that it reduced recombinant ApoE-induced tau pathology in the retina of MAPT*P301S mice and curbed pTau S396 phosphorylation in brains of systemically treated APOE4 knock-in mice. Targeting ApoE-HSPG interactions using 7C11 antibody may be a promising approach to developing new therapies for AD.
Collapse
Affiliation(s)
- Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Paula Perez‐Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Annie Heuer
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Harper Gordon
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Anita S. Chandrahas
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Lucia Gonzalez‐Buendia
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Santiago Delgado‐Tirado
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Tri H. Doan
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Timothy E. Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Said Arevalo‐Alquichire
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Robert A. Obar
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Andres Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leo A. Kim
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
| | - Robert Mahley
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of MedicineUCSFSan FranciscoCaliforniaUSA
- Cardiovascular Research InstituteUCSFSan FranciscoCaliforniaUSA
| | - Yadong Huang
- Gladstone Institute of Neurological DiseaseSan FranciscoCaliforniaUSA
- Gladstone Institute of Cardiovascular DiseaseSan FranciscoCaliforniaUSA
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of NeurologyUCSFSan FranciscoCaliforniaUSA
| | - Yakeel T. Quiroz
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Joseph F. Arboleda‐Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Wang W, Yin F, Weiss R, Selleck SB. Heparan sulfate modified proteins affect cellular processes central to neurodegeneration and modulate presenilin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576895. [PMID: 38328107 PMCID: PMC10849577 DOI: 10.1101/2024.01.23.576895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mutations in presenilin-1 (PSEN1) are the most common cause of familial, early-onset Alzheimer's disease (AD), typically producing cognitive deficits in the fourth decade. A variant of APOE, APOE3 Christchurch (APOE3ch) , was found associated with protection from both cognitive decline and Tau accumulation in a 70-year-old bearing the disease-causing PSEN1-E280A mutation. The amino acid change in ApoE3ch is within the heparan sulfate (HS) binding domain of APOE, and purified APOEch showed dramatically reduced affinity for heparin, a highly sulfated form of HS. The physiological significance of ApoE3ch is supported by studies of a mouse bearing a knock-in of this human variant and its effects on microglia reactivity and Aβ-induced Tau deposition. The studies reported here examine the function of heparan sulfate-modified proteoglycans (HSPGs) in cellular and molecular pathways affecting AD-related cell pathology in human cell lines and mouse astrocytes. The mechanisms of HSPG influences on presenilin- dependent cell loss and pathology were evaluated in Drosophila using knockdown of the presenilin homolog, Psn , together with partial loss of function of sulfateless (sfl) , a homolog of NDST1 , a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in cultured human cell lines, Drosophila , and mouse astrocytes. RNAi of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3 , and APOE4 . RNA-sequence analysis of human cells deficient in HS synthesis demonstrated effects on the transcriptome governing lipid metabolism, autophagy, and mitochondrial biogenesis and showed significant enrichment in AD susceptibility genes identified by GWAS. Neuron-directed knockdown of Psn in Drosophila produced cell loss in the brain and behavioral phenotypes, both suppressed by simultaneous reductions in sfl mRNA levels. Abnormalities in mitochondria, liposome morphology, and autophagosome-derived structures in animals with Psn knockdown were also rescued by simultaneous reduction of sfl. sfl knockdown reversed Psn- dependent transcript changes in genes affecting lipid transport, metabolism, and monocarboxylate carriers. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
|
7
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
9
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S, Connell A, Selleck S. Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans. Front Genet 2023; 13:1012706. [PMID: 36699460 PMCID: PMC9870329 DOI: 10.3389/fgene.2022.1012706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate modified proteins or proteoglycans (HSPGs) are an abundant class of cell surface and extracellular matrix molecules. They serve important co-receptor functions in the regulation of signaling as well as membrane trafficking. Many of these activities directly affect processes associated with neurodegeneration including uptake and export of Tau protein, disposition of Amyloid Precursor Protein-derived peptides, and regulation of autophagy. In this review we focus on the impact of HSPGs on autophagy, membrane trafficking, mitochondrial quality control and biogenesis, and lipid metabolism. Disruption of these processes are a hallmark of Alzheimer's disease (AD) and there is evidence that altering heparan sulfate structure and function could counter AD-associated pathological processes. Compromising presenilin function in several systems has provided instructive models for understanding the molecular and cellular underpinnings of AD. Disrupting presenilin function produces a constellation of cellular deficits including accumulation of lipid, disruption of autophagosome to lysosome traffic and reduction in mitochondrial size and number. Inhibition of heparan sulfate biosynthesis has opposing effects on all these cellular phenotypes, increasing mitochondrial size, stimulating autophagy flux to lysosomes, and reducing the level of intracellular lipid. These findings suggest a potential mechanism for countering pathology found in AD and related disorders by altering heparan sulfate structure and influencing cellular processes disrupted broadly in neurodegenerative disease. Vertebrate and invertebrate model systems, where the cellular machinery of autophagy and lipid metabolism are conserved, continue to provide important translational guideposts for designing interventions that address the root cause of neurodegenerative pathology.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Robert Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Gelila Berhanu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Scott Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
11
|
Mani K. Isolation and Characterization of Heparan Sulfate Containing Amyloid Precursor Protein Degradation Products. Methods Mol Biol 2022; 2303:279-288. [PMID: 34626386 DOI: 10.1007/978-1-0716-1398-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies indicate that heparan sulfate proteoglycans (HSPGs) participate in a network of complex molecular events involving amyloid precursor protein (APP) processing and formation, oligomerization, intracellular targeting, clearance, and propagation of amyloid β in Alzheimer's disease (AD). A mutual functional interplay between recycling glypican-1 and APP processing has been demonstrated where the HS released from glypican-1 by a Cu/NO-ascorbate-dependent reaction forms a conjugate with APP degradation products and undergoes an endosome-nucleus-autophagosome co-trafficking. HS has been shown to display contradictory and dual effects in AD involving both prevention and promotion of amyloid β formation. It is therefore important to identify the source, detailed structural features as well as factors that favor formation of the neuroprotective forms of HS. Here, a method for isolation and identification of HS-containing APP degradation products has been described. The method is based on isolation of radiolabeled HS followed by identification of accompanying APP degradation products by SDS-PAGE and Western blotting.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener 2021; 16:81. [PMID: 34876200 PMCID: PMC8650282 DOI: 10.1186/s13024-021-00502-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative disorders are a group of age-associated diseases characterized by progressive degeneration of the structure and function of the CNS. Two key pathological features of these disorders are blood-brain barrier (BBB) breakdown and protein aggregation. MAIN BODY The BBB is composed of various cell types and a non-cellular component---the basal lamina (BL). Although how different cells affect the BBB is well studied, the roles of the BL in BBB maintenance and function remain largely unknown. In addition, located in the perivascular space, the BL is also speculated to regulate protein clearance via the meningeal lymphatic/glymphatic system. Recent studies from our laboratory and others have shown that the BL actively regulates BBB integrity and meningeal lymphatic/glymphatic function in both physiological and pathological conditions, suggesting that it may play an important role in the pathogenesis and/or progression of neurodegenerative disorders. In this review, we focus on changes of the BL and its major components during aging and in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). First, we introduce the vascular and lymphatic systems in the CNS. Next, we discuss the BL and its major components under homeostatic conditions, and summarize their changes during aging and in AD, PD, and ALS in both rodents and humans. The functional significance of these alterations and potential therapeutic targets are also reviewed. Finally, key challenges in the field and future directions are discussed. CONCLUSIONS Understanding BL changes and the functional significance of these changes in neurodegenerative disorders will fill the gap of knowledge in the field. Our goal is to provide a clear and concise review of the complex relationship between the BL and neurodegenerative disorders to stimulate new hypotheses and further research in this field.
Collapse
Affiliation(s)
- Benjamin Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, MDC 8, Tampa, Florida, 33612, USA.
| |
Collapse
|
13
|
Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain. Carbohydr Res 2021; 511:108480. [PMID: 34837849 DOI: 10.1016/j.carres.2021.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
A wide variety of diseases throughout the mammalian organism is characterized by abnormal deposition of various components of the extracellular matrix (ECM), including the heterogeneous family of glycosaminoglycans (GAGs), which contribute considerably to the ECM architecture as part of the so-called proteoglycans. The GAG's unique sulfation pattern, derived from highly dynamic and specific modification processes, has a massive impact on critical mediators such as cytokines and growth factors. Due to the strong connection between the specific sulfation pattern and GAG function, slight alterations of this pattern are often associated with enormous changes at the cell as well as at the organ level. This review aims to investigate the connection between modifications of GAG sulfation patterns and the wide range of pathological conditions, mainly focusing on a range of chronic diseases of the central nervous system (CNS) as well as the respiratory tract.
Collapse
|
14
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
15
|
Schultheis N, Jiang M, Selleck SB. Putting the brakes on autophagy: The role of heparan sulfate modified proteins in the balance of anabolic and catabolic pathways and intracellular quality control. Matrix Biol 2021; 100-101:173-181. [PMID: 33548399 DOI: 10.1016/j.matbio.2021.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process discovered as a response to nutrient deprivation. It provides the cellular and molecular machinery for catabolism of cellular constituents, generating energy and providing building blocks for continued survival. However, autophagy does much more than provide an entry into catabolic pathways, it provides a mechanism for intracellular quality control, removing damaged organelles and misfolded proteins, processes critical for cellular health. Autophagy serves as a counterpoint to cell growth and anabolic events, activated when growth is not possible or is suppressed. Hence, there is an inherent antagonism between autophagy and growth. Heparan sulfate modified proteins are important co-receptors that generally promote growth factor activity and are therefore positioned within signaling networks that inhibit, or negatively regulate autophagy levels. This review summarizes evidence that heparan sulfate modified proteins provide an evolutionarily conserved inhibitory modulation of autophagy that can have profound effects on cell physiology and organismal responses to stress.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Mei Jiang
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Scott B Selleck
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
16
|
Zhang X, O’Callaghan P, Li H, Tan Y, Zhang G, Barash U, Wang X, Lannfelt L, Vlodavsky I, Lindahl U, Li JP. Heparanase overexpression impedes perivascular clearance of amyloid-β from murine brain: relevance to Alzheimer's disease. Acta Neuropathol Commun 2021; 9:84. [PMID: 33971986 PMCID: PMC8111754 DOI: 10.1186/s40478-021-01182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Defective amyloid-β (Aβ) clearance from the brain is a major contributing factor to the pathophysiology of Alzheimer's disease (AD). Aβ clearance is mediated by macrophages, enzymatic degradation, perivascular drainage along the vascular basement membrane (VBM) and transcytosis across the blood-brain barrier (BBB). AD pathology is typically associated with cerebral amyloid angiopathy due to perivascular accumulation of Aβ. Heparan sulfate (HS) is an important component of the VBM, thought to fulfill multiple roles in AD pathology. We previously showed that macrophage-mediated clearance of intracortically injected Aβ was impaired in the brains of transgenic mice overexpressing heparanase (Hpa-tg). This study revealed that perivascular drainage was impeded in the Hpa-tg brain, evidenced by perivascular accumulation of the injected Aβ in the thalamus of Hpa-tg mice. Furthermore, endogenous Aβ accumulated at the perivasculature of Hpa-tg thalamus, but not in control thalamus. This perivascular clearance defect was confirmed following intracortical injection of dextran that was largely retained in the perivasculature of Hpa-tg brains, compared to control brains. Hpa-tg brains presented with thicker VBMs and swollen perivascular astrocyte endfeet, as well as elevated expression of the BBB-associated water-pump protein aquaporin 4 (AQP4). Elevated levels of both heparanase and AQP4 were also detected in human AD brain. These findings indicate that elevated heparanase levels alter the organization and composition of the BBB, likely through increased fragmentation of BBB-associated HS, resulting in defective perivascular drainage. This defect contributes to perivascular accumulation of Aβ in the Hpa-tg brain, highlighting a potential role for heparanase in the pathogenesis of AD.
Collapse
|
17
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
18
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
19
|
Pinhal MAS, Melo CM, Nader HB. The Good and Bad Sides of Heparanase-1 and Heparanase-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:821-845. [PMID: 32274740 DOI: 10.1007/978-3-030-34521-1_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this chapter, we will emphasize the importance of heparan sulfate proteoglycans (HSPG) in controlling various physiological and pathological molecular mechanisms and discuss how the heparanase enzyme can modulate the effects triggered by HSPG. Additionally, we will also navigate about the existing knowledge of the possible role of heparanase-2 in biological events. Heparan sulfate is widely distributed and evolutionarily conserved, evidencing its vital importance in cell development and functions such as cell proliferation, migration, adhesion, differentiation, and angiogenesis. During remodeling of the extracellular matrix, the breakdown of heparan sulfate by heparanase results in the release of molecules containing anchored glycosaminoglycan chains of great interest in heparanase-mediated cell signaling pathways in various physiological states, tumor development, inflammation, and other diseases. Taken together, it appears that heparanase plays a key role in the maintenance of the pathology of cancer and inflammatory diseases and is a potential target for anti-cancer therapies. Therefore, heparanase inhibitors are currently being examined in clinical trials as novel cancer therapeutics. Heparanase-2 has no enzymatic activity, displays higher affinity for heparan sulfate and the coding region alignment shows 40% identity with the heparanase gene. Heparanase-2 plays an important role in embryogenic development however its mode of action and biological function remain to be elucidated. Heparanase-2 functions as an inhibitor of the heparanase-1 enzyme and also inhibits neovascularization mediated by VEGF. The HPSE2 gene is repressed by the Polycomb complex, together suggesting a role as a tumor suppressor.
Collapse
Affiliation(s)
| | - Carina Mucciolo Melo
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Lorente-Gea L, García B, Martín C, Ordiales H, García-Suárez O, Piña-Batista KM, Merayo-Lloves J, Quirós LM, Fernández-Vega I. Heparan Sulfate Proteoglycans Undergo Differential Expression Alterations in Alzheimer Disease Brains. J Neuropathol Exp Neurol 2020; 79:474-483. [PMID: 32232475 DOI: 10.1093/jnen/nlaa016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/22/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have reported that heparan sulfate proteoglycans (HSPGs) promote amyloid-beta peptide and tau fibrillization in Alzheimer disease (AD) and provide resistance against proteolytic breakdown. We compared the expression levels of 17 HSPG core proteins in 18 AD cases and 6 controls. RT-PCR was used to analyze transcription levels. Immunohistochemistry was performed to localize HSPGs in the brain tissue. We detected expression of all HSPG genes investigated. SDC1, GPC3, and CD44v3 showed the lowest levels of expression, while SDC3 and GPC1 showed the highest. Remarkably, SDC4 and SRGN were overexpressed in most of the areas analyzed. Immunohistochemistry revealed the presence of both SDC4 and SRGN mostly associated with tau and amyloid-β pathology throughout the AD brains. In conclusion, in view of the involvement of HSPGs in AD pathology, especially SDC4 and SRGN, there would seem to be a relationship between the regulation of core protein expression and the pathological features suggesting HSPGs are potential inducers of the disease.
Collapse
Affiliation(s)
- Laura Lorente-Gea
- From the Department of Pathology, Hospital Universitario de Araba - Txagorritxu, Spain
| | - Beatriz García
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Helena Ordiales
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | - Kelvin M Piña-Batista
- Department of Neurosurgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Luís M Quirós
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Iván Fernández-Vega
- From the Department of Pathology, Hospital Universitario de Araba - Txagorritxu, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Pathology, Hospital Universitario Central de Asturias, Oviedo (IF-V) Biobank of Principality of Asturias, Health Research Institute of the Principality of Asturias, Oviedo, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Spain
| |
Collapse
|
21
|
Heparan Sulfate Structure Affects Autophagy, Lifespan, Responses to Oxidative Stress, and Cell Degeneration in Drosophila parkin Mutants. G3-GENES GENOMES GENETICS 2020; 10:129-141. [PMID: 31672849 PMCID: PMC6945019 DOI: 10.1534/g3.119.400730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic process that provides cells with energy and molecular building blocks during nutritional stress. Autophagy also removes misfolded proteins and damaged organelles, a critical mechanism for cellular repair. Earlier work demonstrated that heparan sulfate proteoglycans, an abundant class of carbohydrate-modified proteins found on cell surfaces and in the extracellular matrix, suppress basal levels of autophagy in several cell types during development in Drosophila melanogaster. In studies reported here, we examined the capacity of heparan sulfate synthesis to influence events affected by autophagy, including lifespan, resistance to reactive oxygen species (ROS) stress, and accumulation of ubiquitin-modified proteins in the brain. Compromising heparan sulfate synthesis increased autophagy-dependent processes, evident by extended lifespan, increased resistance to ROS, and reduced accumulation of ubiquitin-modified proteins in the brains of ROS exposed adults. The capacity of altering heparan sulfate biosynthesis to protect cells from injury was also evaluated in two different models of neurodegeneration, overexpression of Presenilin and parkin mutants. Presenilin overexpression in the retina produces cell loss, and compromising heparan sulfate biosynthesis rescued retinal patterning and size abnormalities in these animals. parkin is the fly homolog of human PARK2, one of the genes responsible for juvenile onset Parkinson’s Disease. Parkin is involved in mitochondrial surveillance and compromising parkin function results in degeneration of both flight muscle and dopaminergic neurons in Drosophila. Altering heparan sulfate biosynthesis suppressed flight muscle degeneration and mitochondrial dysmorphology, indicating that activation of autophagy-mediated removal of mitochondria (mitophagy) is potentiated in these animals. These findings provide in vivo evidence that altering the levels of heparan sulfate synthesis activates autophagy and can provide protection from a variety of cellular stressors.
Collapse
|
22
|
Li JP, Zhang X. Implications of Heparan Sulfate and Heparanase in Amyloid Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:631-645. [PMID: 32274729 DOI: 10.1007/978-3-030-34521-1_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloidosis refers to a group of diseases characterized by abnormal deposition of denatured endogenous proteins, termed amyloid, in the affected organs. Analysis of biopsy and autopsy tissues from patients revealed the presence of heparan sulfate proteoglycans (HSPGs) along with amyloid proteins in the deposits. For a long time, HSPGs were believed to occur in the deposits as an innocent bystander. Yet, the consistent presence of HSPGs in various deposits, regardless of the amyloid species, led to the hypothesis that these macromolecular glycoconjugates might play functional roles in the pathological process of amyloidosis. In vitro studies have revealed that HSPGs, or more precisely, the heparan sulfate (HS) side chains interact with amyloid peptides, thus promoting amyloid fibrillization. Although information on the mechanisms of HS participation in amyloid deposition is limited, recent studies involving a transgenic mouse model of Alzheimer's disease point to an active role of HS in amyloid formation. Heparanase cleavage alters the molecular structure of HS, and thus modulates the functional roles of HS in homeostasis, as well as in diseases, including amyloidosis. The heparanase transgenic mice have provided models for unveiling the effects of heparanase, through cleavage of HS, in various amyloidosis conditions.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Medical Biochemistry and Microbiology and the SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Abstract
From 1999-2003, Oxford GlycoSciences (OGS) ran a successful drug discovery oncology programme to discover small molecule inhibitors of the Heparanase I enzyme (HPSE1). HPSE1 at the time was widely regarded as being the sole mammalian enzyme capable of cleaving Heparan Sulfate (HS). A second family protein member however called Heparanase 2 (HPSE2) including splice forms was subsequently discovered by PCR analysis based on EST sequences. HPSE2 was found to be expressed mainly in smooth muscle containing tissues, particularly bladder and brain. HPSE2 is poorly expressed in haematopoietic cells and placenta which contrasts with the HPSE1 distribution pattern. HPSE2 binds more strongly to HS than HPSE1 and is believed to out compete for substrate binding and so in effect act as a tumor suppressor. So far, all attempts to show specific HPSE2 endoglycosidase activity against HS have failed suggesting that the enzyme may act as a pseudoenzyme that has evolved to retain only certain non-catalytic heparanase like functions. A breakthrough in the elucidation of functional roles for HPSE2 came about in 2010 with the linkage of HPSE2 gene deletions and mutations to the development of Ochoa/Urofacial Syndrome. Future work into the mechanistic analysis of HPSE2's role in signalling, tumor suppression and bladder/nerve functioning are needed to fully explore the role of this family of proteins.
Collapse
|
24
|
De Sousa Rodrigues ME, Houser MC, Walker DI, Jones DP, Chang J, Barnum CJ, Tansey MG. Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer's disease associated with obesity, metabolic syndrome, and type 2 diabetes. ALZHEIMERS RESEARCH & THERAPY 2019; 12:1. [PMID: 31892368 PMCID: PMC6937979 DOI: 10.1186/s13195-019-0546-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
Background Insulin impairment and inflammation are two features common to type 2 diabetes and Alzheimer’s disease; however, the molecular and signaling interactions underlying this relationship are not well understood. Mounting evidence point to the associations between the disruption of metabolite processing in insulin impairment and neurodegenerative conditions such as Alzheimer’s. Although the brain depends partially on metabolites processed in the periphery, to date, little is known about how soluble tumor necrosis factor signaling (solTNF) impacts integrated peripheral immune and metabolic feedback signals in states of energy overload and insulin insensitivity. Methods C57Bl/6J mice were fed a high-fat high-carbohydrate diet (HFHC) for 14 weeks. The brain-permeant biologic XPro1595® was used to block solTNF-dependent pathways. Metabolic and immune alterations were evaluated in the gut, liver, and brain. Behavioral tests were performed. Untargeted metabolomics was carried out in the plasma and liver. Results HFHC diet promotes central insulin impairment and dysregulation of immune-modulatory gene expressed in the brain. Alteration of metabolites associated with type 2 diabetes and Alzheimer’s such as butanoate, glutamate, biopterin, branched-chain amino acids, purines, and proteoglycan metabolism was observed in HFHC-fed mice. solTNF inhibition ameliorates hepatic metabolic disturbances and hepatic and intestinal lipocalin-2 levels, and decreases insulin impairment in the brain and behavioral deficits associated with HFHC diet. Conclusions Our novel findings suggest that HFHC diet impacts central insulin signaling and immune-metabolic interactions in a solTNF-dependent manner to increase the risk for neurodegenerative conditions. Our novel findings indicate that selective solTNF neutralization can ameliorate peripheral and central diet-induced insulin impairment and identify lipocalin-2 as a potential target for therapeutic intervention to target inflammation and insulin disturbances in obesogenic environments. Collectively, our findings identify solTNF as a potential target for therapeutic intervention in inflammatory states and insulin disturbances in obesogenic environments to lower risk for AD.
Collapse
Affiliation(s)
| | - Madelyn C Houser
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA, 30322-3110, USA
| | - Douglas I Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University Emory, 615 Michael Street, Atlanta, GA, 30322, USA.,Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University Emory, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Jianjun Chang
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA, 30322-3110, USA
| | - Christopher J Barnum
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA, 30322-3110, USA
| | - Malú G Tansey
- Department of Physiology, School of Medicine at Emory University, 615 Michael Street, Atlanta, GA, 30322-3110, USA. .,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL, USA.
| |
Collapse
|
25
|
Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B. Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 131:29-40. [PMID: 31004678 DOI: 10.1016/j.yjmcc.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | | | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
26
|
Systemic LPS-induced Aβ-solubilization and clearance in AβPP-transgenic mice is diminished by heparanase overexpression. Sci Rep 2019; 9:4600. [PMID: 30872722 PMCID: PMC6418119 DOI: 10.1038/s41598-019-40999-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Amyloid-β (Aβ) is the main constituent of amyloid deposits in Alzheimer’s disease (AD). The neuropathology is associated with neuroinflammation. Here, we investigated effects of systemic lipopolysaccharide (LPS)-treatment on neuroinflammation and Aβ deposition in AβPP-mice and double-transgenic mice with brain expression of AβPP and heparanase, an enzyme that degrades HS and generates an attenuated LPS-response. At 13 months of age, the mice received a single intraperitoneal injection of 50 µg LPS or vehicle, and were sacrificed 1.5 months thereafter. Aβ in the brain was analyzed histologically and biochemically after sequential detergent extraction. Neuroinflammation was assessed by CD45 immunostaining and mesoscale cytokine/chemokine ELISA. In single-transgenic mice, LPS-treatment reduced total Aβ deposition and increased Tween-soluble Aβ. This was associated with a reduced CXCL1, IL-1β, TNF-α-level and microgliosis, which correlated with amyloid deposition and total Aβ. In contrast, LPS did not change Aβ accumulation or inflammation marker in the double-transgenic mice. Our findings suggest that a single pro-inflammatory LPS-stimulus, if given sufficient time to act, triggers Aβ-clearance in AβPP-transgenic mouse brain. The effects depend on HS and heparanase.
Collapse
|
27
|
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 2018; 89:125-135. [PMID: 30273653 DOI: 10.1016/j.semcdb.2018.09.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Perineuronal nets (PNNs) in the brain are condensed glycosaminoglycan-rich extracellular matrix structures with heterogeneous composition yet specific organization. They typically assemble around a subset of fast-spiking interneurons that are implicated in learning and memory. Owing to their unique structural organization, PNNs have neuroprotective capacities but also participate in signal transduction and in controlling neuronal activity and plasticity. In this review, we define PNN structure in detail and describe its various biochemical and physiological functions. We further discuss the role of PNNs in brain disorders such as schizophrenia, bipolar disorder, Alzheimer disease and addictions. Lastly, we describe therapeutic approaches that target PNNs to alter brain physiology and counter brain dysfunction.
Collapse
Affiliation(s)
- Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France.
| |
Collapse
|
28
|
Mehra S, Ghosh D, Kumar R, Mondal M, Gadhe LG, Das S, Anoop A, Jha NN, Jacob RS, Chatterjee D, Ray S, Singh N, Kumar A, Maji SK. Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils. J Biol Chem 2018; 293:12975-12991. [PMID: 29959225 DOI: 10.1074/jbc.ra118.004267] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Indexed: 01/06/2023] Open
Abstract
Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.
Collapse
Affiliation(s)
- Surabhi Mehra
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Dhiman Ghosh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Rakesh Kumar
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Mrityunjoy Mondal
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Laxmikant G Gadhe
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Subhadeep Das
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and.,the IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arunagiri Anoop
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Narendra N Jha
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Reeba S Jacob
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Debdeep Chatterjee
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Soumik Ray
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Nitu Singh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Ashutosh Kumar
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| | - Samir K Maji
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India and
| |
Collapse
|
29
|
Maïza A, Chantepie S, Vera C, Fifre A, Huynh MB, Stettler O, Ouidja MO, Papy-Garcia D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592:3806-3818. [PMID: 29729013 DOI: 10.1002/1873-3468.13082] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Auriane Maïza
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Cecilia Vera
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Alexandre Fifre
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Minh Bao Huynh
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Olivier Stettler
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Mohand Ouidir Ouidja
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| |
Collapse
|
30
|
García B, Martín C, García-Suárez O, Muñiz-Alonso B, Ordiales H, Fernández-Menéndez S, Santos-Juanes J, Lorente-Gea L, Castañón S, Vicente-Etxenausia I, Piña Batista KM, Ruiz-Díaz I, Caballero-Martínez MC, Merayo-Lloves J, Guerra-Merino I, Quirós LM, Fernández-Vega I. Upregulated Expression of Heparanase and Heparanase 2 in the Brains of Alzheimer's Disease. J Alzheimers Dis 2018; 58:185-192. [PMID: 28387673 DOI: 10.3233/jad-161298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs) promote amyloid-β peptide and tau fibrillization in Alzheimer's disease (AD) and provide resistance against proteolytic breakdown. Heparanase (HPSE) is the only enzyme that cleaves heparan sulfate (HS). Heparanase 2 (HPSE2) lacks HS-degrading activity, although it is able to interact with HS with high affinity. OBJECTIVE To analyze HPSE and HPSE2 expressions at different stages of AD. METHODS RT-PCR was used to analyze transcription levels of both heparanases at different stages of AD, and immunohistochemistry was performed to localize each one in different parts of the brain. RESULTS Both proteins appeared overexpressed at different stages of AD. Immunohistochemistry indicated that the presence of the heparanases was related to AD pathology, with intracellular deposits found in degenerated neurons. At the extracellular level, HPSE was observed only in neuritic plaques with a fragmented core, while HPSE2 appeared in those with compact cores as well. CONCLUSION Given the involvement of HSPGs in AD pathology, there would seem to be a relationship between the regulation of heparanase expression, the features of the disease, and a possible therapeutic alternative.
Collapse
Affiliation(s)
- Beatriz García
- Department of Functional Biology, University of Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Olivia García-Suárez
- Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| | | | - Helena Ordiales
- Department of Functional Biology, University of Oviedo, Spain
| | | | - Jorge Santos-Juanes
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Spain
| | - Sonia Castañón
- Department of Biotechnology, Neiker-Tecnalia Arkaute, Vitoria-Gasteiz, Spain
| | | | | | - Irune Ruiz-Díaz
- Department of Pathology, Hospital Universitario Donostia, Gipuzkoa, Spain
| | - María Cristina Caballero-Martínez
- Department of Pathology, Hospital Universitario Donostia, Gipuzkoa, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank Hospital Universitario Donostia, Spain
| | | | | | - Luis M Quirós
- Department of Functional Biology, University of Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Spain
| |
Collapse
|
31
|
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol 2018; 68-69:589-601. [PMID: 29382609 DOI: 10.1016/j.matbio.2018.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
Fibrosis is defined as the thickening and scarring of connective tissue, usually as a consequence of tissue damage. The central nervous system (CNS) is special in the sense that fibrogenic cells are restricted to vascular and meningeal areas. Inflammation and the disruption of the blood-brain barrier can lead to the infiltration of fibroblasts and trigger fibrotic response. While the initial function of the fibrotic tissue is to restore the blood-brain barrier and to limit the site of injury, it also demolishes the structure of extracellular matrix and impedes the healing process by producing inhibitory molecules and forming a physical and biochemical barrier that prevents axon regeneration. As a major constituent in the extracellular matrix, proteoglycans participate in the neuro-inflammation, modulating the fibrotic process. In this review, we will discuss the pathophysiology of fibrosis during acute injuries of the CNS, as well as during chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and age-related neurodegeneration with focus on the functional roles of proteoglycans.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
O'Callaghan P, Zhang X, Li JP. Heparan Sulfate Proteoglycans as Relays of Neuroinflammation. J Histochem Cytochem 2018; 66:305-319. [PMID: 29290138 DOI: 10.1369/0022155417742147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are implicated as inflammatory mediators in a variety of settings, including chemokine activation, which is required to recruit circulating leukocytes to infection sites. Heparan sulfate (HS) polysaccharide chains are highly interactive and serve co-receptor roles in multiple ligand:receptor interactions. HS may also serve as a storage depot, sequestering ligands such as cytokines and restricting their access to binding partners. Heparanase, through its ability to fragment HS chains, is a key regulator of HS function and has featured prominently in studies of HS's involvement in inflammatory processes. This review focuses on recent discoveries regarding the role of HSPGs, HS, and heparanase during inflammation, with particular focus on the brain. HS chains emerge as critical go-betweens in multiple aspects of the inflammatory response-relaying signals between receptors and cells. The molecular interactions proposed to occur between HSPGs and the pathogen receptor toll-like receptor 4 (TLR4) are discussed, and we summarize some of the contrasting roles that HS and heparanase have been assigned in diseases associated with chronic inflammatory states, including Alzheimer's disease (AD). We conclude by briefly discussing how current knowledge could potentially be applied to augment HS-mediated events during sustained neuroinflammation, which contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E. Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 2017; 7:9008. [PMID: 28827536 PMCID: PMC5566500 DOI: 10.1038/s41598-017-08720-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Amyloid aggregates found in the brain of patients with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are thought to spread to increasingly larger areas of the brain through a prion-like seeding mechanism. Not much is known about which cell surface receptors may be involved in the cell-to-cell transfer, but proteoglycans are of interest due to their well-known propensity to interact with amyloid aggregates. In this study, we investigated the involvement of plasma membrane-bound heparan and chondroitin sulfate proteoglycans in cellular uptake of aggregates consisting of α-synuclein, a protein forming amyloid aggregates in Parkinson's disease. We show, using a pH-sensitive probe, that internalization of α-synuclein amyloid fibrils in neuroblastoma cells is dependent on heparan sulfate, whereas internalization of smaller non-amyloid oligomers is not. We also show that α-synuclein fibril uptake in an oligodendrocyte-like cell line is equally dependent on heparan sulfate, while astrocyte- and microglia-like cell lines have other means to internalize the fibrils. In addition, we analyzed the interaction between the α-synuclein amyloid fibrils and heparan sulfate and show that overall sulfation of the heparan sulfate chains is more important than sulfation at particular sites along the chains.
Collapse
Affiliation(s)
- Elisabet Ihse
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hodaka Yamakado
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xander M van Wijk
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
34
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
35
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
36
|
Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34:363-376. [PMID: 28101734 PMCID: PMC5487772 DOI: 10.1007/s10719-017-9761-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.
Collapse
|
37
|
Lorente-Gea L, García B, Martín C, Quirós LM, Fernández-Vega I. Heparan sulfate proteoglycans and heparanases in Alzheimer's disease: current outlook and potential therapeutic targets. Neural Regen Res 2017; 12:914-915. [PMID: 28761422 PMCID: PMC5514864 DOI: 10.4103/1673-5374.208571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Beatriz García
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Carla Martín
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Luis M Quirós
- Department of Functional Biology, University of Oviedo, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain.,Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,BiobancoVasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| |
Collapse
|
38
|
Zhang D, Wang F, Lal N, Chiu APL, Wan A, Jia J, Bierende D, Flibotte S, Sinha S, Asadi A, Hu X, Taghizadeh F, Pulinilkunnil T, Nislow C, Vlodavsky I, Johnson JD, Kieffer TJ, Hussein B, Rodrigues B. Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes. Diabetes 2017; 66:45-57. [PMID: 27999107 DOI: 10.2337/db16-0761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/01/2016] [Indexed: 11/13/2022]
Abstract
Heparanase, a protein with enzymatic and nonenzymatic properties, contributes toward disease progression and prevention. In the current study, a fortuitous observation in transgenic mice globally overexpressing heparanase (hep-tg) was the discovery of improved glucose homeostasis. We examined the mechanisms that contribute toward this improved glucose metabolism. Heparanase overexpression was associated with enhanced glucose-stimulated insulin secretion and hyperglucagonemia, in addition to changes in islet composition and structure. Strikingly, the pancreatic islet transcriptome was greatly altered in hep-tg mice, with >2,000 genes differentially expressed versus control. The upregulated genes were enriched for diverse functions including cell death regulation, extracellular matrix component synthesis, and pancreatic hormone production. The downregulated genes were tightly linked to regulation of the cell cycle. In response to multiple low-dose streptozotocin (STZ), hep-tg animals developed less severe hyperglycemia compared with wild-type, an effect likely related to their β-cells being more functionally efficient. In animals given a single high dose of STZ causing severe and rapid development of hyperglycemia related to the catastrophic loss of insulin, hep-tg mice continued to have significantly lower blood glucose. In these mice, protective pathways were uncovered for managing hyperglycemia and include augmentation of fibroblast growth factor 21 and glucagon-like peptide 1. This study uncovers the opportunity to use properties of heparanase in management of diabetes.
Collapse
Affiliation(s)
- Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Farnaz Taghizadeh
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas Pulinilkunnil
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - James D Johnson
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Liu CC, Zhao N, Yamaguchi Y, Cirrito JR, Kanekiyo T, Holtzman DM, Bu G. Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-β clearance and aggregation in Alzheimer's disease. Sci Transl Med 2016; 8:332ra44. [PMID: 27030596 DOI: 10.1126/scitranslmed.aad3650] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Accumulation of amyloid-β (Aβ) peptide in the brain is the first critical step in the pathogenesis of Alzheimer's disease (AD). Studies in humans suggest that Aβ clearance from the brain is frequently impaired in late-onset AD. Aβ accumulation leads to the formation of Aβ aggregates, which injure synapses and contribute to eventual neurodegeneration. Cell surface heparan sulfates (HSs), expressed on all cell types including neurons, have been implicated in several features in the pathogenesis of AD including its colocalization with amyloid plaques and modulatory role in Aβ aggregation. We show that removal of neuronal HS by conditional deletion of the Ext1 gene, which encodes an essential glycosyltransferase for HS biosynthesis, in postnatal neurons of amyloid model APP/PS1 mice led to a reduction in both Aβ oligomerization and the deposition of amyloid plaques. In vivo microdialysis experiments also detected an accelerated rate of Aβ clearance in the brain interstitial fluid, suggesting that neuronal HS either inhibited or represented an inefficient pathway for Aβ clearance. We found that the amounts of various HS proteoglycans (HSPGs) were increased in postmortem human brain tissues from AD patients, suggesting that this pathway may contribute directly to amyloid pathogenesis. Our findings have implications for AD pathogenesis and provide insight into therapeutic interventions targeting Aβ-HSPG interactions.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - John R Cirrito
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361100, China.
| |
Collapse
|
40
|
Cui H, King AE, Jacobson GA, Small DH. Peripheral treatment with enoxaparin exacerbates amyloid plaque pathology in Tg2576 mice. J Neurosci Res 2016; 95:992-999. [DOI: 10.1002/jnr.23880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Cui
- College of Life Science; Jiangxi Normal University; Nanchang China
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania Australia
- School of Medicine; University of Tasmania; Hobart Tasmania Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania; Hobart Tasmania Australia
| | - Glenn A. Jacobson
- School of Medicine; University of Tasmania; Hobart Tasmania Australia
| | - David H. Small
- Menzies Institute for Medical Research; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
41
|
Digre A, Nan J, Frank M, Li JP. Heparin interactions with apoA1 and SAA in inflammation-associated HDL. Biochem Biophys Res Commun 2016; 474:309-314. [PMID: 27105909 DOI: 10.1016/j.bbrc.2016.04.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
Apolipoprotein A1 (apoA1) is the main protein component responsible for transportation of cholesterol on high-density lipoprotein (HDL). Serum amyloid A (SAA) is an acute phase protein associated with HDL. Apart from their physiological functions, both apoA1 and SAA have been identified as 'amyloidogenic peptides'. We report herein that the polysaccharide heparin interacts with both apoA1 and SAA in HDL isolated from plasma of inflamed mice. The reaction is rapid, forming complex aggregates composed of heparin, apoA1 and SAA as revealed by gel electrophoresis. This interaction is dependent on the size and concentration of added heparin. Mass spectrometry analysis of peptides derived from chemically crosslinked HDL-SAA particles detected multiple crosslinks between apoA1 and SAA, indicating close proximity (within 25 Å) of these two proteins on the HDL surface, providing a molecular and structural mechanism for the simultaneous binding of heparin to apoA1 and SAA.
Collapse
Affiliation(s)
- Andreas Digre
- Department of Medical Biochemistry and Microbiology/SciLifeLab, University of Uppsala, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | | | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, University of Uppsala, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
42
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
43
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
44
|
Kovalchuk Ben-Zaken O, Nissan I, Tzaban S, Taraboulos A, Zcharia E, Matzger S, Shafat I, Vlodavsky I, Tal Y. Transgenic over-expression of mammalian heparanase delays prion disease onset and progression. Biochem Biophys Res Commun 2015; 464:698-704. [PMID: 26168721 DOI: 10.1016/j.bbrc.2015.06.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022]
Abstract
Cellular heparan sulfate (HS) has a dual role in scrapie pathogenesis; it is required for PrP(Sc) (scrapie prion protein) formation and facilitates infection of cells, mediating cellular uptake of prions. We examined the involvement of heparanase, a mammalian endoglycosidase degrading HS, in scrapie infection. In cultured cells, heparanase treatment or over-expression resulted in a profound decrease in PrP(Sc). Moreover, disease onset and progression were dramatically delayed in scrapie infected transgenic mice over-expressing heparanase. Together, our results provide direct in vivo evidence for the involvement of intact HS in the pathogenesis of prion disease and the protective role of heparanase both in terms of susceptibility to infection and disease progression.
Collapse
Affiliation(s)
- O Kovalchuk Ben-Zaken
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel; Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel
| | - I Nissan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - S Tzaban
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - A Taraboulos
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - E Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - S Matzger
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - I Shafat
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel
| | - I Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, 31096, Haifa, Israel.
| | - Y Tal
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| |
Collapse
|
45
|
Oskarsson ME, Singh K, Wang J, Vlodavsky I, Li JP, Westermark GT. Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis. J Biol Chem 2015; 290:15121-32. [PMID: 25922077 PMCID: PMC4463455 DOI: 10.1074/jbc.m114.631697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/16/2015] [Indexed: 12/23/2022] Open
Abstract
Deposition of β cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mm glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that β cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of β cells.
Collapse
Affiliation(s)
| | | | - Jian Wang
- Ningxia People's Hospital, Yinchuan 750021, China, and Medical Biochemistry and Microbiology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Israel Vlodavsky
- the Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jin-Ping Li
- Medical Biochemistry and Microbiology, Uppsala University, Box 571, 75123 Uppsala, Sweden,
| | | |
Collapse
|