1
|
Perez ÉS, de Paula TG, Zanella BTT, de Moraes LN, da Silva Duran BO, Dal-Pai-Silva M. Short communication: Differential expression of piwi1 and piwi2 genes in tissues of tambacu and zebrafish: A possible relationship with the indeterminate muscle growth. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111730. [PMID: 39179021 DOI: 10.1016/j.cbpa.2024.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with piwi genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of piwi 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of piwi1 and piwi2 between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. Piwi genes can represent potential candidates involved with indeterminate muscle growth control.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leonardo Nazário de Moraes
- Molecular Laboratory of Clinical Hospital of Botucatu, Medical School, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
2
|
Chen X, Wei C, Huang L, Syrigos K, Li Y, Li P. Non-coding RNAs regulate mitochondrial dynamics in the development of gastric cancer. Front Mol Biosci 2023; 10:1107651. [PMID: 36714260 PMCID: PMC9877238 DOI: 10.3389/fmolb.2023.1107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuang Wei
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| |
Collapse
|
3
|
Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells. Sci Rep 2022; 12:10730. [PMID: 35750721 PMCID: PMC9232517 DOI: 10.1038/s41598-022-14414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20-35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Collapse
|
4
|
Ghosh B, Sarkar A, Mondal S, Bhattacharya N, Khatua S, Ghosh Z. piRNAQuest V.2: an updated resource for searching through the piRNAome of multiple species. RNA Biol 2021; 19:12-25. [PMID: 34965192 PMCID: PMC8786328 DOI: 10.1080/15476286.2021.2010960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PIWI interacting RNAs (piRNAs) have emerged as important gene regulators in recent times. Since the release of our first version of piRNAQuest in 2014, lots of novel piRNAs have been annotated in different species other than human, mouse and rat. Such new developments in piRNA research have led us to develop an updated database piRNAQuest V.2. It consists of 92,77,689 piRNA entries for 25 new species of different phylum along with human, mouse and rat. Besides providing primary piRNA features which include their genomic location, with further information on piRNAs overlapping with repeat elements, pseudogenes and syntenic regions, etc., the novel features of this version includes (i) density based cluster prediction, (ii) piRNA expression profile across various healthy and disease systems and (iii) piRNA target prediction. The concept of density-based piRNA cluster identification is robust as it does not consider parametric distribution in its model. The piRNA expression profile for 21 disease systems including cancer have been hosted in addition to 32 tissue specific piRNA expression profile for various species. Further, the piRNA target prediction section includes both predicted and curated piRNA targets within eight disease systems and developmental stages of mouse testis. Further, users can visualize the piRNA-target duplex structure and the ping-pong signature pattern for all the ping-pong piRNA partners in different species. Overall, piRNAQuest V.2 is an updated user-friendly database which will serve as a useful resource to survey, search and retrieve information on piRNAs for multiple species. This freely accessible database is available at http://dibresources.jcbose.ac.in/zhumur/pirnaquest2.
Collapse
Affiliation(s)
- Byapti Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Arijita Sarkar
- Division of Bioinformatics, Bose Institute, Kolkata, India.,Present Affiliation: Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudip Mondal
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, India
| | - Sunirmal Khatua
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
5
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Chu C, Yu L, Henry-Berger J, Ru YF, Kocer A, Champroux A, Li ZT, He M, Xie SS, Ma WB, Ni MJ, Ni ZM, Guo YL, Fei ZL, Gou LT, Liu Q, Sharma S, Zhou Y, Liu MF, Chen CD, Eamens AL, Nixon B, Zhou YC, Drevet JR, Zhang YL. Knockout of glutathione peroxidase 5 down-regulates the piRNAs in the caput epididymidis of aged mice. Asian J Androl 2021; 22:590-601. [PMID: 32270769 PMCID: PMC7705982 DOI: 10.4103/aja.aja_3_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian epididymis not only plays a fundamental role in the maturation of spermatozoa, but also provides protection against various stressors. The foremost among these is the threat posed by oxidative stress, which arises from an imbalance in reactive oxygen species and can elicit damage to cellular lipids, proteins, and nucleic acids. In mice, the risk of oxidative damage to spermatozoa is mitigated through the expression and secretion of glutathione peroxidase 5 (GPX5) as a major luminal scavenger in the proximal caput epididymidal segment. Accordingly, the loss of GPX5-mediated protection leads to impaired DNA integrity in the spermatozoa of aged Gpx5-/- mice. To explore the underlying mechanism, we have conducted transcriptomic analysis of caput epididymidal epithelial cells from aged (13 months old) Gpx5-/- mice. This analysis revealed the dysregulation of several thousand epididymal mRNA transcripts, including the downregulation of a subgroup of piRNA pathway genes, in aged Gpx5-/- mice. In agreement with these findings, we also observed the loss of piRNAs, which potentially bind to the P-element-induced wimpy testis (PIWI)-like proteins PIWIL1 and PIWIL2. The absence of these piRNAs was correlated with the elevated mRNA levels of their putative gene targets in the caput epididymidis of Gpx5-/- mice. Importantly, the oxidative stress response genes tend to have more targeting piRNAs, and many of them were among the top increased genes upon the loss of GPX5. Taken together, our findings suggest the existence of a previously uncharacterized somatic piRNA pathway in the mammalian epididymis and its possible involvement in the aging and oxidative stress-mediated responses.
Collapse
Affiliation(s)
- Chen Chu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Yu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joelle Henry-Berger
- Genetics Reproduction and Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Universitι Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Yan-Fei Ru
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayhan Kocer
- Genetics Reproduction and Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Universitι Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Alexandre Champroux
- Genetics Reproduction and Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Universitι Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Zhi-Tong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng-Song Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Bin Ma
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Jie Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Mei Ni
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Li Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao-Liang Fei
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan-Tao Gou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Qiang Liu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Sciences, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Sciences, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yu-Chuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joël R Drevet
- Genetics Reproduction and Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Universitι Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Yong-Lian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
8
|
Lin Y, Zheng J, Lin D. PIWI-interacting RNAs in human cancer. Semin Cancer Biol 2020; 75:15-28. [PMID: 32877760 DOI: 10.1016/j.semcancer.2020.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
P-element-induced wimpy testis (PIWI) interacting RNAs (piRNAs) are a class of small regulatory RNAs mechanistically similar to but much less studied than microRNAs and small interfering RNAs. Today the best understood function of piRNAs is transposon control in animal germ cells, which has earned them the name 'guardians of the germline'. Several molecular/cellular characteristics of piRNAs, including high sequence diversity, lack of secondary structures, and target-oriented generation seem to serve this purpose. Recently, aberrant expressions of piRNAs and PIWI proteins have been implicated in a variety of malignant tumors and associated with cancer hallmarks such as cell proliferation, inhibited apoptosis, invasion, metastasis and increased stemness. Researchers have also demonstrated multiple mechanisms of piRNA-mediated target deregulation associated with cancer initiation, progression or dissemination. We review current research findings on the biogenesis, normal functions and cancer associations of piRNAs, highlighting their potentials as cancer diagnostic/prognostic biomarkers and therapeutic tools. Whenever applicable, we draw connections with other research fields to encourage intercommunity conversations. We also offer recommendations and cautions regarding the general process of cancer-related piRNA studies and the methods/tools used at each step. Finally, we call attention to some issues that, if left unsolved, might impede the future development of this field.
Collapse
Affiliation(s)
- Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
9
|
Muhammad A, Waheed R, Khan NA, Jiang H, Song X. piRDisease v1.0: a manually curated database for piRNA associated diseases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5527147. [PMID: 31267133 PMCID: PMC6606758 DOI: 10.1093/database/baz052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022]
Abstract
In recent years, researches focusing on PIWI-interacting RNAs (piRNAs) have increased rapidly. It has been revealed that piRNAs have strong association with a wide range of diseases; thus, it becomes very important to understand piRNAs’ role(s) in disease diagnosis, prognosis and assessment of treatment response. We searched more than 2500 articles using keywords, such as `PIWI-interacting RNAs’ and `piRNAs’, and further scrutinized the articles to collect piRNAs-disease association data. These data are highly complex and heterogeneous due to various types of piRNA idnetifiers (IDs) and different reference genome versions. We put considerable efforts into removing redundancy and anomalies and thus homogenized the data. Finally, we developed the piRDisease database, which incorporates experimentally supported data for piRNAs’ relationship with wide range of diseases. The piRDisease (piRDisease v1.0) is a novel, comprehensive and exclusive database resource, which provides 7939 manually curated associations of experimentally supported 4796 piRNAs involved in 28 diseases. piRDisease facilitates users by providing detailed information of the piRNA in respective disease, explored by experimental support, brief description, sequence and location information. Considering piRNAs’ role(s) in wide range of diseases, it is anticipated that huge amount of data would be produced in the near future. We thus offer a submitting page, on which users or researches can contribute in to update our piRDisease database.
Collapse
Affiliation(s)
- Azhar Muhammad
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Department of Biosciences, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Ramay Waheed
- Pattern Recognition and Information Retrieval lab, University of Science and Technology Beijing, Beijing 100083, China
| | - Nauman Ali Khan
- Key Laboratory of Wireless Optical Communication, Chinese Academy of Sciences, University of Science and Technology China, Hefei 230026, China
| | - Hong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
10
|
Functions and mechanism of noncoding RNA in the somatic cells of the testis. ZYGOTE 2019; 28:87-92. [PMID: 31787116 DOI: 10.1017/s0967199419000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ncRNAs are involved in numerous biological processes by regulating gene expression and cell stability. Studies have shown that ncRNAs also contribute to spermatogenesis. Leydig cells (LCs) and Sertoli cells (SCs) are somatic cells of the testis that support spermatogenesis and are vital to male fertility. In this review, we summarized the findings from studies on ncRNAs in SCs and LCs. In SCs, ncRNAs play key roles in phagocytosis, immunoprotection and development of SCs. In LCs, ncRNAs are involved in steroidogenesis, in particular production of testosterone as well as development of LCs. Here, we discuss the possible target genes and functions of ncRNAs in both types of cells. These ncRNAs regulate the expression of target genes or mRNA coding sequence regions, resulting in a chain reaction that influences cell function. In addition, microRNAs, lncRNAs, piRNA-like RNAs (pilRNAs) and natural antisense transcripts (NATs) are discussed in this review. In summary, we suggest that these ncRNAs might act in coordination to control spermatogenesis and maintain the environmental homeostasis of the testis.
Collapse
|
11
|
Jia R, He X, Ma W, Lei Y, Cheng H, Sun H, Huang J, Wang K. Aptamer-Functionalized Activatable DNA Tetrahedron Nanoprobe for PIWI-Interacting RNA Imaging and Regulating in Cancer Cells. Anal Chem 2019; 91:15107-15113. [PMID: 31691558 DOI: 10.1021/acs.analchem.9b03819] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been reported that PIWI-interacting RNAs (piRNAs) play critical roles in activating invasion and metastasis, evading growth suppressors, and sustaining proliferative signaling of cancer and can be regarded as a novel biomarker candidate. Thus, it is necessary to develop an effective method for imaging and regulating cancer-related piRNAs to diagnose and treat cancers. Herein, we designed aptamer-functionalized activatable DNA tetrahedron nanoprobes (apt-ADTNs) to image and regulate endogenous piRNAs in cancer cells. As proof of concept, overexpressed piRNA-36026 in MCF-7 cells was used for this study. In brief, aptamer AS1411 and piRNA-36026 antisequence with Cy5 fluorescent dye are appended from the DNA tetrahedron; then, a short oligonucleotide with black hole quencher 2 (Q-oligo) is complementary with piRNA-36026 antisequence to quench the fluorescence of Cy5. The apt-ADTNs can recognize the MCF-7 cells through aptamer AS1411, and then enter the cells. Q-oligo is detached from the apt-ADTNs because of the binding between apt-ADTNs and piRNA-36026, leading to the recovery of the Cy5 fluorescence signal. Meanwhile, the hybridization of apt-ADTNs and piRNA-36026 results in down-regulating of dissociative piRNA-36026 in cytoplasm and the subsequent apoptosis of MCF-7 cells. As the achievement of synchronously imaging and regulating piRNA-36026 in MCF-7 cells, we believe that this design holds great promise in application of diagnosis and therapy for cancer.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
12
|
piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends Immunol 2019; 40:998-1010. [DOI: 10.1016/j.it.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
13
|
Moon SU, Park Y, Park MG, Song SK, Jeong SH, Lee YS, Heo HJ, Jung WY, Kim S. Theragnosis by a miR-141-3p molecular beacon: simultaneous detection and sensitization of 5-fluorouracil resistant colorectal cancer cells through the activation of the TRIM13-associated apoptotic pathway. Chem Commun (Camb) 2019; 55:7466-7469. [PMID: 31184647 DOI: 10.1039/c9cc01944h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a molecular beacon targeting miR-141-3p, aberrantly increased in 5-fluorouracil-resistant colorectal cancer cells (R-CRCCs). It consists of a fluorophore-labeled oligonucleotide, antisense to miR-141-3p, and a quencher. It detected R-CRCCs and recovered the chemosensitivity of them to 5-fluorouracil by hybridization with miR-141-3p, which is applicable to cancer treatment.
Collapse
Affiliation(s)
- Sung Ung Moon
- Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women's University, Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Republic of Korea
| | - Yongkeun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, 25 Simgok-ro 100 gil Seo-Gu, Incheon Metropolitan City, 22711, Republic of Korea
| | - Min Geun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, 25 Simgok-ro 100 gil Seo-Gu, Incheon Metropolitan City, 22711, Republic of Korea
| | - Sung Kyu Song
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, 25 Simgok-ro 100 gil Seo-Gu, Incheon Metropolitan City, 22711, Republic of Korea
| | - Seok Hoo Jeong
- Division of Gastroenterology, Department of Internal Medicine, Catholic Kwandong University International St. Mary's Hospital, 25 Simgok-ro 100 gil Seo-Gu, Incheon Metropolitan City, 22711, Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, 24 Beomil-ro 579 gil, Gangneung-si, Gangwon-do 25601, Republic of Korea.
| | - Hye Jung Heo
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, 24 Beomil-ro 579 gil, Gangneung-si, Gangwon-do 25601, Republic of Korea.
| | - Woon Yong Jung
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Kyoungchun-ro 153, Guri-si, Gyeonggi-do 11923, Republic of Korea.
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, 24 Beomil-ro 579 gil, Gangneung-si, Gangwon-do 25601, Republic of Korea.
| |
Collapse
|
14
|
Bhuvaneshwar K, Harris M, Gusev Y, Madhavan S, Iyer R, Vilboux T, Deeken J, Yang E, Shankar S. Genome sequencing analysis of blood cells identifies germline haplotypes strongly associated with drug resistance in osteosarcoma patients. BMC Cancer 2019; 19:357. [PMID: 30991985 PMCID: PMC6466653 DOI: 10.1186/s12885-019-5474-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children. Survival remains poor among histologically poor responders, and there is a need to identify them at diagnosis to avoid delivering ineffective therapy. Genetic variation contributes to a wide range of response and toxicity related to chemotherapy. The aim of this study is to use sequencing of blood cells to identify germline haplotypes strongly associated with drug resistance in osteosarcoma patients. METHODS We used sequencing data from two patient datasets, from Inova Hospital and the NCI TARGET. We explored the effect of mutation hotspots, in the form of haplotypes, associated with relapse outcome. We then mapped the single nucleotide polymorphisms (SNPs) in these haplotypes to genes and pathways. We also performed a targeted analysis of mutations in Drug Metabolizing Enzymes and Transporter (DMET) genes associated with tumor necrosis and survival. RESULTS We found intronic and intergenic hotspot regions from 26 genes common to both the TARGET and INOVA datasets significantly associated with relapse outcome. Among significant results were mutations in genes belonging to AKR enzyme family, cell-cell adhesion biological process and the PI3K pathways; as well as variants in SLC22 family associated with both tumor necrosis and overall survival. The SNPs from our results were confirmed using Sanger sequencing. Our results included known as well as novel SNPs and haplotypes in genes associated with drug resistance. CONCLUSION We show that combining next generation sequencing data from multiple datasets and defined clinical data can better identify relevant pathway associations and clinically actionable variants, as well as provide insights into drug response mechanisms.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Michael Harris
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, USA
| | | | | | - John Deeken
- Inova Translational Medicine Institute, Fairfax, VA USA
| | - Elizabeth Yang
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
- George Washington University School of Medicine, Washington DC, USA
- Virginia Commonwealth University School of Medicine, Inova Campus, Falls Church, VA USA
| | - Sadhna Shankar
- Inova Children’s Hospital, Falls Church, VA USA
- Center for Cancer and Blood Disorders of Northern Virginia, Pediatric Specialists of Virginia, Falls Church, VA USA
| |
Collapse
|
15
|
Perera BPU, Tsai ZTY, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics 2019; 14:504-521. [PMID: 30955436 DOI: 10.1080/15592294.2019.1600389] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that associate with PIWI proteins for transposon silencing via DNA methylation and are highly expressed and extensively studied in the germline. Mature germline piRNAs typically consist of 24-32 nucleotides, with a strong preference for a 5' uridine signature, an adenosine signature at position 10, and a 2'-O-methylation signature at the 3' end. piRNA presence in somatic tissues, however, is not well characterized and requires further systematic evaluation. In the current study, we identified piRNAs and associated machinery from mouse somatic tissues representing the three germ layers. piRNA specificity was improved by combining small RNA size selection, sodium periodate treatment enrichment for piRNA over other small RNA, and small RNA next-generation sequencing. We identify PIWIL1, PIWIL2, and PIWIL4 expression in brain, liver, kidney, and heart. Of note, somatic piRNAs are shorter in length and tissue-specific, with increased occurrence of unique piRNAs in hippocampus and liver, compared to the germline. Hippocampus contains 5,494 piRNA-like peaks, the highest expression among all tested somatic tissues, followed by cortex (1,963), kidney (580), and liver (406). The study identifies 26 piRNA sequence species and 40 piRNA locations exclusive to all examined somatic tissues. Although piRNA expression has long been considered exclusive to the germline, our results support that piRNAs are expressed in several somatic tissues that may influence piRNA functions in the soma. Once confirmed, the PIWI/piRNA system may serve as a potential tool for future research in epigenome editing to improve human health by manipulating DNA methylation.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Zing Tsung-Yeh Tsai
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Mathia L Colwell
- c Department of Animal Science , University of Minnesota , St. Paul , MN , USA
| | - Tamara R Jones
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Kai Wang
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Maureen A Sartor
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA.,d Department of Biostatistics, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Christopher Faulk
- c Department of Animal Science , University of Minnesota , St. Paul , MN , USA
| | - Dana C Dolinoy
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA.,e Department of Nutritional Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
16
|
Billmyre KK, Doebley AL, Spichal M, Heestand B, Belicard T, Sato-Carlton A, Flibotte S, Simon M, Gnazzo M, Skop A, Moerman D, Carlton PM, Sarkies P, Ahmed S. The meiotic phosphatase GSP-2/PP1 promotes germline immortality and small RNA-mediated genome silencing. PLoS Genet 2019; 15:e1008004. [PMID: 30921322 PMCID: PMC6456222 DOI: 10.1371/journal.pgen.1008004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Germ cell immortality, or transgenerational maintenance of the germ line, could be promoted by mechanisms that could occur in either mitotic or meiotic germ cells. Here we report for the first time that the GSP-2 PP1/Glc7 phosphatase promotes germ cell immortality. Small RNA-induced genome silencing is known to promote germ cell immortality, and we identified a separation-of-function allele of C. elegans gsp-2 that is compromised for germ cell immortality and is also defective for small RNA-induced genome silencing and meiotic but not mitotic chromosome segregation. Previous work has shown that GSP-2 is recruited to meiotic chromosomes by LAB-1, which also promoted germ cell immortality. At the generation of sterility, gsp-2 and lab-1 mutant adults displayed germline degeneration, univalents, histone methylation and histone phosphorylation defects in oocytes, phenotypes that mirror those observed in sterile small RNA-mediated genome silencing mutants. Our data suggest that a meiosis-specific function of GSP-2 ties small RNA-mediated silencing of the epigenome to germ cell immortality. We also show that transgenerational epigenomic silencing at hemizygous genetic elements requires the GSP-2 phosphatase, suggesting a functional link to small RNAs. Given that LAB-1 localizes to the interface between homologous chromosomes during pachytene, we hypothesize that small localized discontinuities at this interface could promote genomic silencing in a manner that depends on small RNAs and the GSP-2 phosphatase.
Collapse
Affiliation(s)
- Katherine Kretovich Billmyre
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anna-Lisa Doebley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maya Spichal
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bree Heestand
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tony Belicard
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Institute for Clinical Sciences, Imperial College London, London, United Kingdom
| | | | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Megan Gnazzo
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ahna Skop
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Donald Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, London, United Kingdom
- Institute for Clinical Sciences, Imperial College London, London, United Kingdom
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
17
|
Park YK, Jung WY, Park MG, Song SK, Lee YS, Heo H, Kim S. Bioimaging of multiple piRNAs in a single breast cancer cell using molecular beacons. MEDCHEMCOMM 2017; 8:2228-2232. [PMID: 30108737 PMCID: PMC6072429 DOI: 10.1039/c7md00515f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Simultaneous bioimaging of piR-36026 and piR-36743 using molecular beacons successfully visualized 4 different subtypes of breast cancer.
Collapse
Affiliation(s)
- Yong Keun Park
- Department of Surgery , Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Woon Yong Jung
- Department of Pathology , Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Min Geun Park
- Department of Surgery , Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Sung Kyu Song
- Department of Surgery , Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence , College of Medicine , Catholic Kwandong University , Gangneung-si , Gangwon-do 270-701 , Republic of Korea . ; Tel: +82 32 290 2771
- Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Hyejung Heo
- Institute for Bio-Medical Convergence , College of Medicine , Catholic Kwandong University , Gangneung-si , Gangwon-do 270-701 , Republic of Korea . ; Tel: +82 32 290 2771
- Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| | - Soonhag Kim
- Institute for Bio-Medical Convergence , College of Medicine , Catholic Kwandong University , Gangneung-si , Gangwon-do 270-701 , Republic of Korea . ; Tel: +82 32 290 2771
- Catholic Kwandong University International St. Mary's Hospital , Incheon Metropolitan City , 404-834 , Republic of Korea
| |
Collapse
|
18
|
Choong OK, Lee DS, Chen CY, Hsieh PCH. The roles of non-coding RNAs in cardiac regenerative medicine. Noncoding RNA Res 2017; 2:100-110. [PMID: 30159427 PMCID: PMC6096405 DOI: 10.1016/j.ncrna.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of non-coding RNAs (ncRNAs) has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects.
Collapse
Affiliation(s)
- Oi Kuan Choong
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Desy S Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Patrick C H Hsieh
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University & Hospital, Taipei 100, Taiwan
| |
Collapse
|
19
|
Yuan S, Tang C, Schuster A, Zhang Y, Zheng H, Yan W. Paternal pachytene piRNAs are not required for fertilization, embryonic development and sperm-mediated epigenetic inheritance in mice. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw021. [PMID: 28983410 PMCID: PMC5625633 DOI: 10.1093/eep/dvw021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 05/30/2023]
Abstract
Pachytene piRNAs are MIWI-/MILI-bound small RNAs abundantly expressed in pachytene spermatocytes and round spermatids in adult mouse testes. Miwi knockout (KO) male mice are sterile due to spermiogenic arrest. In Caenorhabditis elegans, sperm-borne piRNAs appear to have an epigenetic role during fertilization and development because progeny of individuals with piRNA-deficient gametes display a progressive loss of fertility after several generations. In mice, it remains unknown whether pachytene piRNA-deficient round spermatids can produce offspring, and whether the progeny of Miwi mutants also exhibits transgenerational, progressive fertility loss. Here, we report that Miwi KO round spermatids could fertilize both wild-type (WT) and Miwi KO oocytes through round spermatid injection, and could produce healthy and fertile offspring despite the global downregulation of both MIWI-/MILI-bound pachytene piRNAs. Progeny of ROSI-derived heterozygotes, both male and female, displayed normal fertility for at least three generations when bred with either WT or Miwi KO females. Our data indicate that aberrant MIWI-/MILI-bound pachytene piRNA profiles in spermatids do not affect fertilization, early embryonic development, or fertility of the offspring, suggesting that pachytene piRNAs might not be required for paternal transgenerational epigenetic inheritance in mice.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
| | - Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
| | - Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
20
|
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: A Database for Sperm-Borne RNA Contents. Biol Reprod 2016; 95:99. [PMID: 27628216 PMCID: PMC5178153 DOI: 10.1095/biolreprod.116.142190] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022] Open
Abstract
Since their discovery approximately three decades ago, sperm-borne RNAs, both large/small and coding/noncoding, have been reported in multiple organisms, and some have been implicated in spermatogenesis, early development, and epigenetic inheritance. Despite these advances, isolation, quantification, and annotation of sperm-borne RNAs remain nontrivial. The yields and subspecies of sperm-borne RNAs isolated from sperm can vary drastically depending on the methods used, and no cross-species analyses of sperm RNA contents have ever been conducted using a standardized sperm RNA isolation protocol. To address these issues, we developed a simple RNA isolation method that is applicable to sperm of various species, thus allowing for reliable interspecies comparisons. Based on RNA-Seq analyses, we established SpermBase (
www.spermbase.org), a database dedicated to sperm-borne RNA profiling of multiple species. Currently, SpermBase contains large and small RNA expression data for mouse, rat, rabbit, and human total sperm and sperm heads. By analyzing large and small RNAs for conserved features, we found that many sperm-borne RNA species were conserved across all four species analyzed, and among the conserved small RNAs, sperm-borne tRNA-derived small noncoding RNAs and miRNAs can target a large number of genes known to be critical for early development.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
- Department of Biology, University of Nevada, Reno, Reno, Nevada
- Correspondence: Wei Yan, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV 89557. E-mail:
| |
Collapse
|
21
|
Lee YJ, Moon SU, Park MG, Jung WY, Park YK, Song SK, Ryu JG, Lee YS, Heo HJ, Gu HN, Cho SJ, Ali BA, Al-Khedhairy AA, Lee I, Kim S. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon. Biomaterials 2016; 101:143-55. [PMID: 27289065 DOI: 10.1016/j.biomaterials.2016.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
Recently, PIWI-interacting small non-coding RNAs (piRNAs) have emerged as novel cancer biomarkers candidate because of their high expression level in various cancer types and role in the control of tumor suppressor genes. In this study, a novel breast cancer theragnostics probe based on a single system targeting the piRNA-36026 (piR-36026) molecular pathway was developed using a piR-36026 molecular beacon (MB). The piR-36026 MB successfully visualized endogenous piR-36026 biogenesis, which is highly expressed in MCF7 cells (a human breast cancer cell line), and simultaneously inhibited piR-36026-mediated cancer progression in vitro and in vivo. We discovered two tumor suppressor proteins, SERPINA1 and LRAT, that were directly regulated as endogenous piR-36026 target genes in MCF7 cells. Furthermore, multiplex bioimaging of a single MCF7 cell following treatment with piR-36026 MB clearly visualized the direct molecular interaction of piRNA-36026 with SERPINA1 or LRAT and subsequent molecular therapeutic responses including caspase-3 and PI in the nucleus.
Collapse
Affiliation(s)
- Youn Jung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Sung Ung Moon
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Min Geun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Yong Keun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Sung Kyu Song
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Je Gyu Ryu
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Hye Jung Heo
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Ha Na Gu
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Su Jeong Cho
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea
| | - Bahy A Ali
- Al-Jeraisy DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Nucleic Acids Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Abdulaziz A Al-Khedhairy
- Al-Jeraisy DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ilkyun Lee
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| |
Collapse
|
22
|
Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin Fan, Li C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 2016; 6:26852. [PMID: 27229484 PMCID: PMC4882596 DOI: 10.1038/srep26852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Some documented evidences proved small RNAs (sRNA) and targeted genes are involved in mammalian testicular development and spermatogenesis. However, the detailed molecular regulation mechanisms of them remain largely unknown so far. In this study, we obtained a total of 10,716 mRNAs, 67 miRNAs and 16,953 piRNAs which were differentially expressed between LC and LW pig breeds or between the two sexual maturity stages. Of which, we identified 16 miRNAs and 28 targeted genes possibly related to spermatogenesis; 14 miRNA and 18 targeted genes probably associated with cell adhesion related testis development. We also annotated 579 piRNAs which could potentially regulate cell death, nucleosome organization and other basic biology process, which implied that those piRNAs might be involved in sexual maturation difference. The integrated network analysis results suggested that some differentially expressed genes were involved in spermatogenesis through the ECM-receptor interaction, focal adhesion, Wnt and PI3K-Akt signaling pathways, some particular miRNAs have the negative regulation roles and some special piRNAs have the positive and negative regulation roles in testicular development. Our data provide novel insights into the molecular expression and regulation similarities and diversities of spermatogenesis and testicular development in different pig breeds at different stages of sexual maturity.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Shi
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Jiajian Tan
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Yuanzhu Xiong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Fan
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Schuster A, Skinner MK, Yan W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw001. [PMID: 27390623 PMCID: PMC4933025 DOI: 10.1093/eep/dvw001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557-0330, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- *Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel:
+509-335-1524
; Fax:
+509-335-2176
; E-mail:
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557-0330, USA
- These authors contributed equally to the study
| |
Collapse
|
24
|
Parrish NF, Fujino K, Shiromoto Y, Iwasaki YW, Ha H, Xing J, Makino A, Kuramochi-Miyagawa S, Nakano T, Siomi H, Honda T, Tomonaga K. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA (NEW YORK, N.Y.) 2015; 21:1691-1703. [PMID: 26283688 PMCID: PMC4574747 DOI: 10.1261/rna.052092.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Shiromoto
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hongseok Ha
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
25
|
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KSS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S, Lam WL. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 2015; 5:10423. [PMID: 26013764 PMCID: PMC4444957 DOI: 10.1038/srep10423] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Katey S S Enfield
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Carolyn J Brown
- 1] Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada [2] Department of Medical Genetics, University of British Columbia, Vancouver, B. C. V6T 1Z3 Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, B.C. V5Z 1L3 Canada
| |
Collapse
|