1
|
Zeng H, Zeng J, Meng B, Peng J, Rao L. Identification and Characterization of a Fungal Monoterpene Synthase Responsible for the Biosynthesis of Geraniol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39449585 DOI: 10.1021/acs.jafc.4c06818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Geraniol, an acyclic monoterpenoid of substantial value extracted from the essential oils of various aromatic plants, holds significant commercial and industrial importance in the realms of food, cosmetics, medicine, and bioenergy. Geraniol synthase, which is responsible for geraniol production, has been identified in only several plant species to date. Here, we present the first cloning and characterization of a geraniol synthase (PgfTPS) from Penicillium griseofulvum. This enzyme demonstrates pronounced specificity in catalyzing the conversion of geranyl diphosphate into geraniol. Moreover, through protein modeling and site-directed mutagenesis, we have identified key active-site residues crucial for the catalytic function of PgfTPS. Finally, we utilized engineered Saccharomyces cerevisiae as a host for PgfTPS expression to facilitate geraniol production. Our findings not only advance the development of efficient biocatalysts for geraniol generation but also establish a fundamental basis for further exploration into fungal monoterpene biosynthesis.
Collapse
Affiliation(s)
- Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiatong Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Beilin Meng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jianmei Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
2
|
Mus AA, Gansau JA, Kumar V, Rusdi NA. Isolation and characterisation of sesquiterpene synthase from aromatic orchid Phalaenopsis bellina (Rchb.f.) Christenson. Mol Biol Rep 2024; 51:1000. [PMID: 39302551 DOI: 10.1007/s11033-024-09943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Phalaenopsis bellina, an orchid native to Borneo, is renowned for its unique appearance. It releases distinct fragrances, which have been linked to the presence of terpenoids. However, the identification and study of sesquiterpene synthase in P. bellina remain limited. In this study, we examines the functional characterisation of terpene synthase (TPS) from P. bellina, known as PbTS, through recombinant protein expression and its manifestation in the flower. METHODS AND RESULTS Gene annotation of PbTS revealed that the inferred peptide sequence of PbTS comprises 1,680 bp nucleotides encoding 559 amino acids with an estimated molecular mass of 65.2 kDa and a pI value of 5.4. A similarity search against GenBank showed that PbTS shares similarities with the previously published partial sequence of P. bellina (ABW98504.1) and Phalaenopsis equestris (XP_020597359.1 and ABW98503.1). Intriguingly, the phylogenetic analysis places the PbTS gene within the TPS-a group. In silico analysis of PbTS demonstrated stable interactions with farnesyl pyrophosphate (FPP), geranyl pyrophosphate (GPP), and geranylgeranyl pyrophosphate (GGPP). To verify this activity, an in vitro enzyme assay was performed on the PbTS recombinant protein, which successfully converted FPP, GPP, and GGPP into acyclic sesquiterpene β-farnesene, yielding approximately 0.03 mg/L. Expressional analysis revealed that the PbTS transcript was highly expressed in P. bellina, but its level did not correlate with β-farnesene levels across various flowering time points and stages. CONCLUSION The insights gained from this study will enhance the understanding of terpenoid production in P. bellina and aid in the discovery of novel fragrance-related genes in other orchid species.
Collapse
Affiliation(s)
- Ahmad Asnawi Mus
- BioAgriTech Research Group (BioATR), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- BioAgriTech Research Group (BioATR), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nor Azizun Rusdi
- Tissue Culture Laboratory, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
3
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Cong Z, Yin Q, Tian K, Mukoma NJ, Ouyang L, Hsiang T, Zhang L, Jiang L, Liu X. Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases. J Fungi (Basel) 2024; 10:350. [PMID: 38786705 PMCID: PMC11122449 DOI: 10.3390/jof10050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.
Collapse
Affiliation(s)
- Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Kunhong Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Njeru Joe Mukoma
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210093, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| |
Collapse
|
5
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
6
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
7
|
Verma V, Srivastava A, Garg SK, Singh VP, Arora PK. Incorporating omics-based tools into endophytic fungal research. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 5:1-7. [PMID: 39416692 PMCID: PMC11446381 DOI: 10.1016/j.biotno.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 10/19/2024]
Abstract
Fungal endophytes are valuable sources of bioactive compounds with diverse applications. The exploration of these compounds not only contributes to our understanding of ecological interactions but also holds promise for the development of novel products with agricultural, medicinal, and industrial significance. Continued exploration of fungal endophyte diversity and understanding the ecological roles of bioactive compounds present opportunities for new discoveries and applications. Omics techniques, which include genomics, transcriptomics, proteomics, and metabolomics, contribute to the discovery of novel bioactive compounds produced by fungal endophytes with their potential applications. The omics techniques play a critical role in unraveling the complex interactions between fungal endophytes and their host plants, providing valuable insights into the molecular mechanisms and potential applications of these relationships. This review provides an overview of how omics techniques contribute to the study of fungal endophytes.
Collapse
Affiliation(s)
- Vinita Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Alok Srivastava
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | | |
Collapse
|
8
|
González-Hernández RA, Valdez-Cruz NA, Macías-Rubalcava ML, Trujillo-Roldán MA. Overview of fungal terpene synthases and their regulation. World J Microbiol Biotechnol 2023; 39:194. [PMID: 37169980 PMCID: PMC10175467 DOI: 10.1007/s11274-023-03635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.
Collapse
Affiliation(s)
- Ricardo A González-Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Martha L Macías-Rubalcava
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
9
|
Zhang YH, Shao ZT, Bi GM, Sun YW, Wang YM, Meng DL. Chemical constituents and biological activities of Artemisia argyi H.Lév. & vaniot. Nat Prod Res 2023; 37:1401-1405. [PMID: 34847785 DOI: 10.1080/14786419.2021.2010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Artemisia argyi is a widely distributed and inexpensive plant resource, and study on its chemical compositions and biological activities will provide an important basis for its food applications and pharmaceutical developments. In this study, fourteen known guaiane-type sesquiterpenes (1-14), four known eudesmane-type sesquiterpenes (15-18), two known germacranolide-type sesquiterpenes (19, 20), and eight other types of terpenoids (20-28) were isolated from the leaves of A. argyi by polyamide and ODS CC and HPLC. The structures of all compounds are determined by 1 D NMR (1H-NMR、13C-NMR) and literature comparison. Among them, compounds 1 and 8 were isolated from Chinese folk medicine A. argyi for the first time. Besides, the LPS-induced RAW264.7 cell model has been evaluated the anti-inflammatory activities in vitro by the Griess reagent. The results indicated that the guaianolide sesquiterpenoids obtained from A. argyi have an excellent ability to inhibit NO production, especially Argyin A, a guaianolide sesquiterpenoid with isovaleryloxy substitution.
Collapse
Affiliation(s)
- Yun-Hong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhu-Tao Shao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Guang-Ming Bi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yi-Wei Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yu-Meng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
10
|
Marešová J, Húdoková H, Sarvašová L, Fleischer P, Ditmarová Ľ, Blaženec M, Jamnická G. Dynamics of internal isoprenoid metabolites in young Picea abies (Norway spruce) shoots during drought stress conditions in springtime. PHYTOCHEMISTRY 2022; 203:113414. [PMID: 36057316 DOI: 10.1016/j.phytochem.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Currently, large areas of Picea abies (Norway spruce) stands in Europe are increasingly affected by drought and heat waves. Moreover, early spring drought has occurred with much higher frequency. Our work focuses on physiological changes induced by drought in four-year-old spruce seedlings during shoot elongation. We investigated drought effect on photosynthetic rate, concentration of abscisic acid and its metabolites, amount and composition of monoterpenes in needles of seedlings from five different provenances (altitude range 550-1280 m above sea level) in Western Carpathians. Spruce seedlings subjected to one-month drought stress of moderate intensity (about 50% of soil water content at the end of experiment) showed significant reduction of CO2 uptake and increased concentration of ABA related to untreated controls. Induced drought affected needle monoterpene content and composition. Observed changes in drought-induced physiological parameters were influenced by seedling provenance. The provenance from 920 m above sea level showed the greatest sensitivity to drought with significantly highest ABA content and, at the same time, a clear decline of CO2 uptake and amounts of total monoterpenes. Our results indicating intra-specific provenance-related variability in physiological response of spruce seedlings to drought may provide a basis for improved reforestation strategies in drought risk areas.
Collapse
Affiliation(s)
- Jana Marešová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Hana Húdoková
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia; Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, TG Masaryka 24, 96001, Zvolen, Slovakia.
| | - Lenka Sarvašová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Peter Fleischer
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia; Technical University in Zvolen, Faculty of Forestry, TG Masaryka 24, 96001, Zvolen, Slovakia
| | - Ľubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Miroslav Blaženec
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| | - Gabriela Jamnická
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovakia
| |
Collapse
|
11
|
Steglińska A, Pielech-Przybylska K, Janas R, Grzesik M, Borowski S, Kręgiel D, Gutarowska B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato ( Solanum tuberosum L.) Infection with Phytopathogens. Molecules 2022; 27:molecules27123708. [PMID: 35744835 PMCID: PMC9230024 DOI: 10.3390/molecules27123708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
- Correspondence:
| | - Katarzyna Pielech-Przybylska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland;
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| |
Collapse
|
12
|
Wen YH, Chen TJ, Jiang LY, Li L, Guo M, Peng Y, Chen JJ, Pei F, Yang JL, Wang RS, Gong T, Zhu P. Unusual (2 R,6 R)-bicyclo[3.1.1]heptane ring construction in fungal α- trans-bergamotene biosynthesis. iScience 2022; 25:104030. [PMID: 35345459 PMCID: PMC8956814 DOI: 10.1016/j.isci.2022.104030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Bergamotenes are bicyclo[3.1.1]heptane sesquiterpenes found abundantly in plants and fungi. Known bergamotene derivatives all possess (2S,6S)-bergamotene backbone. In this study, two (+)-α-trans-bergamotene derivatives (1 and 2) with unusual (2R,6R) configuration were isolated and elucidated from marine fungus Nectria sp. HLS206. The first (+)-α-trans-bergamotene synthase NsBERS was characterized using genome mining and heterologous expression-based strategies. Based on homology search, we characterized another (+)-α-trans-bergamotene synthase LsBERS from Lachnellula suecica and an (+)-α-bisabolol synthase BcBOS from Botrytis cinerea. We proposed that the cyclization mechanism of (+)-α-trans-bergamotene involved endo-anti cyclization of left-handed helix farnesyl pyrophosphate by (6R)-bisabolyl cation, which was supported by molecular docking. The biosynthesis-based volatiles (3-6) produced by heterologous fungal expression systems elicited significant electroantennographic responses of Helicoverpa armigera and Spodoptera frugiperda, respectively, suggesting their potential in biocontrol of these pests. This work enriches diversity of sesquiterpenoids and fungal sesquiterpene synthases, providing insight into the enzymatic mechanism of formation of enantiomeric sesquiterpenes.
Collapse
Affiliation(s)
- Yan-Hua Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Long-Yu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui-Shan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Unique and Repeated Stwintrons (Spliceosomal Twin Introns) in the Hypoxylaceae. J Fungi (Basel) 2022; 8:jof8040397. [PMID: 35448628 PMCID: PMC9024468 DOI: 10.3390/jof8040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] stwintrons are extant (sister stwintrons). An additional 81 [D1,2] sequence-unrelated stwintrons are described here. Most of them are located at conserved gene positions rooted deep in the Hypoxylaceae. Absence of exonic sequence bias at the exon–stwintron junctions and a very similar phase distribution were noted for both groups. The presence of an underlying sequence symmetry in all 117 stwintrons was striking. This symmetry, more pronounced near the termini of most of the full-length sister stwintrons, may lead to a secondary structure that brings into close proximity the most distal splice sites, the donor of the internal and the acceptor of the external intron. The Hypoxylon stwintrons were overwhelmingly excised by consecutive splicing reactions precisely removing the whole intervening sequence, whereas one excision involving the distal splice sites led to a frameshift. Alternative (mis)splicing took place for both sister and uniquely occurring stwintrons. The extraordinary symmetry of the sister stwintrons thus seems dispensable for the infrequent, direct utilisation of the distal splice sites.
Collapse
|
14
|
Saed-Moucheshi A, Mozafari AA. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Sci Rep 2022; 12:4084. [PMID: 35260740 PMCID: PMC8904481 DOI: 10.1038/s41598-022-08062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Hymenocrater longiflorus (surahalala) is a wild plant species with potential pharmaceutical and ornamental interest. To date, the genomics of this plant is unknown and the gene expression profiling of the genes related to its metabolite has never been studied before. In order to study the responses of in vitro-grown surahalala plants to abiotic stresses and the differential expression of the genes related to its essential oils under exogenous proline application; three levels of PEG600 (0, 10, and 20%) and five levels of proline (0, 5, 10, 15, and 20 µm) were combined in the culture media. Thus, water deficit increased oxidants levels and decreased fresh weight of surahalala tissues, whereas addition of proline up to 15 µm was able to relatively compensate the negative effect of water deficit. Contrarily, high proline level (20 µm) had a negative effect on surahalala plants probably due to the stress simulation (nutrition) under high proline concentration. In addition, the best combination for achieving highest essential oils content was 10 µm proline plus 10% PEG. The expressional profiling of the genes TPS27, L3H, TPS2, TPS1, OMT and GDH3 were successfully carried out and their involvement in 1,8-cineole, carvone, α-pinene, thymol, estragole and β-Citronellol biosynthesis, respectively, was verified. In addition, our results indicated that these genes could also be involved in the synthesis of other metabolites under water deficit condition.
Collapse
Affiliation(s)
- Armin Saed-Moucheshi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
15
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Comparative Genomic and Metabolomic Analysis of Termitomyces Species Provides Insights into the Terpenome of the Fungal Cultivar and the Characteristic Odor of the Fungus Garden of Macrotermes natalensis Termites. mSystems 2022; 7:e0121421. [PMID: 35014870 PMCID: PMC8751386 DOI: 10.1128/msystems.01214-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrotermitinae termites have domesticated fungi of the genus Termitomyces as food for their colony, analogously to human farmers growing crops. Termites propagate the fungus by continuously blending foraged and predigested plant material with fungal mycelium and spores (fungus comb) within designated subterranean chambers. To test the hypothesis that the obligate fungal symbiont emits specific volatiles (odor) to orchestrate its life cycle and symbiotic relations, we determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene. IMPORTANCE The symbiosis between macrotermitinae termites and Termitomyces is obligate for both partners and is one of the most important contributors to biomass conversion in the Old World tropic’s ecosystems. To date, research efforts have dominantly focused on acquiring a better understanding of the degradative capabilities of Termitomyces to sustain the obligate nutritional symbiosis, but our knowledge of the small-molecule repertoire of the fungal cultivar mediating interspecies and interkingdom interactions has remained fragmented. Our omics-driven chemical, genomic, and phylogenetic study provides new insights into the volatilome and biosynthetic capabilities of the evolutionarily conserved fungal genus Termitomyces, which allows matching metabolites to genes and enzymes and, thus, opens a new source of unique and rare enzymatic transformations.
Collapse
|
17
|
Sarrocco S, Vicente I, Staropoli A, Vinale F. Genes Involved in the Secondary Metabolism of Trichoderma and the Biochemistry of These Compounds. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Jin QY, Peng HZ, Zhu TJ, Ye HL. Isolation and functional characteristics of the fungus Hypoxylon spp. Sj18 with biocontrol potential. Fungal Biol 2021; 126:174-184. [DOI: 10.1016/j.funbio.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
19
|
Indira TI, Burhan KH, Manurung R, Widiana A. Enhancement of Essential Oil Yield from Melaleuca Leucadendra L. Leaves by Lignocellulose Degradation Pre-Treatment Using Filamentous Fungi. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
21
|
Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. J Fungi (Basel) 2021; 7:jof7090710. [PMID: 34575748 PMCID: PMC8469720 DOI: 10.3390/jof7090710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5′-donor, lariat branch point element or 3′-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron–exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45–55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).
Collapse
|
22
|
Walther C, Baumann P, Luck K, Rothe B, Biedermann PHW, Gershenzon J, Köllner TG, Unsicker SB. Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves. Beilstein J Org Chem 2021; 17:1698-1711. [PMID: 34367348 PMCID: PMC8313976 DOI: 10.3762/bjoc.17.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Plant volatiles play a major role in plant-insect interactions as defense compounds or attractants for insect herbivores. Recent studies have shown that endophytic fungi are also able to produce volatiles and this raises the question of whether these fungal volatiles influence plant-insect interactions. Here, we qualitatively investigated the volatiles released from 13 endophytic fungal species isolated from leaves of mature black poplar (Populus nigra) trees. The volatile blends of these endophytes grown on agar medium consist of typical fungal compounds, including aliphatic alcohols, ketones and esters, the aromatic alcohol 2-phenylethanol and various sesquiterpenes. Some of the compounds were previously reported as constituents of the poplar volatile blend. For one endophyte, a species of Cladosporium, we isolated and characterized two sesquiterpene synthases that can produce a number of mono- and sesquiterpenes like (E)-β-ocimene and (E)-β-caryophyllene, compounds that are dominant components of the herbivore-induced volatile bouquet of black poplar trees. As several of the fungus-derived volatiles like 2-phenylethanol, 3-methyl-1-butanol and the sesquiterpene (E)-β-caryophyllene, are known to play a role in direct and indirect plant defense, the emission of volatiles from endophytic microbial species should be considered in future studies investigating tree-insect interactions.
Collapse
Affiliation(s)
- Christin Walther
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Pamela Baumann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.,Chair of Forest Entomology and Protection, Institute of Forest Sciences, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Beate Rothe
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Peter H W Biedermann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.,Chair of Forest Entomology and Protection, Institute of Forest Sciences, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
23
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
24
|
Liang Z, Zhi H, Fang Z, Zhang P. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 2021; 147:110487. [PMID: 34399483 DOI: 10.1016/j.foodres.2021.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
Terpenes are a major class of natural aromatic compounds in grapes and wines to offer the characteristic flavor and aroma, serving as important quality traits of wine products. Saccharomyces cerevisiae represents an excellent cell factory platform for large-scale bio-based terpene production. This review describes the biosynthetic pathways of terpenes in different organisms. The metabolic engineering of S. cerevisiae for promoting terpene biosynthesis and the alternative microbial engineering platforms including filamentous fungi and Escherichia coli are also elaborated. Additionally, the potential applications of the terpene products from engineered microorganisms in food and beverage industries are also discussed. This review provides comprehensive information for an innovative supply way of terpene via microbial cell factory, which could facilitate the development and application of this technique at the industrial scale.
Collapse
Affiliation(s)
- Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang Zhi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
25
|
Sagita R, Quax WJ, Haslinger K. Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Front Bioeng Biotechnol 2021; 9:649906. [PMID: 33791289 PMCID: PMC8005728 DOI: 10.3389/fbioe.2021.649906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bioprospecting of secondary metabolites from endophytic fungi received great attention in the 1990s and 2000s, when the controversy around taxol production from Taxus spp. endophytes was at its height. Since then, hundreds of reports have described the isolation and characterization of putative secondary metabolites from endophytic fungi. However, only very few studies also report the genetic basis for these phenotypic observations. With low sequencing cost and fast sample turnaround, genetics- and genomics-based approaches have risen to become comprehensive approaches to study natural products from a wide-range of organisms, especially to elucidate underlying biosynthetic pathways. However, in the field of fungal endophyte biology, elucidation of biosynthetic pathways is still a major challenge. As a relatively poorly investigated group of microorganisms, even in the light of recent efforts to sequence more fungal genomes, such as the 1000 Fungal Genomes Project at the Joint Genome Institute (JGI), the basis for bioprospecting of enzymes and pathways from endophytic fungi is still rather slim. In this review we want to discuss the current approaches and tools used to associate phenotype and genotype to elucidate biosynthetic pathways of secondary metabolites in endophytic fungi through the lens of bioprospecting. This review will point out the reported successes and shortcomings, and discuss future directions in sampling, and genetics and genomics of endophytic fungi. Identifying responsible biosynthetic genes for the numerous secondary metabolites isolated from endophytic fungi opens the opportunity to explore the genetic potential of producer strains to discover novel secondary metabolites and enhance secondary metabolite production by metabolic engineering resulting in novel and more affordable medicines and food additives.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Groningen Institute of Pharmacy, Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Abdulsalam O, Wagner K, Wirth S, Kunert M, David A, Kallenbach M, Boland W, Kothe E, Krause K. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). MYCORRHIZA 2021; 31:173-188. [PMID: 33210234 PMCID: PMC7910269 DOI: 10.1007/s00572-020-01005-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
The ectomycorrhizospheric habitat contains a diverse pool of organisms, including the host plant, mycorrhizal fungi, and other rhizospheric microorganisms. Different signaling molecules may influence the ectomycorrhizal symbiosis. Here, we investigated the potential of the basidiomycete Tricholoma vaccinum to produce communication molecules for the interaction with its coniferous host, Norway spruce (Picea abies). We focused on the production of volatile organic compounds and phytohormones in axenic T. vaccinum cultures, identified the potential biosynthesis genes, and investigated their expression by RNA-Seq analyses. T. vaccinum released volatiles not usually associated with fungi, like limonene and β-barbatene, and geosmin. Using stable isotope labeling, the biosynthesis of geosmin was elucidated. The geosmin biosynthesis gene ges1 of T. vaccinum was identified, and up-regulation was scored during mycorrhiza, while a different regulation was seen with mycorrhizosphere bacteria. The fungus also released the volatile phytohormone ethylene and excreted salicylic and abscisic acid as well as jasmonates into the medium. The tree excreted the auxin, indole-3-acetic acid, and its biosynthesis intermediate, indole-3-acetamide, as well as salicylic acid with its root exudates. These compounds could be shown for the first time in exudates as well as in soil of a natural ectomycorrhizospheric habitat. The effects of phytohormones present in the mycorrhizosphere on hyphal branching of T. vaccinum were assessed. Salicylic and abscisic acid changed hyphal branching in a concentration-dependent manner. Since extensive branching is important for mycorrhiza establishment, a well-balanced level of mycorrhizospheric phytohormones is necessary. The regulation thus can be expected to contribute to an interkingdom language.
Collapse
Affiliation(s)
- Oluwatosin Abdulsalam
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katharina Wagner
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Sophia Wirth
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Maritta Kunert
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Mario Kallenbach
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
| |
Collapse
|
27
|
Zhang C, Chen X, Lee RTC, T R, Maurer-Stroh S, Rühl M. Bioinformatics-aided identification, characterization and applications of mushroom linalool synthases. Commun Biol 2021; 4:223. [PMID: 33597725 PMCID: PMC7890063 DOI: 10.1038/s42003-021-01715-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
Enzymes empower chemical industries and are the keystone for metabolic engineering. For example, linalool synthases are indispensable for the biosynthesis of linalool, an important fragrance used in 60-80% cosmetic and personal care products. However, plant linalool synthases have low activities while expressed in microbes. Aided by bioinformatics analysis, four linalool/nerolidol synthases (LNSs) from various Agaricomycetes were accurately predicted and validated experimentally. Furthermore, we discovered a linalool synthase (Ap.LS) with exceptionally high levels of selectivity and activity from Agrocybe pediades, ideal for linalool bioproduction. It effectively converted glucose into enantiopure (R)-linalool in Escherichia coli, 44-fold and 287-fold more efficient than its bacterial and plant counterparts, respectively. Phylogenetic analysis indicated the divergent evolution paths for plant, bacterial and fungal linalool synthases. More critically, structural comparison provided catalytic insights into Ap.LS superior specificity and activity, and mutational experiments validated the key residues responsible for the specificity.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raphael Tze Chuen Lee
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, Singapore
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
29
|
Wang X, Pereira JH, Tsutakawa S, Fang X, Adams PD, Mukhopadhyay A, Lee TS. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metab Eng 2021; 64:41-51. [PMID: 33482331 DOI: 10.1016/j.ymben.2021.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/08/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
The functionalization of terpenes using cytochrome P450 enzymes is a versatile route to the production of useful derivatives that can be further converted to value-added products. Many terpenes are hydrophobic and volatile making their availability as a substrate for P450 enzymes significantly limited during microbial production. In this study, we developed a strategy to improve the accessibility of terpene molecules for the P450 reaction by linking terpene synthase and P450 together. As a model system, fusion proteins of 1,8-cineole synthase (CS) and P450cin were investigated and it showed an improved hydroxylation of the monoterpenoid 1,8-cineole up to 5.4-fold. Structural analysis of the CS-P450cin fusion proteins by SEC-SAXS indicated a dimer formation with preferred orientations of the active sites of the two domains. We also applied the enzyme fusion strategy to the oxidation of a sesquiterpene epi-isozizaene and the fusion enzymes significantly improved albaflavenol production in engineered E. coli. From the analysis of positive and negative examples of the fusion strategy, we proposed key factors in structure-based prediction and evaluation of fusion enzymes. Developing fusion enzymes for terpene synthase and P450 presents an efficient strategy toward oxidation of hydrophobic terpene compounds. This strategy could be widely applicable to improve the biosynthetic titer of the functionalized products from hydrophobic terpene intermediates.
Collapse
Affiliation(s)
- Xi Wang
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Susan Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xinyue Fang
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Paul D Adams
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute (JBEI), 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
31
|
Wang L, Liang J, Xie X, Liu J, Shen Q, Li L, Wang Q. Direct formation of the sesquiterpeonid ether liguloxide by a terpene synthase in Senecio scandens. PLANT MOLECULAR BIOLOGY 2021; 105:55-64. [PMID: 32915351 DOI: 10.1007/s11103-020-01068-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens. Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC-MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.
Collapse
Affiliation(s)
- Liping Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Xie
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
32
|
Vicente I, Baroncelli R, Morán-Diez ME, Bernardi R, Puntoni G, Hermosa R, Monte E, Vannacci G, Sarrocco S. Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms 2020; 8:E1603. [PMID: 33081019 PMCID: PMC7603203 DOI: 10.3390/microorganisms8101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.
Collapse
Affiliation(s)
- Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| |
Collapse
|
33
|
Zhang C, Chen X, Orban A, Shukal S, Birk F, Too HP, Rühl M. Agrocybe aegerita Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi. ACS Chem Biol 2020; 15:1268-1277. [PMID: 32233445 DOI: 10.1021/acschembio.0c00155] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Terpenoids constitute a structurally diverse group of natural products with wide applications in the pharmaceutical, nutritional, flavor and fragrance industries. Fungi are known to produce a large variety of terpenoids, yet fungal terpene synthases remain largely unexploited. Here, we report the sesquiterpene network and gene clusters of the black poplar mushroom Agrocybe aegerita. Among 11 putative sesquiterpene synthases (STSs) identified in its genome, nine are functional, including two novel synthases producing viridiflorol and viridiflorene. On this basis, an additional 1133 STS homologues from higher fungi have been curated and used for a sequence similarity network to probe isofunctional STS groups. With the focus on two STS groups, one producing viridiflorene/viridiflorol and one Δ6-protoilludene, the isofunctionality was probed and verified. Three new Δ6-protoilludene synthases and two new viridflorene/viridiflorol synthases from five different fungi were correctly predicted. The study herein serves as a fundamental predictive framework for the discovery of fungal STSs and biosynthesis of novel terpenoids. Furthermore, it becomes clear that fungal STS function differs between the phyla Ascomycota and Basidiomycota with the latter phylum being more dominant in the overall number and variability. This study aims to encourage the scientific community to further work on fungal STS and the products, biological functions, and potential applications of this vast source of natural products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Sudha Shukal
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Florian Birk
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heng-Phon Too
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, Giessen, Germany
| |
Collapse
|
34
|
Xiao Y, Xu B, Kang Y, Li Y, Cui Y, Liu W, Xiang Z. A Neuroinflammation Inhibitor, Hypoxylon xanthone A, from Soil Fungus Hypoxylon sp. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666191023100252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Hypoxylon sp. was used to ferment at 25°C for 45 days. The solid culture of Hypoxylon sp.
was extracted with 75% EtOH under ultrasonic for twice. And the dried combined extracts were then
suspended in H2O and partitioned with ethyl acetate. EtOAc extracts were subjected to a silica gel column
and eluted with petroleum ether - acetone to a.ord seven fractions. Sephadex LH-20 and RPHPLC
were used subsequently to yield a novel xanthone metabolite (Hypoxylon xanthone A). Its structure
was elucidated based on HR-ESI-MS, 1D-, 2D-NMR spectra, and the comparison of the experimental
and calculated ECD spectra. The anti-neuroinflammatory assay of Hypoxylon xanthone A, as
manifested by the inhibitory effect on LPS-induced NO production in BV-2 microglial cells, indicated
almost the same inhibitory effect as minocycline in a dose-dependent manner within the concentration
of 1-50 μM, suggesting that Hypoxylon xanthone A could be a new potential neuroinflammation inhibitor.
Collapse
Affiliation(s)
- Ying Xiao
- Shenyang First People’s Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Department of Neurology and Neuroscience, Shenyang, China
| | - Bing Xu
- Shenyang First People’s Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Department of Neurology and Neuroscience, Shenyang, China
| | - You Kang
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Yuedi Li
- Shenyang First People’s Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Department of Neurology and Neuroscience, Shenyang, China
| | - Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| |
Collapse
|
35
|
Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A. A draft genome and transcriptome of common milkweed ( Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ 2019; 7:e7649. [PMID: 31579586 PMCID: PMC6756140 DOI: 10.7717/peerj.7649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Milkweeds (Asclepias) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present a transcriptome and draft nuclear genome assembly of the common milkweed, Asclepias syriaca. This reconstruction of the nuclear genome is augmented by linkage group information, adding to existing chloroplast and mitochondrial genomic resources for this member of the Apocynaceae subfamily Asclepiadoideae. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3,415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. Scaffolds covering 75 Mbp of the Asclepias assembly formed 11 linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The progesterone 5β-reductase gene family, a key component of cardenolide production, is likely reduced in Asclepias relative to other Apocynaceae. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.
Collapse
Affiliation(s)
- Kevin Weitemier
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | | | - Mark Fishbein
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Richard C. Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, USA
| | - Aaron Liston
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
36
|
An automated pipeline for the screening of diverse monoterpene synthase libraries. Sci Rep 2019; 9:11936. [PMID: 31417136 PMCID: PMC6695433 DOI: 10.1038/s41598-019-48452-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Monoterpenoids are a structurally diverse group of natural products with applications as pharmaceuticals, flavourings, fragrances, pesticides, and biofuels. Recent advances in synthetic biology offer new routes to this chemical diversity through the introduction of heterologous isoprenoid production pathways into engineered microorganisms. Due to the nature of the branched reaction mechanism, monoterpene synthases often produce multiple products when expressed in monoterpenoid production platforms. Rational engineering of terpene synthases is challenging due to a lack of correlation between protein sequence and cyclisation reaction catalysed. Directed evolution offers an attractive alternative protein engineering strategy as limited prior sequence-function knowledge is required. However, directed evolution of terpene synthases is hampered by the lack of a convenient high-throughput screening assay for the detection of multiple volatile terpene products. Here we applied an automated pipeline for the screening of diverse monoterpene synthase libraries, employing robotic liquid handling platforms coupled to GC-MS, and automated data extraction. We used the pipeline to screen pinene synthase variant libraries, with mutations in three areas of plasticity, capable of producing multiple monoterpene products. We successfully identified variants with altered product profiles and demonstrated good agreement between the results of the automated screen and traditional shake-flask cultures. In addition, useful insights into the cyclisation reaction catalysed by pinene synthase were obtained, including the identification of positions with the highest level of plasticity, and the significance of region 2 in carbocation cyclisation. The results obtained will aid the prediction and design of novel terpene synthase activities towards clean monoterpenoid products.
Collapse
|
37
|
Helaly SE, Thongbai B, Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 2019; 35:992-1014. [PMID: 29774351 DOI: 10.1039/c8np00010g] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to December 2017 The diversity of secondary metabolites in the fungal order Xylariales is reviewed with special emphasis on correlations between chemical diversity and biodiversity as inferred from recent taxonomic and phylogenetic studies. The Xylariales are arguably among the predominant fungal endophytes, which are the producer organisms of pharmaceutical lead compounds including the antimycotic sordarins and the antiparasitic nodulisporic acids, as well as the marketed drug, emodepside. Many Xylariales are "macromycetes", which form conspicuous fruiting bodies (stromata), and the metabolite profiles that are predominant in the stromata are often complementary to those encountered in corresponding mycelial cultures of a given species. Secondary metabolite profiles have recently been proven highly informative as additional parameters to support classical morphology and molecular phylogenetic approaches in order to reconstruct evolutionary relationships among these fungi. Even the recent taxonomic rearrangement of the Xylariales has been relying on such approaches, since certain groups of metabolites seem to have significance at the species, genus or family level, respectively, while others are only produced in certain taxa and their production is highly dependent on the culture conditions. The vast metabolic diversity that may be encountered in a single species or strain is illustrated based on examples like Daldinia eschscholtzii, Hypoxylon rickii, and Pestalotiopsis fici. In the future, it appears feasible to increase our knowledge of secondary metabolite diversity by embarking on certain genera that have so far been neglected, as well as by studying the volatile secondary metabolites more intensively. Methods of bioinformatics, phylogenomics and transcriptomics, which have been developed to study other fungi, are readily available for use in such scenarios.
Collapse
Affiliation(s)
- Soleiman E Helaly
- Dept Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
38
|
Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. ACS Catal 2019; 8:3780-3791. [PMID: 31157124 PMCID: PMC6542672 DOI: 10.1021/acscatal.8b00692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpenes (C10 isoprenoids) are a structurally diverse group of natural compounds that are attractive to industry as flavours and fragrances. Monoterpenes are produced from a single linear substrate, geranyl diphosphate, by a group of enzymes called the monoterpene cyclases/synthases (mTC/Ss) that catalyse high-energy cyclisation reactions involving unstable carbocation intermediates. Efforts towards producing monoterpenes via biocatalysis or metabolic engineering often result in the formation of multiple products due to the nature of the highly branched reaction mechanism of mTC/Ss. Rational engineering of mTC/Ss is hampered by the lack of correlation between the active site sequence and cyclisation type. We used available mutagenesis data to show that amino acids involved in product outcome are clustered and spatially conserved within the mTC/S family. Consensus sequences for three such plasticity regions were introduced in different mTC/S with increasingly complex cyclisation cascades, including the model enzyme limonene synthase (LimS). In all three mTC/S studied, mutations in the first two regions mostly give rise to products that result from premature quenching of the linalyl or α-terpinyl cations, suggesting that both plasticity regions are involved in the formation and stabilisation of cations early in the reaction cascade. A LimS variant with mutations in the second region (S454G, C457V, M458I), produced mainly more complex bicyclic products. QM/MM MD simulations reveal that the second cyclisation is not due to compression of the C2-C7 distance in the α-terpinyl cation, but is the result of an increased distance between C8 of the α-terpinyl cation and two putative bases (W324, H579) located on the other side of the active site, preventing early termination by deprotonation. Such insights into the impact of mutations can only be obtained using integrated experimental and computational approaches, and will aid the design of altered mTC/S activities towards clean monoterpenoid products.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Vijaykumar Karuppiah
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew Currin
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
39
|
Lauterbach L, Wang T, Stadler M, Dickschat JS. Volatiles from the ascomycete Daldinia cf. childiae (Hypoxylaceae), originating from China. MEDCHEMCOMM 2019; 10:726-734. [PMID: 31191863 PMCID: PMC6533885 DOI: 10.1039/c9md00083f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023]
Abstract
The volatiles from an isolate of the fungus Daldinia cf. childiae, obtained from a specimen collected in China, were collected by use of a closed-loop stripping apparatus and analysed by GC-MS. A total number of 33 compounds from different classes were rigorously identified by comparison of mass spectra to library spectra and of retention indices to tabulated data from the literature. For unknown compounds structural suggestions were delineated from the mass spectra and verified by chemical synthesis of reference materials. Through this approach two 2-alkylated furan derivatives were identified, demonstrating that the genus Daldinia continues to be an interesting source for the discovery of novel secondary metabolites. Feeding experiments with sodium (1,2-13C2)acetate were performed to investigate the biosynthesis of the polyketide 5-hydroxy-2-methyl-4-chromanone that are in favour of a non-enzymatic cyclisation step.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Tao Wang
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe , Helmholtz-Zentrum für Infektionsforschung , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| |
Collapse
|
40
|
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, Davis RW, Mirsiaghi M, Sundstrom E, Pray T, Skerker JM, George A, Gladden JM. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Fact 2019; 18:54. [PMID: 30885220 PMCID: PMC6421710 DOI: 10.1186/s12934-019-1099-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xun Zhuang
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Oliver Kilian
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Eric Monroe
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Masakazu Ito
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Mary Bao Tran-Gymfi
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Fang Liu
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Mona Mirsiaghi
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Eric Sundstrom
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Todd Pray
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jeffrey M Skerker
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Anthe George
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| | - John M Gladden
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| |
Collapse
|
41
|
Arora P, Riyaz-Ul-Hassan S. Endohyphal bacteria; the prokaryotic modulators of host fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Rinkel J, Babczyk A, Wang T, Stadler M, Dickschat JS. Volatiles from the hypoxylaceous fungi Hypoxylon griseobrunneum and Hypoxylon macrocarpum. Beilstein J Org Chem 2018; 14:2974-2990. [PMID: 30591821 PMCID: PMC6296411 DOI: 10.3762/bjoc.14.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023] Open
Abstract
The volatiles emitted by the ascomycetes Hypoxylon griseobrunneum and Hypoxylon macrocarpum (Hypoxylaceae, Xylariales) were collected by use of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The main compound class of both species were polysubstituted benzene derivatives. Their structures could only be unambiguously determined by comparison to all isomers with different substitution patterns. The substitution pattern of the main compound from H. griseobrunneum, the new natural product 2,4,5-trimethylanisole, was explainable by a polyketide biosynthesis mechanism that was supported by a feeding experiment with (methyl-2H3)methionine.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Alexander Babczyk
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Tao Wang
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
43
|
Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol 2018; 76:363-373. [DOI: 10.1016/j.fm.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/23/2022]
|
44
|
A Solvent-Free Approach for Converting Cellulose Waste into Volatile Organic Compounds with Endophytic Fungi. J Fungi (Basel) 2018; 4:jof4030102. [PMID: 30149666 PMCID: PMC6162512 DOI: 10.3390/jof4030102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Simple sugars produced from a solvent-free mechanocatalytic degradation of cellulose were evaluated for suitability as a growth medium carbon source for fungi that produce volatile organic compounds. An endophytic Hypoxylon sp. (CI-4) known to produce volatiles having potential value as fuels was initially evaluated. The growth was obtained on a medium containing the degraded cellulose as the sole carbon source, and the volatile compounds produced were largely the same as those produced from a conventional dextrose/starch diet. A second Hypoxylon sp. (BS15) was also characterized and shown to be phylogenetically divergent from any other named species. The degraded cellulose medium supported the growth of BS15, and approximately the same quantity of the volatile compounds was produced as from conventional diets. Although the major products from BS15 grown on the degraded cellulose were identical to those from dextrose, the minor products differed. Neither CI-4 or BS15 exhibited growth on cellulose that had not been degraded. The extraction of volatiles from the growth media was achieved using solid-phase extraction in order to reduce the solvent waste and more efficiently retain compounds having low vapor pressures. A comparison to more conventional liquid–liquid extraction demonstrated that, for CI-4, both methods gave similar results. The solid-phase extraction of BS15 retained a significantly larger variety of the volatile compounds than did the liquid–liquid extraction. These advances position the coupling of solvent-free cellulose conversion and endophyte metabolism as a viable strategy for the production of important hydrocarbons.
Collapse
|
45
|
Strobel G. The Emergence of Endophytic Microbes and Their Biological Promise. J Fungi (Basel) 2018; 4:E57. [PMID: 29772685 PMCID: PMC6023353 DOI: 10.3390/jof4020057] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
As is true with animal species, plants also have an associated microflora including endophytes as well as microbes associated with the phyllosphere and rhizosphere (plant surfaces) and this is considered the plant microbiome. However, those organisms within virtually all tissues and organs of the plant are known as endophytes. Most often fungi are the most frequently recovered endophytes from plant tissues, but bacterial forms generally occur in greater numbers, but not in species varieties. The exact biological/biochemical role of the endophyte in the plant and how it interacts with the plant and other endophytes and plant associated organisms has not been intensely and carefully examined. However, this has not stopped investigators in exploring the direct utility of endophytes in boosting plant production, and discovering that endophytes can directly influence the plant to resist temperature extremes, drought, as well as the presence of disease causing organisms. Also, because of the relationships that endophytes seem to have with their host plants, they make a myriad of biologically active compounds some of which are classified as antibiotics, antioxidants, anticancer agents, volatile antimicrobial agents, immunosuppressive compounds, plant growth promoting agents, and insecticides. These endophytic compounds represent a wide range of organic molecules including terpenoids, peptides, carbohydrates, aromatics, hydrocarbons and others and it seems that these compounds may have a role in the host microbe relationship. Most recently and quite surprisingly, some endophytes have been discovered that make hydrocarbons of the types found in diesel and gasoline fuels. In addition, recently discovered are epigenetic factors relating to the biology and biochemistry of endophytes. Interestingly, only about 1⁻2% of the entire spectrum of 300,000 known plants have been studied for their endophyte composition. Additionally, only a few plants have ever been completely studied including all tissues for the microbes within them. Likewise, the vast majority of plants, including those in oceans and lower plant forms, have never been examined for their endophytes. Furthermore, endophytes representing the "microbiome" of world's major food plants as they exist in their native "centers of origin" are largely unknown. This non-classical review is intended to provide background information on aspects of developments in endophyte biology and more importantly the identification of new questions in this field that need to be addressed. The review is primarily based on the author's long held experience in this field.
Collapse
Affiliation(s)
- Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
46
|
Van Dyke AR, Gatazka DH, Hanania MM. Innovations in Undergraduate Chemical Biology Education. ACS Chem Biol 2018; 13:26-35. [PMID: 29192757 DOI: 10.1021/acschembio.7b00986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.
Collapse
Affiliation(s)
- Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Daniel H. Gatazka
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Mariah M. Hanania
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| |
Collapse
|
47
|
Li M, Xu J, Algarra Alarcon A, Carlin S, Barbaro E, Cappellin L, Velikova V, Vrhovsek U, Loreto F, Varotto C. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases. Mol Biol Evol 2017; 34:2583-2599. [PMID: 28637270 PMCID: PMC5850473 DOI: 10.1093/molbev/msx178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Jia Xu
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Alberto Algarra Alarcon
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| |
Collapse
|
48
|
Mitsuhashi T, Rinkel J, Okada M, Abe I, Dickschat JS. Mechanistic Characterization of Two Chimeric Sesterterpene Synthases fromPenicillium. Chemistry 2017; 23:10053-10057. [DOI: 10.1002/chem.201702766] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Masahiro Okada
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Science; University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
49
|
Abstract
Covering: up to January 2017This review gives a comprehensive overview of the production of fungal volatiles, including the history of the discovery of the first compounds and their distribution in the various investigated strains, species and genera, as unravelled by modern analytical methods. Biosynthetic aspects and the accumulated knowledge about the bioactivity and biological functions of fungal volatiles are also covered. A total number of 325 compounds is presented in this review, with 247 cited references.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
50
|
Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EEK, Wang G, Chan LJG, Adams PD, Petzold CJ, Keasling JD, Lee TS. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng 2017; 114:1703-1712. [PMID: 28369701 DOI: 10.1002/bit.26296] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/04/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Mendez-Perez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jorge Alonso-Gutierrez
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Qijun Hu
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Margaux Molinas
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward E K Baidoo
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - George Wang
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Leanne J G Chan
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Paul D Adams
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jay D Keasling
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Horsholm, Denmark.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Taek S Lee
- Joint BioEnergy Institute (JBEI), 5885 Hollis Street, 4th floor, Emeryville, California, 94608, USA.,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|