1
|
Wu J, Yu X, Liu X, Chen J, Zhou X, Zhao X, Qin Y, Huang B, Chen Y. Serum galectin-3 can help distinguish lupus nephritis from systemic lupus erythematosus and is also correlated with the degree of renal damage in lupus nephritis. Medicine (Baltimore) 2024; 103:e40987. [PMID: 39705444 DOI: 10.1097/md.0000000000040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Lupus nephritis (LN) constitutes a substantial contributor to morbidity and mortality in systemic lupus erythematosus (SLE). The monitoring of renal function in patients with LN is associated with improved prognostication. The objective of this study was to evaluate the clinical utility of serum galectin-3 (Gal-3) levels in differentiating LN from SLE. Moreover, we sought to ascertain whether serum galectin-3 levels can serve as a marker for the degree of renal impairment in patients with LN. In this cross-sectional study, 42 patients with LN and 12 patients with SLE without nephritis were enrolled. Furthermore, 110 healthy subjects were recruited as controls. Serum Gal-3 levels were quantified using a time-resolved fluoroimmunoassay. Furthermore, Gal-3 levels were analyzed in conjunction with other clinical variables. The results demonstrated that patients with LN exhibited a significantly elevated serum Gal-3 concentration (35.98 ± 20.68 ng/mL) in comparison to healthy controls (10.11 ± 2.75 ng/mL, P < .001) and patients with SLE (14.38 ± 2.26, P < .001). The area under the curve of Gal-3 in distinguishing patients with SLE from patients with LN was 0.9157. When the cutoff value was set to 18.91 ng/mL, the sensitivity was 83.33%, and the specificity was 100%. There was a tendency for serum Gal-3 levels to increase with worsening renal impairment in patients with LN. In conclusion, Gal-3 could be a valuable biomarker for distinguishing LN from SLE, providing a useful clinical reference. Elevated serum Gal-3 levels may be associated with the severity of renal impairment in patients with LN.
Collapse
Affiliation(s)
- Jialong Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaobin Liu
- Department of Nephrology, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Jianye Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Chen
- Department of Nephrology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Mihaylova G, Vasilev V, Kosturkova M, Petkova M, Radanova M. Anti-factor H autoantibodies in patients with lupus nephritis. Med Clin (Barc) 2024; 163:375-382. [PMID: 39003116 DOI: 10.1016/j.medcli.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION Lupus nephritis (LN) is a disease marked by autoantibodies against complement components. Autoantibodies against negative complement regulator factor H (anti-FH) are prevalent in aHUS, are associated with deletion of factor H-related protein 1 (FHR1) gene, and have overt functional consequences. They are also observed in C3 glomerulopathies. The frequency and relevance of anti-FH in LN are poorly studied. AIM The aim of our investigation was to screen for the presence of anti-FH and FHR1 gene deletion in a cohort of LN patients and to evaluate their association with LN activity. METHOD ELISA test and Western blot for detection of anti-FH and FHR1 deletion were used, respectively. Patients' clinical and laboratory parameters regarding anti-FH role were processed by statistical analysis. RESULTS Anti-FH were found at low level in a small number of LN patients - 11.7% (7/60) and were not associated with deletion of FHR1. Anti-FH did not correlate with ANA titers, anti-dsDNA, C3/C4 hypocomplementemia, eGFR, proteinuria, or active urinary sediment in LN patients. A weak correlation was found between anti-FH and anti-C3 levels. Anti-FH were linked with endocapillary proliferation and histological activity index. Four anti-FH positive patients had severe to moderate LN as per the BILAG renal score. CONCLUSIONS Anti-FH autoantibodies are an accessory finding in LN and are more likely to manifest during the active phase of the disease. Due to their low frequency and plasma levels, they do not seem suitable for routine laboratory investigation in patients with LN.
Collapse
Affiliation(s)
- Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Vasil Vasilev
- Department of Nephrology, Medical University of Sofia, Sofia, Bulgaria; Clinic of Nephrology, University Hospital - "Tsaritza Yoanna - ISUL", Sofia, Bulgaria
| | - Mariya Kosturkova
- Department of Propaedeutics of Internal Diseases, Medical University of Varna, Bulgaria; Clinic of Internal Diseases, UMHAT "St. Marina", Varna, Bulgaria
| | - Mariana Petkova
- Department of Nephrology, Medical University of Sofia, Sofia, Bulgaria; Clinic of Nephrology, University Hospital - "Tsaritza Yoanna - ISUL", Sofia, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
3
|
Stasiłojć M, Stasiłojć G, Kuźniewska A, Rodriguez de Córdoba S, Okrój M. A Cell-Based Assay to Measure the Activity of the Complement Convertases. Kidney Int Rep 2024; 9:2260-2268. [PMID: 39081762 PMCID: PMC11284395 DOI: 10.1016/j.ekir.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The complement system serves as a crucial defense mechanism against invading pathogens; however, dysregulation of this system can result in harmful consequences. Central to the complement cascade are the classical pathway (CP) or lectin pathway (LP) and the alternative pathway (AP) convertases. Aberrant regulation of the convertases is often implicated in the development of rare complement-related diseases. However, analyzing convertase activity poses a significant challenge due to their labile nature and intricate interactions with serum proteins. Methods In this study, we propose a novel assay for the functional evaluation of these complexes. Our approach leverages a widely available human lymphoma cell line, which when sensitized with antibodies, triggers activation of the CP with a substantial amplification by the AP. The combined action of 2, C5 blockers eculizumab and crovalimab let the cascade proceed up to the level of convertases but not further. In the next step, C5 inhibitors were washed away and guinea pig serum in ethylenediamine tetraacetic acid (EDTA) buffer supported the development of lytic sites on the platform of preexisting convertases. Results The assay detects recombinant gain-of-function (GoF) components of both convertase types within human serum or plasma. Furthermore, we demonstrate the assay's practical utility in analyzing nephrological patients harboring C3 genetic variants and illustrate its capacity to distinguish between patients and asymptomatic relatives carrying the same pathogenic C3 variant. Conclusion We provided a proof-of-concept of a new assay that detects convertase overactivity in individuals carrying variants of both pathogenic character or those of unknown significance in ubiquitous complement proteins such as C3.
Collapse
Affiliation(s)
- Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Vasilev V, Artero MR, Petkova M, Mihaylova G, Dragon-Durey MA, Radanova M, Roumenina LT. Clinical Relevance of Anti-C3 and Anti-C4 Autoantibodies in Lupus Nephritis. Kidney Int Rep 2024; 9:1429-1440. [PMID: 38707805 PMCID: PMC11068950 DOI: 10.1016/j.ekir.2024.01.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Complement system overactivation is pivotal in lupus nephritis (LN) pathophysiology. Considering that anti-C3 autoantibodies play a significant role in LN pathophysiology, we explored them as disease activity biomarkers and compared them to the ones against the homologous protein, C4. Methods We investigated the presence of anti-C3 and anti-C4 IgG autoantibodies in a LN cohort (N = 85 patients) and monitored their changes over time. We correlated autoantibody presence with clinical parameters. We conducted cross-sectional and longitudinal analyses (N = 295 samples, 8 years follow-up) to explore associations between autoantibodies and disease progression. Antigen-specific anti-C3 or anti-C4 IgG were purified from plasma by affinity chromatography and their reactivity was tested for cross-reactivity against purified C3 or C4 by enzyme-linked immunosorbent assay (ELISA). Results The reactivity against C3 was independent of C4. Our study revealed distinct roles for anti-C3 and anti-C4 in LN. Anti-C3 IgG exhibited stronger clinical correlations than anti-C4, showing associations with hypocomplementemia, anti-dsDNA, class IV LN, and active disease according to British Isles Lupus Assessment Group (BILAG) renal score. In a longitudinal analysis, anti-C3 positivity at initial sampling predicted present and future disease exacerbation alone and even better when combined with anti-dsDNA, as indicated by a transition to BILAG category A. Conclusion Our research provides insights into anti-C3/C3b and anti-C4 autoantibodies in LN, revealing that they are often not cross-reactive. Anti-C3 utility as disease activity biomarkers is underscored by its stronger clinical associations and predictive value for future flares. Combining anti-C3 and anti-dsDNA out-performs the 2 factors alone, suggesting that the incorporation of anti-C3/C3b quantification into routine clinical practice could improve LN management.
Collapse
Affiliation(s)
- Vasil Vasilev
- Clinic of Nephrology, University Hospital - “Tzaritza Yoanna – ISUL”, Medical University of Sofia, Sofia, Bulgaria
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, complement and cancer, Paris, France
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Marijana Petkova
- Clinic of Nephrology, University Hospital - “Tzaritza Yoanna – ISUL”, Medical University of Sofia, Sofia, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, complement and cancer, Paris, France
- Laboratoire d'Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France; Université de Paris, Paris, France
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, complement and cancer, Paris, France
| |
Collapse
|
5
|
Revel M, Rezola Artero M, Hamidi H, Grunenwald A, Blasco L, Vano YA, Marie Oudard S, Sanchez-Salas R, Macek P, Rodriguez Sanchez L, Cathelineau X, Vedié B, Sautes-Fridman C, Herman Fridman W, Roumenina LT, Dragon-Durey MA. Humoral complementomics - exploration of noninvasive complement biomarkers as predictors of renal cancer progression. Oncoimmunology 2024; 13:2328433. [PMID: 38487624 PMCID: PMC10939156 DOI: 10.1080/2162402x.2024.2328433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Despite the progress of anti-cancer treatment, the prognosis of many patients with solid tumors is still dismal. Reliable noninvasive biomarkers are needed to predict patient survival and therapy response. Here, we propose a Humoral Complementomics approach: a work-up of assays to comprehensively evaluate complement proteins, activation fragments, and autoantibodies targeting complement proteins in plasma, which we correlated with the intratumoral complement activation, and/or local production, focusing on localized and metastatic clear cell renal cell carcinoma (ccRCC). In two prospective ccRCC cohorts, plasma C2, C5, Factor D and properdin were elevated compared to healthy controls, reflecting an inflammatory phenotype that correlated with plasma calprotectin levels but did not associate with CRP or with patient prognosis. Conversely, autoantibodies against the complement C3 and the reduced form of FH (a tumor neo-epitope reported in lung cancer) correlated with a favorable outcome. Our findings pointed to a specific group of patients with elevated plasma C4d and C1s-C1INH complexes, indicating the initiation of the classical pathway, along with elevated Ba and Bb, indicating alternative pathway activation. Boostrapped Lasso regularized Cox regression revealed that the most predictive complement biomarkers were elevated plasma C4d and Bb levels at the time of surgery, which correlated with poor prognosis. In conclusion, we propose Humoral Complementomics as an unbiased approach to study the global state of the complement system in any pathological plasma sample and disease context. Its implementation for ccRCC revealed that elevated C4d and Bb in plasma are promising prognostic biomarkers, correlating with shorter progression-free survival.
Collapse
Affiliation(s)
- Margot Revel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Mikel Rezola Artero
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Houcine Hamidi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Department of Nephrology and Hemodialysis, Service de néphrologie - hémodialyse, Poissy, France
| | - Loris Blasco
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Yann A. Vano
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | - Stephane Marie Oudard
- Hôpital Européen Georges-Pompidou, Oncology Department, Assistance Publique Hopitaux de Paris, Université Paris Cité, Paris, France
| | | | - Petr Macek
- Department of Urology Institut Mutualiste Montsouris, Paris, France
| | | | | | - Benoit Vedié
- Hôpital Européen Georges-Pompidou, Department of Biochemistry, Assistance Publique Hopitaux de Paris, Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Equipe labellisée Ligue contre le Cancer, Paris
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Marie-Agnes Dragon-Durey
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
- Laboratoire d’Immunologie, Hôpital Européen Georges Pompidou, APHP, Paris, France
| |
Collapse
|
6
|
Qian T, Huo B, Deng X, Song X, Jiang Y, Yang J, Hao F. Decreased TAX1BP1 participates in systemic lupus erythematosus by regulating monocyte/macrophage function. Int Immunol 2023; 35:483-495. [PMID: 37465957 DOI: 10.1093/intimm/dxad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE) involves disorders of innate and adaptive immune pathways. Tax1-binding protein 1 (TAX1BP1) modulates the production of antibodies in B cells and the T-cell cycle by regulating the NF-κB signaling pathway. However, the potential association of TAX1BP1 with SLE and its role in monocytes/macrophages have not been fully elucidated. In this study, we utilized whole-exome sequencing (WES) in combination with Sanger sequencing and identified 16 gene mutations, including in TAX1BP1, in an SLE family. TAX1BP1 protein expression with western blotting detection was reduced in SLE patients and correlated with disease activity negatively. Furthermore, RNA sequencing and 4D Label-Free Phosphoproteomic analysis were employed to characterize the transcriptome and phosphoproteome profiles in THP-1 and THP-1-differentiated M1 macrophages with TAX1BP1 knockdown. Silencing of TAX1BP1 in THP-1 and THP-1-differentiated M1 macrophages led to an increase in cluster of differentiation 80 (CD80) expression and differential changes in CD14 and CD16 expression, as assessed by flow cytometry. Additionally, western blot analysis showed that knockdown of TAX1BP1 led to a reduction in TRAF6 and p-p65 in THP-1-differentiated macrophages, with or without lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α stimulation. Taken together, our findings suggest that TAX1BP1 participates in SLE activity by regulating antigen presentation in monocytes and inflammatory responses in M1 macrophages.
Collapse
Affiliation(s)
- Tian Qian
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Bengang Huo
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaorong Deng
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoli Song
- Department of Rheumatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yiwei Jiang
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
7
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
9
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
10
|
Rossi GM, Maggiore U, Peyronel F, Fenaroli P, Delsante M, Benigno GD, Gianfreda D, Urban ML, Manna Z, Arend LJ, Bagnasco S, Vaglio A, Fiaccadori E, Rosenberg AZ, Hasni S, Manenti L. Persistent Isolated C3 Hypocomplementemia as a Strong Predictor of End-Stage Kidney Disease in Lupus Nephritis. Kidney Int Rep 2022; 7:2647-2656. [PMID: 36506236 PMCID: PMC9727529 DOI: 10.1016/j.ekir.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Proliferative lupus nephritis (LN) progresses to end-stage kidney disease (ESKD) in roughly 10% of the cases despite treatment. Other than achieving <0.8 g/24h proteinuria at 12 months after treatment, early biomarkers predicting ESKD or death are lacking. Recent studies encompassing not only LN have highlighted the central role of the alternative complement pathway (ACP), with or without histological evidence of thrombotic microangiopathy (TMA), as a key promotor of renal death. Methods We assessed whether persistent isolated C3 hypocomplementemia (PI-LowC3), that is not accompanied by C4 hypocomplementemia, 6 months after kidney biopsy, is associated with an increased risk of death or ESKD in proliferative LN. Results We retrospectively followed-up 197 patients with proliferative LN (51 with PI-LowC3) for a median of 4.5 years (interquartile-range: 1.9-9.0), 11 of whom died and 22 reached ESKD. After adjusting for age, gender, ethnicity, hypertension, mycophenolate, or cyclophosphamide use, PI-LowC3 was associated with a hazard ratio [HR] of the composite outcome ESKD or death of 2.46 (95% confidence interval [CI]: 1.22-4.99, P = 0.012). These results were confirmed even after controlling for time-varying estimated glomerular filtration rate (eGFR) measurements in joint longitudinal-survival multiple regression models. After accounting for the competing risk of death, PI-LowC3 patients showed a strikingly increased risk of ESKD (adjusted HR 3.41, 95% CI: 1.31-8.88, P = 0.012). Conclusion Our findings support the use of PI-LowC3 as a low-cost readily available biomarker, allowing clinicians to modify treatment strategies early in the course of disease and offering a rationale for complement blockade trials in this particularly at-risk subgroup of LN patients.
Collapse
Affiliation(s)
- Giovanni Maria Rossi
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
- Renal Immunopathology Laboratory “Luigi Migone,” Parma University Hospital, Parma, Italy
| | - Umberto Maggiore
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Peyronel
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, and Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Firenze, Firenze, Italy
| | - Paride Fenaroli
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
- Renal Immunopathology Laboratory “Luigi Migone,” Parma University Hospital, Parma, Italy
| | - Marco Delsante
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
- Renal Immunopathology Laboratory “Luigi Migone,” Parma University Hospital, Parma, Italy
| | - Giuseppe Daniele Benigno
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Gianfreda
- Nephrology and Dialysis Unit, Santa Caterina Novella Hospital, Galatina, Lecce, Italy
| | | | - Zerai Manna
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois Johanna Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serena Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, and Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Firenze, Firenze, Italy
- Department of Biomedical Clinical and Experimental Sciences, University of Firenze, Firenze, Italy
| | - Enrico Fiaccadori
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
- Renal Immunopathology Laboratory “Luigi Migone,” Parma University Hospital, Parma, Italy
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucio Manenti
- Renal Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy
- Correspondence: Lucio Manenti, Renal Unit, Parma University Hospital, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
11
|
Overview on the role of complement-specific autoantibodies in diseases. Mol Immunol 2022; 151:52-60. [PMID: 36084516 DOI: 10.1016/j.molimm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.
Collapse
|
12
|
Omidi F, Khoshmirsafa M, Kianmehr N, Faraji F, Delbandi A, Seif F, Shekarabi M. Comparison of circulating miR-148a and miR-126 with autoantibodies as biomarkers of lupus nephritis in patients with SLE. J Immunoassay Immunochem 2022; 43:634-647. [PMID: 35938736 DOI: 10.1080/15321819.2022.2099225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lupus nephritis (LN) is the main manifestation of systemic Lupus Erythematosus (SLE). MicroRNAs (miRNAs) and autoantibodies could be suitable candidate biomarkers of LN. This study evaluates the expression of circulating miR-148a and miR-126 along with anti-dsDNA, anti-C1q, and anti-C3b autoantibodies in SLE patients with LN (SLE + LN). 30 women with SLE, 30 women with SLE + LN, and 25 women as healthy controls (HCs) were enrolled in this study. The plasma expression of selected miRNAs was evaluated by real-time PCR. The serum level of anti-dsDNA, C1q, and C3b antibodies was measured by the ELISA. The expression of miR-148a was significantly increased in SLE and SLE+LN groups compared with the control group. No significant difference was found in the expression of miR-126 among the groups. The frequency of autoantibodies was significantly higher in the SLE + LN group than SLE. The Higher levels of circulating miR-148a in the SLE samples compared with the HCs suggest that this miRNA could be a reliable biomarker for SLE patients (with or without LN). Also, autoantibodies against dsDNA, C1q, and, C3 could be used for the prediction of SLE nephritis, independently. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Frouzan Omidi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Kianmehr
- Rheumatology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Delbandi
- Immunology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- Immunology, Academic Center for Education Culture and Research, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Department, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Meuleman MS, Duval A, Fremeaux-Bacchi V, Roumenina LT, Chauvet S. Ex Vivo Test for Measuring Complement Attack on Endothelial Cells: From Research to Bedside. Front Immunol 2022; 13:860689. [PMID: 35493497 PMCID: PMC9041553 DOI: 10.3389/fimmu.2022.860689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
As part of the innate immune system, the complement system plays a key role in defense against pathogens and in host cell homeostasis. This enzymatic cascade is rapidly triggered in the presence of activating surfaces. Physiologically, it is tightly regulated on host cells to avoid uncontrolled activation and self-damage. In cases of abnormal complement dysregulation/overactivation, the endothelium is one of the primary targets. Complement has gained momentum as a research interest in the last decade because its dysregulation has been implicated in the pathophysiology of many human diseases. Thus, it appears to be a promising candidate for therapeutic intervention. However, detecting abnormal complement activation is challenging. In many pathological conditions, complement activation occurs locally in tissues. Standard routine exploration of the plasma concentration of the complement components shows values in the normal range. The available tests to demonstrate such dysregulation with diagnostic, prognostic, and therapeutic implications are limited. There is a real need to develop tools to demonstrate the implications of complement in diseases and to explore the complex interplay between complement activation and regulation on human cells. The analysis of complement deposits on cultured endothelial cells incubated with pathologic human serum holds promise as a reference assay. This ex vivo assay most closely resembles the physiological context. It has been used to explore complement activation from sera of patients with atypical hemolytic uremic syndrome, malignant hypertension, elevated liver enzymes low platelet syndrome, sickle cell disease, pre-eclampsia, and others. In some cases, it is used to adjust the therapeutic regimen with a complement-blocking drug. Nevertheless, an international standard is lacking, and the mechanism by which complement is activated in this assay is not fully understood. Moreover, primary cell culture remains difficult to perform, which probably explains why no standardized or commercialized assay has been proposed. Here, we review the diseases for which endothelial assays have been applied. We also compare this test with others currently available to explore complement overactivation. Finally, we discuss the unanswered questions and challenges to overcome for validating the assays as a tool in routine clinical practice.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
14
|
Szabó G, Antal-Szalmás P, Kerényi A, Pénzes K, Bécsi B, Kappelmayer J. Laboratory Approaches to Test the Function of Antiphospholipid Antibodies. Semin Thromb Hemost 2021; 48:132-144. [PMID: 34261151 DOI: 10.1055/s-0041-1730357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder caused by the presence of aPLs (antiphospholipid antibodies, i.e., anti-β2-glycoprotein I and anti-cardiolipin). Everyday practice in terms of laboratory diagnostics of APS includes determination of aPLs and well-known functional assays assessing for lupus anticoagulant (LA), in turn using various tests. According to recent guidelines, the recommended method for LA identification or exclusion is based on the Russell Viper Venom test and a sensitive activated partial thromboplastin time assay. Despite the fact that LA can be quantified in laboratory practice in this way, LA is still used as a binary parameter that is just one of the risk factors of thrombosis in APS. As of today, there are no other functional assays to routinely assess the risk of thrombosis in APS. It is well-known that APS patients display a wide range of clinical outcomes although they may express very similar laboratory findings. One way to solve this dilemma, could be if antibodies could be further delineated using more advanced functional tests. Therefore, we review the diagnostic approaches to test the function of aPLs. We further discuss how thrombin generation assays, and rotational thromboelastometry tests can be influenced by LA, and how experimental methods, such as flow cytometric platelet activation, surface plasmon resonance, or nano differential scanning fluorimetry can bring us closer to the puzzling interaction of aPLs with platelets as well as with their soluble protein ligand. These novel approaches may eventually enable better characterization of aPL, and also provide a better linkage to APS pathophysiology.
Collapse
Affiliation(s)
- Gábor Szabó
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Thrombosis, Haemostasis and Vascular Biology Programme, Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienne Kerényi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Krisztina Pénzes
- Division of Medical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Bécsi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
Uzonyi B, Szabó Z, Trojnár E, Hyvärinen S, Uray K, Nielsen HH, Erdei A, Jokiranta TS, Prohászka Z, Illes Z, Józsi M. Autoantibodies Against the Complement Regulator Factor H in the Serum of Patients With Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:660382. [PMID: 33986750 PMCID: PMC8111293 DOI: 10.3389/fimmu.2021.660382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.
Collapse
Affiliation(s)
- Barbara Uzonyi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsóka Szabó
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Trojnár
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Satu Hyvärinen
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Medicum, and Immunobiology Research Program Unit, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
16
|
Peng L, Lu H, Zhou J, Zhang P, Li J, Liu Z, Wu D, Zhang S, Yang Y, Bai W, Wang L, Fei Y, Zhang W, Zhao Y, Zeng X, Zhang F. Clinical characteristics and outcome of IgG4-related disease with hypocomplementemia: a prospective cohort study. Arthritis Res Ther 2021; 23:102. [PMID: 33827676 PMCID: PMC8025345 DOI: 10.1186/s13075-021-02481-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immunoglobulin G4-related disease (IgG4-RD) is a newly recognized systemic, immune-mediated, and fibro-inflammatory disease. Hypocomplementemia was found in part of IgG4-RD patients especially in the setting of active disease. OBJECTIVES This study aimed to clarify the clinical features, treatment efficacy, and outcome in IgG4-RD patients with hypocomplementemia. METHODS 312 IgG4-RD patients were recruited in our prospective cohort conducted in Peking Union Medical College Hospital. Patients were divided into hypocomplementemia group and normal complement group according to serum C3 and C4 levels measured at baseline before treatment. Low serum C3 levels (< 0.73 g/L) and/or C4 levels (< 0.10 g/L) were defined as hypocomplementemia. Demographic data, clinical characteristics, laboratory parameters, treatment, and outcome of two groups were analyzed and compared. RESULTS Hypocomplementemia was identified in 65 (20.8%) cases of untreated IgG4-RD patients at baseline. The average age of hypocomplementemia group was 55.85 ± 10.89 years, with male predominance (72.3%). Compared with normal complement group, patients with hypocomplementemia were likely to have more involved organs, higher IgG4-RD responder index (IgG4-RD RI), and higher laboratory parameters such as counts of eosinophils, inflammatory markers, immunoglobulin G (IgG), IgG1, IgG3, IgG4, and IgE. In addition, lymph nodes, lacrimal gland, submandibular gland, parotid gland, paranasal sinus, bile ducts, and prostate gland were more commonly affected (p < 0.05). Serum C3 and C4 showed a significant positively correlation with each other. Both C3 and C4 were negatively correlated with the number of involved organs, IgG, IgG3, IgG4, and IgG4-RD RI, as well as positively correlated with IgA and hypersensitive C reactive protein (hsCRP). 64 (98.5%) patients responded quickly to initial therapy at a 3-month follow-up. Fifteen (23.1%) patients relapsed during follow-up with mean recurrence time of 14.2 ± 13.8 months. Compared with normal complement group, there was no significant difference of relapse rate in two groups (P = 0.401). CONCLUSIONS Clinical characteristics of IgG4-related disease with hypocomplementemia differ from normal complement group. Serum C3 and C4 at baseline before treatment could be biological markers for disease activity. IgG4-RD with hypocomplementemia responded well to treatment and had no significant difference of relapse rate in IgG4-RD with normal complement.
Collapse
Affiliation(s)
- Linyi Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Hui Lu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Panpan Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Jieqiong Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Zheng Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Wei Bai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| |
Collapse
|
17
|
Meuleman MS, Fremeaux-Bacchi V, Roumenina LT, Chauvet S. Ex Vivo Complement Activation on Endothelial Cells: Research and Translational Value. Trends Mol Med 2021; 27:418-421. [PMID: 33648869 DOI: 10.1016/j.molmed.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
The spectrum of human diseases with complement contribution is ever increasing. Tools to study the complement contribution and the potential interest of novel complement inhibitors in clinical practice are lacking. Here we discuss a functional ex vivo assay to monitor complement activation on endothelial cells, which can answer to this need.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Veronique Fremeaux-Bacchi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| |
Collapse
|
18
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
19
|
Radanova M, Roumenina LT, Vasilev V. Detection of Anti-C3b Autoantibodies by ELISA. Methods Mol Biol 2021; 2227:133-139. [PMID: 33847938 DOI: 10.1007/978-1-0716-1016-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Autoantibodies against complement proteins are involved in the pathological process of many diseases, including lupus nephritis, C3 glomerulopathies, and atypical hemolytic uremic syndrome. This method describes the detection of autoantibodies targeting the central complement component C3 by ELISA. These autoantibodies (IgG) are detected in up to 30% of the patients with lupus nephritis and more rarely in cases with C3 glomerulopathies. These autoantibodies recognize the active fragment C3b and have overt functional consequences. They enhance the formation of the C3 convertase and prevent the inactivation of C3b by Factor H and complement receptor 1. Moreover, they enhance the deposition of complement activation fragments on activator surfaces, such as apoptotic cells. The data currently available on the relations of anti-C3 autoantibodies with clinical, laboratory, and histological markers for activity of lupus nephritis, as well as the relations of anti-C3 with classical immunological markers for activity of autoimmune process in patients with lupus nephritis, such as hypocomplementemia and high levels of anti-dsDNA, could identify these autoantibodies as a potential marker for evaluation the activity of lupus nephritis. These autoantibodies correlate with the disease severity and can be used to identify patients with lupus nephritis who were prone to flare. Therefore, the detection of such autoantibodies could guide the clinicians to evaluate and predict the severity and to manage the therapy of lupus nephritis.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria.
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Vasil Vasilev
- Clinic of Nephrology, University Hospital-"Tzaritza Yoanna-ISUL", Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Kavvadas E. Autoantibodies specific for C1q, C3b, β2-glycoprotein 1 and annexins may amplify complement activity and reduce apoptosis-mediated immune suppression. Med Hypotheses 2020; 144:110286. [PMID: 33254588 DOI: 10.1016/j.mehy.2020.110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Neoplastic cells hijack cell death pathways to evade the immune response. Phosphatidylserine, a marker of apoptotic cells, and its highly conserved bridging proteins, annexins and β2-glycoprotein I, facilitate the efficient removal of apoptotic and necrotic cells via tumor-associated phagocytes in a process called efferocytosis. Efferocytosis results in the clearance of dead and dying cells and local immune suppression. Neoplastic cells also have an increased capacity to activate complement. Complement may facilitate the silent removal of tumor cells and has a dual role in promoting and inhibiting tumor growth. Here I hypothesize that immune response-generating IgG autoantibodies that recognize opsonizing fragments C1q, C3b, and phosphatidylserine-binding proteins (annexins, β2-glycoprotein I) may reduce tumor growth. I propose that these autoantibodies induce a pro-inflammatory, cytotoxic tumor microenvironment. Further, I predict that autoantibodies can drive neoplastic cell phagocytosis in an Fc receptor-dependent manner and recruit additional complement, resulting in immune-stimulatory effects. Excessive complement activation and antibody-dependent cytotoxicity may stimulate anti-tumor responses, including damage to tumor vasculature. Here I provide insights that may aid the development of more effective therapeutic modalities to control cancer. Such therapeutic approaches should kill neoplastic cells and target their interaction with host immune cells. Thereby the pro-tumorigenic effect of dead cancer cells could be limited while inducing the anti-tumor potential of tumor-associated phagocytes.
Collapse
Affiliation(s)
- Efstathios Kavvadas
- 417 General Military Hospital NIMTS - Pathology Department, Monis Petraki 12, Postal Code: 11521, Athens, Greece.
| |
Collapse
|
21
|
Mihaylova G, Vasilev V, Kosturkova MB, Stoyanov GS, Radanova M. Long Non-Coding RNAs as New Biomarkers in Lupus Nephritis: A Connection Between Present and Future. Cureus 2020; 12:e9003. [PMID: 32775083 PMCID: PMC7402529 DOI: 10.7759/cureus.9003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE). LN often leads to kidney failure, affecting the quality of a patient's life. There are several classical biomarkers that assist nephrologists’ daily practice. For more than 50 years, anti-double stranded DNA antibodies and complement components C3 and C4 have been used for LN disease activity evaluation. The major obstacle in the usage of conventional biomarkers is that none of them have both high specificity and high sensitivity. Moreover, an invasive kidney biopsy is still the gold standard for renal involvement detection in SLE patients. Therefore, new non-invasive biomarkers are needed for the early and accurate establishment of LN. Among the promising candidates are long non-coding RNAs (lncRNAs). Their dysregulation appears to have predictive and diagnostic potential. Furthermore, these biomarkers like other conventional biomarkers give insight into the pathogenesis of LN. This review aims to summarize the available information on lncRNAs in SLE patients and to present their future opportunities to add to the conventional biomarkers in the diagnosis and monitoring of LN.
Collapse
Affiliation(s)
- Galya Mihaylova
- Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, BGR
| | - Vasil Vasilev
- Nephrology, "Tsaritsa Yoanna - ISUL" University Hospital, Sofia, BGR
| | | | - George S Stoyanov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Maria Radanova
- Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, BGR
| |
Collapse
|
22
|
Tao J, Song D, Liu XL, Yu F, Zhao MH. Circulating anti-C3b IgG in lupus nephritis: A large cohort study. Clin Immunol 2020; 217:108514. [PMID: 32565324 DOI: 10.1016/j.clim.2020.108514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/16/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022]
Abstract
The current study aimed to analyze the clinical significance and bio-functional properties of anti-C3b IgG based on a lupus nephritis cohort. We found that the prevalence of anti-C3b IgG in our cohort was 47.8%. Patients with positive anti-C3b IgG had significantly higher SLEDAI, lower circulating C3 and C4 levels. Anti-C3b IgG levels were positively correlated with C3 or C1q deposition in kidneys and several active pathological lesions. The positivity of anti-C3b IgG was an independent risk factor for the composite endpoints in the subgroup of proliferative lupus nephritis patients. In vitro, the purified IgG fractions from positive patients resulted in increased C3a generation through the alternative pathway, and interfered factor H and CR1 binding to C3b. Our findings indicated that anti-C3b IgG associated with local renal injury and long-term outcomes in lupus nephritis patients, possibly through leading to the complement alternative pathway over-activation.
Collapse
Affiliation(s)
- Juan Tao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| | - Di Song
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| | - Xiao-Ling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, PR. China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Department of Nephrology, Peking University International Hospital, Beijing 102206, PR. China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China.
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, PR China; Peking-Tsinghua Center for Life Sciences; Beijing, 100084, PR. China; Institute of Nephrology, Peking University, Beijing 100034, PR China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, PR China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing 100034, PR China
| |
Collapse
|
23
|
Skopelja-Gardner S, Colonna L, Hermanson P, Sun X, Tanaka L, Tai J, Nguyen Y, Snyder JM, Alpers CE, Hudkins KL, Salant DJ, Peng Y, Elkon KB. Complement Deficiencies Result in Surrogate Pathways of Complement Activation in Novel Polygenic Lupus-like Models of Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2627-2640. [PMID: 32238460 PMCID: PMC7365257 DOI: 10.4049/jimmunol.1901473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/15/2020] [Indexed: 12/27/2022]
Abstract
Lupus nephritis (LN) is a major contributor to morbidity and mortality in lupus patients, but the mechanisms of kidney damage remain unclear. In this study, we introduce, to our knowledge, novel models of LN designed to resemble the polygenic nature of human lupus by embodying three key genetic alterations: the Sle1 interval leading to anti-chromatin autoantibodies; Mfge8-/- , leading to defective clearance of apoptotic cells; and either C1q-/- or C3-/- , leading to low complement levels. We report that proliferative glomerulonephritis arose only in the presence of all three abnormalities (i.e., in Sle1.Mfge8 -/- C1q -/- and Sle1.Mfge8 -/- C3 -/- triple-mutant [TM] strains [C1q -/-TM and C3-/- TM, respectively]), with structural kidney changes resembling those in LN patients. Unexpectedly, both TM strains had significant increases in autoantibody titers, Ag spread, and IgG deposition in the kidneys. Despite the early complement component deficiencies, we observed assembly of the pathogenic terminal complement membrane attack complex in both TM strains. In C1q-/- TM mice, colocalization of MASP-2 and C3 in both the glomeruli and tubules indicated that the lectin pathway likely contributed to complement activation and tissue injury in this strain. Interestingly, enhanced thrombin activation in C3-/- TM mice and reduction of kidney injury following attenuation of thrombin generation by argatroban in a serum-transfer nephrotoxic model identified thrombin as a surrogate pathway for complement activation in C3-deficient mice. These novel mouse models of human lupus inform the requirements for nephritis and provide targets for intervention.
Collapse
Affiliation(s)
| | - Lucrezia Colonna
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Xizhang Sun
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Lena Tanaka
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Joyce Tai
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Yenly Nguyen
- Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Charles E Alpers
- Department of Nephrology, University of Washington, Seattle, WA 98109
| | - Kelly L Hudkins
- Department of Nephrology, University of Washington, Seattle, WA 98109
| | - David J Salant
- Division of Nephrology, Boston University, Boston, MA 02215; and
| | - YuFeng Peng
- Division of Rheumatology, University of Washington, Seattle, WA 98109;
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA 98109;
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
24
|
Radanova M, Mihaylova G, Ivanova D, Daugan M, Lazarov V, Roumenina L, Vasilev V. Clinical and functional consequences of anti-properdin autoantibodies in patients with lupus nephritis. Clin Exp Immunol 2020; 201:135-144. [PMID: 32306375 DOI: 10.1111/cei.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Properdin is the only positive regulator of the complement system. In this study, we characterize the prevalence, functional consequences and disease associations of autoantibodies against properdin in a cohort of patients with autoimmune disease systemic lupus erythematosus (SLE) suffering from lupus nephritis (LN). We detected autoantibodies against properdin in plasma of 22·5% of the LN patients (16 of 71) by enzyme-linked immunosorbent assay (ELISA). The binding of these autoantibodies to properdin was dose-dependent and was validated by surface plasmon resonance. Higher levels of anti-properdin were related to high levels of anti-dsDNA and anti-nuclear antibodies and low concentrations of C3 and C4 in patients, and also with histological signs of LN activity and chronicity. The high negative predictive value (NPV) of anti-properdin and anti-dsDNA combination suggested that patients who are negative for both anti-properdin and anti-dsDNA will not have severe nephritis. Immunoglobulin G from anti-properdin-positive patients' plasma increased the C3b deposition on late apoptotic cells by flow cytometry. Nevertheless, these IgGs did not modify substantially the binding of properdin to C3b, the C3 convertase C3bBb and the pro-convertase C3bB, evaluated by surface plasmon resonance. In conclusion, anti-properdin autoantibodies exist in LN patients. They have weak but relevant functional consequences, which could have pathological significance.
Collapse
Affiliation(s)
- M Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - G Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - D Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - M Daugan
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - V Lazarov
- Clinic of Nephrology, University Hospital "Tzaritza Yoanna, ISUL", Medical University of Sofia, Sofia, Bulgaria
| | - L Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - V Vasilev
- Clinic of Nephrology, University Hospital "Tzaritza Yoanna, ISUL", Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
25
|
Corvillo F, Ceccarini G, Nozal P, Magno S, Pelosini C, Garrido S, López-Lera A, Moraru M, Vilches C, Fornaciari S, Gabbriellini S, Santini F, Araújo-Vilar D, López-Trascasa M. Immunological features of patients affected by Barraquer-Simons syndrome. Orphanet J Rare Dis 2020; 15:9. [PMID: 31924231 PMCID: PMC6954565 DOI: 10.1186/s13023-019-1292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023] Open
Abstract
Background C3 hypocomplementemia and the presence of C3 nephritic factor (C3NeF), an autoantibody causing complement system over-activation, are common features among most patients affected by Barraquer-Simons syndrome (BSS), an acquired form of partial lipodystrophy. Moreover, BSS is frequently associated with autoimmune diseases. However, the relationship between complement system dysregulation and BSS remains to be fully elucidated. The aim of this study was to provide a comprehensive immunological analysis of the complement system status, autoantibody signatures and HLA profile in BSS. Thirteen subjects with BSS were recruited for the study. The circulating levels of complement components, C3, C4, Factor B (FB) and Properdin (P), as well as an extended autoantibody profile including autoantibodies targeting complement components and regulators were assessed in serum. Additionally, HLA genotyping was carried out using DNA extracted from peripheral blood mononuclear cells. Results C3, C4 and FB levels were significantly reduced in patients with BSS as compared with healthy subjects. C3NeF was the most frequently found autoantibody (69.2% of cases), followed by anti-C3 (38.5%), and anti-P and anti-FB (30.8% each). Clinical data showed high prevalence of autoimmune diseases (38.5%), the majority of patients (61.5%) being positive for at least one of the autoantibodies tested. The HLA allele DRB1*11 was present in 54% of BSS patients, and the majority of them (31%) were positive for *11:03 (vs 1.3% allelic frequency in the general population). Conclusions Our results confirmed the association between BSS, autoimmunity and C3 hypocomplementemia. Moreover, the finding of autoantibodies targeting complement system proteins points to complement dysregulation as a central pathological event in the development of BSS.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain. .,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Silvia Magno
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Sofía Garrido
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Unit of Immunology, La Paz University Hospital, Madrid, Spain
| | - Alberto López-Lera
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | | | | | - Ferruccio Santini
- Obesity and Lipodystrophy Centre at the Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
27
|
Zhang W, Rho JH, Roehrl MH, Wang JY. A comprehensive autoantigen-ome of autoimmune liver diseases identified from dermatan sulfate affinity enrichment of liver tissue proteins. BMC Immunol 2019; 20:21. [PMID: 31242852 PMCID: PMC6595630 DOI: 10.1186/s12865-019-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoimmune diseases result from aberrant immune attacks by the body itself. It is mysterious how autoantigens, a large cohort of seemingly unconnected molecules expressed in different parts of the body, can induce similar autoimmune responses. We have previously found that dermatan sulfate (DS) can form complexes with molecules of apoptotic cells and stimulate autoreactive CD5+ B cells to produce autoantibodies. Hence, autoantigenic molecules share a unique biochemical property in their affinity to DS. This study sought to further test this uniform principle of autoantigenicity. RESULTS Proteomes were extracted from freshly collected mouse livers. They were loaded onto columns packed with DS-Sepharose resins. Proteins were eluted with step gradients of increasing salt strength. Proteins that bound to DS with weak, moderate, or strong affinity were eluted with 0.4, 0.6, and 1.0 M NaCl, respectively. After desalting, trypsin digestion, and gel electrophoresis, proteins were sequenced by mass spectrometry. To validate whether these proteins have been previously identified as autoantigens, an extensive literature search was conducted using the protein name or its alternative names as keywords. Of the 41 proteins identified from the strong DS-affinity fraction, 33 (80%) were verified autoantigens. Of the 46 proteins with moderate DS-affinity, 27 (59%) were verified autoantigens. Of the 125 proteins with weak DS-affinity, 44 (35%) were known autoantigens. Strikingly, these autoantigens fell into the classical autoantibody categories of autoimmune liver diseases: ANA (anti-nuclear autoantibodies), SMA (anti-smooth muscle autoantibodies), AMA (anti-mitochondrial autoantibodies), and LKM (liver-kidney microsomal autoantigens). CONCLUSIONS This study of DS-affinity enrichment of liver proteins establishes a comprehensive autoantigen-ome for autoimmune liver diseases, yielding 104 verified and 108 potential autoantigens. The liver autoantigen-ome sheds light on the molecular origins of autoimmune liver diseases and further supports the notion of a unifying biochemical principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | | |
Collapse
|
28
|
Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa M. Nephritic Factors: An Overview of Classification, Diagnostic Tools and Clinical Associations. Front Immunol 2019; 10:886. [PMID: 31068950 PMCID: PMC6491685 DOI: 10.3389/fimmu.2019.00886] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nephritic factors comprise a heterogeneous group of autoantibodies against neoepitopes generated in the C3 and C5 convertases of the complement system, causing its dysregulation. Classification of these autoantibodies can be clustered according to their stabilization of different convertases either from the classical or alternative pathway. The first nephritic factor described with the capacity to stabilize C3 convertase of the alternative pathway was C3 nephritic factor (C3NeF). Another nephritic factor has been characterized by the ability to stabilize C5 convertase of the alternative pathway (C5NeF). In addition, there are autoantibodies against assembled C3/C5 convertase of the classical and lectin pathways (C4NeF). These autoantibodies have been mainly associated with kidney diseases, like C3 glomerulopathy and immune complex-associated-membranoproliferative glomerulonephritis. Other clinical situations where these autoantibodies have been observed include infections and autoimmune disorders such as systemic lupus erythematosus and acquired partial lipodystrophy. C3 hypocomplementemia is a common finding in all patients with nephritic factors. The methods to measure nephritic factors are not standardized, technically complex, and lack of an appropriate quality control. This review will be focused in the description of the mechanism of action of the three known nephritic factors (C3NeF, C4NeF, and C5NeF), and their association with human diseases. Moreover, we present an overview regarding the diagnostic tools for its detection, and the main therapeutic approach for the patients with nephritic factors.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Immunology Unit, La Paz University Hospital, Madrid, Spain
| | - Marta Melgosa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Nephrology Unit, La Paz University Hospital, Madrid, Spain
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
30
|
Vasilev VV, Radanova M, Lazarov VJ, Dragon-Durey MA, Fremeaux-Bacchi V, Roumenina LT. Autoantibodies Against C3b-Functional Consequences and Disease Relevance. Front Immunol 2019; 10:64. [PMID: 30761135 PMCID: PMC6361862 DOI: 10.3389/fimmu.2019.00064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
The complement component C3 is at the heart of the complement cascade. It is a complex protein, which generates different functional activated fragments (C3a, C3b, iC3b, C3c, C3d). C3b is a constituent of the alternative pathway C3 convertase (C3bBb), binds multiple regulators, and receptors, affecting thus the functioning of the immune system. The activated forms of C3 are a target for autoantibodies. This review focuses on the discovery, disease relevance, and functional consequences of the anti-C3b autoantibodies. They were discovered about 70 years ago and named immunoconglutinins. They were found after infections and considered convalescent factors. At the end of the twentieth century IgG against C3b were found in systemic lupus erythematosus and recently in lupus nephritis, correlating with the disease severity and flare. Cases of C3 glomerulopathy and immune complex glomerulonephritis were also reported. These antibodies recognize epitopes, shared between C3(H2O)/C3b/iC3b/C3c and have overt functional activity. They correlate with low plasmatic C3 levels in patients. In vitro, they increase the activity of the alternative pathway C3 convertase, without being C3 nephritic factors. They perturb the binding of the negative regulators Complement Receptor 1 and Factor H. The clear functional consequences and association with disease severity warrant further studies to establish the link between the anti-C3b autoantibodies and tissue injury. Comparative studies with such antibodies, found in patients with infections, may help to uncover their origin and epitopes specificity. Patients with complement overactivation due to presence of anti-C3b antibodies may benefit from therapeutic targeting of C3.
Collapse
Affiliation(s)
- Vasil V Vasilev
- Nephrology Clinic, University Hospital "Tsaritsa Yoanna-ISUL," Medical University-Sofia, Sofia, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Varna, Bulgaria
| | - Valentin J Lazarov
- Nephrology Clinic, University Hospital "Tsaritsa Yoanna-ISUL," Medical University-Sofia, Sofia, Bulgaria
| | - Marie-Agnes Dragon-Durey
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Noe R, Chauvet S, Togarsimalemath SK, Marinozzi MC, Radanova M, Vasilev VV, Fremeaux-Bacchi V, Dragon-Durey MA, Roumenina LT. Detection of Autoantibodies to Complement Components by Surface Plasmon Resonance-Based Technology. Methods Mol Biol 2019; 1901:271-280. [PMID: 30539587 DOI: 10.1007/978-1-4939-8949-2_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The innate immune complement system is a powerful defense cascade against pathogens, but can induce host tissue damage when overactivated. In pathological conditions, mainly but not restricted to renal diseases, such as lupus nephritis, atypical hemolytic uremic syndrome, and C3 glomerulopathies, complement is overactivated or dysregulated by autoantibodies directed against its components and regulators. Among the key autoantibody targets are the initiator of the classical complement pathway C1q, the alternative pathway regulator Factor H, the components of the alternative pathway C3 convertase complex C3 and Factor B and the convertase complex itself. This methodological article describes our experience with a method for detection of anti-complement autoantibodies in real time using surface plasmon resonance-based technology. It allows label-free evaluation of the binding efficacy and stability of the formed antigen-antibody complexes.
Collapse
Affiliation(s)
- Remi Noe
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sophie Chauvet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de néphrologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Shambhuprasad K Togarsimalemath
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Chiara Marinozzi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Vasil V Vasilev
- Nephrology Clinic, University Hospital 'Tsaritsa Yoanna-ISUL,' Medical University, Sofia, Bulgaria
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Agnes Dragon-Durey
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
32
|
Ekdahl KN, Persson B, Mohlin C, Sandholm K, Skattum L, Nilsson B. Interpretation of Serological Complement Biomarkers in Disease. Front Immunol 2018; 9:2237. [PMID: 30405598 PMCID: PMC6207586 DOI: 10.3389/fimmu.2018.02237] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Complement system aberrations have been identified as pathophysiological mechanisms in a number of diseases and pathological conditions either directly or indirectly. Examples of such conditions include infections, inflammation, autoimmune disease, as well as allogeneic and xenogenic transplantation. Both prospective and retrospective studies have demonstrated significant complement-related differences between patient groups and controls. However, due to the low degree of specificity and sensitivity of some of the assays used, it is not always possible to make predictions regarding the complement status of individual patients. Today, there are three main indications for determination of a patient's complement status: (1) complement deficiencies (acquired or inherited); (2) disorders with aberrant complement activation; and (3) C1 inhibitor deficiencies (acquired or inherited). An additional indication is to monitor patients on complement-regulating drugs, an indication which may be expected to increase in the near future since there is now a number of such drugs either under development, already in clinical trials or in clinical use. Available techniques to study complement include quantification of: (1) individual components; (2) activation products, (3) function, and (4) autoantibodies to complement proteins. In this review, we summarize the appropriate indications, techniques, and interpretations of basic serological complement analyses, exemplified by a number of clinical disorders.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Barbro Persson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Lillemor Skattum
- Section of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Clinical Immunology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Dumestre-Pérard C, Clavarino G, Colliard S, Cesbron JY, Thielens NM. Antibodies targeting circulating protective molecules in lupus nephritis: Interest as serological biomarkers. Autoimmun Rev 2018; 17:890-899. [PMID: 30009962 DOI: 10.1016/j.autrev.2018.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Lupus nephritis (LN) is one of the most frequent and severe manifestations of systemic lupus erythematosus (SLE), considered as the major predictor of poor prognosis. An early diagnosis of LN is a real challenge in the management of SLE and has an important implication in guiding treatments. In clinical practice, conventional parameters still lack sensitivity and specificity for detecting ongoing disease activity in lupus kidneys and early relapse of nephritis. LN is characterized by glomerular kidney injury, essentially due to deposition of immune complexes involving autoantibodies against cellular components and circulating proteins. One of the possible mechanisms of induction of autoantibodies in SLE is a defect in apoptotic cells clearance and subsequent release of intracellular autoantigens. Autoantibodies against soluble protective molecules involved in the uptake of dying cells, including complement proteins and pentraxins, have been described. In this review, we present the main autoantibodies found in LN, with a focus on the antibodies against these protective molecules. We also discuss their pathogenic role and conclude with their potential interest as serological biomarkers in LN.
Collapse
Affiliation(s)
- Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, CS 10217, 38043 Grenoble Cedex 9, France; BNI TIMC-IMAG, UMR5525, CNRS-Université Grenoble Alpes, BP170, 38042 Grenoble Cedex 9, France.
| | - Giovanna Clavarino
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, CS 10217, 38043 Grenoble Cedex 9, France; BNI TIMC-IMAG, UMR5525, CNRS-Université Grenoble Alpes, BP170, 38042 Grenoble Cedex 9, France
| | - Sophie Colliard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, CS 10217, 38043 Grenoble Cedex 9, France
| | - Jean-Yves Cesbron
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, CS 10217, 38043 Grenoble Cedex 9, France; BNI TIMC-IMAG, UMR5525, CNRS-Université Grenoble Alpes, BP170, 38042 Grenoble Cedex 9, France
| | | |
Collapse
|
34
|
Troldborg A, Jensen L, Deleuran B, Stengaard-Pedersen K, Thiel S, Jensenius JC. The C3dg Fragment of Complement Is Superior to Conventional C3 as a Diagnostic Biomarker in Systemic Lupus Erythematosus. Front Immunol 2018; 9:581. [PMID: 29632534 PMCID: PMC5879092 DOI: 10.3389/fimmu.2018.00581] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction/objectives In 2012, hypocomplementemia was included in the classification criteria of systemic lupus erythematosus (SLE). The suggested measurement of C3 or C4 often reflect disease activity poorly. Our objective was to establish an assay measuring C3dg, which is generated following complement activation, and to evaluate the assay in a cross-sectional SLE cohort. Method We included SLE patients (n = 169) and controls (n = 170) and developed a modified C3dg assay where C3dg fragments were separated from the large plasma proteins by polyethylene glycol (PEG), and the supernatant containing the C3dg fragment was used for analysis in an antibody-based sandwich-type assay. Gel permeation chromatography and western blotting were used to establish the optimal conditions for PEG precipitation. Results 16% PEG was optimal for separating C3dg from C3 and the larger protein fragments. The assay showed a high degree of stability when using EDTA plasma, and measurements correlated well with commercially available complement activation assays. SLE patients had higher concentrations in plasma of C3dg than controls (p < 0.05). ROC analysis showed that the C3dg activation fragment of C3 with an AUC of 0.96 (CI 0.94–0.98) was superior to C3 (AUC 0.52) in differentiating between patients and controls. Conclusion Our results present a modified assay for the measurement of C3dg. We demonstrate that C3dg was superior to conventional C3 measurements in discriminating SLE patients from controls. We suggest that C3dg should be considered as a complement activation measurement in the SLE classification criteria.
Collapse
Affiliation(s)
- Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Stengaard-Pedersen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
35
|
Łukawska E, Polcyn-Adamczak M, Niemir ZI. The role of the alternative pathway of complement activation in glomerular diseases. Clin Exp Med 2018; 18:297-318. [DOI: 10.1007/s10238-018-0491-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023]
|
36
|
Autoantibodies against complement components in systemic lupus erythematosus – role in the pathogenesis and clinical manifestations. Lupus 2017; 26:1550-1555. [DOI: 10.1177/0961203317709347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many complement structures and a number of additional factors, i.e. autoantibodies, receptors, hormones and cytokines, are implicated in the complex pathogenesis of systemic lupus erythematosus. Genetic defects in the complement as well as functional deficiency due to antibodies against its components lead to different pathological conditions, usually clinically presented. Among them hypocomplementemic urticarial vasculitis, different types of glomerulonephritis as dense deposit disease, IgA nephropathy, atypical haemolytic uremic syndrome and lupus nephritis are very common. These antibodies cause conformational changes leading to pathological activation or inhibition of complement with organ damage and/or limited capacity of the immune system to clear immune complexes and apoptotic debris. Finally, we summarize the role of complement antibodies in the pathogenesis of systemic lupus erythematosus and discuss the mechanism of some related clinical conditions such as infections, thyroiditis, thrombosis, acquired von Willebrand disease, etc.
Collapse
|
37
|
Marinozzi MC, Roumenina LT, Chauvet S, Hertig A, Bertrand D, Olagne J, Frimat M, Ulinski T, Deschênes G, Burtey S, Delahousse M, Moulin B, Legendre C, Frémeaux-Bacchi V, Le Quintrec M. Anti-Factor B and Anti-C3b Autoantibodies in C3 Glomerulopathy and Ig-Associated Membranoproliferative GN. J Am Soc Nephrol 2017; 28:1603-1613. [PMID: 28096309 DOI: 10.1681/asn.2016030343] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
In C3 glomerulopathy (C3G), the alternative pathway of complement is frequently overactivated by autoantibodies that stabilize the C3 convertase C3bBb. Anti-C3b and anti-factor B (anti-FB) IgG have been reported in three patients with C3G. We screened a cohort of 141 patients with C3G and Ig-associated membranoproliferative GN (Ig-MPGN) for anti-FB and anti-C3b autoantibodies using ELISA. We identified seven patients with anti-FB IgG, three patients with anti-C3b IgG, and five patients with anti-FB and anti-C3b IgG. Of these 15 patients, ten were diagnosed with Ig-MPGN. Among those patients with available data, 92% had a nephrotic syndrome, 64% had AKI, and 67% had a documented infection. Patients negative for anti-C3b and anti-FB IgG had much lower rates of infection (17 [25%] patients with C3G and one [10%] patient with Ig-MPGN). After 48 months, four of 15 (26%) positive patients had developed ESRD or died. All 15 patients had high plasma Bb levels, six (40%) patients had low levels of C3, and nine (60%) patients had high levels of soluble C5b9. In vitro, IgG purified from patients with anti-FB Abs selectively enhanced C3 convertase activity; IgG from patients with anti-C3b/anti-FB Abs enhanced C3 and C5 cleavage. IgG from patients with anti-C3b Abs stabilized C3bBb and perturbed C3b binding to complement receptor 1 but did not perturb binding to factor H. In conclusion, the prevalence of anti-C3b/anti-FB Abs and alternative pathway activation is similar in Ig-MPGN and C3G, suggesting similar pathogenic mechanisms. Identification of the underlying defect in Ig-MPGN could lead to improved treatment.
Collapse
Affiliation(s)
- Maria Chiara Marinozzi
- Team Complement and Diseases Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1138, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Lubka T Roumenina
- Team Complement and Diseases Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1138, Paris, France.,Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Sophie Chauvet
- Team Complement and Diseases Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1138, Paris, France
| | - Alexandre Hertig
- Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Service de Néphrologie et de Transplantation rénale, Paris, France
| | - Dominique Bertrand
- Service de Néphrologie et de Transplantation rénale, Hôpital Bois Guillaume, Rouen, France
| | - Jérome Olagne
- Service de Néphrologie et de Transplantation rénale, Strasbourg, France
| | - Marie Frimat
- Service de Néphrologie et de Transplantation rénale, Lille, France
| | - Tim Ulinski
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie, Hôpital Trousseau, Paris, France
| | - Georges Deschênes
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie et de Transplantation rénale, Hôpital Robert Debré, Paris, France
| | - Stephane Burtey
- Aix Marseille université, Assistance publique-Hôpitaux de Marseille, Service de Néphrologie et de Transplantation rénale, Marseille, France
| | - Michel Delahousse
- Service de Néphrologie et Transplantation rénale, Hopital Foch, Paris, France; and
| | - Bruno Moulin
- Service de Néphrologie et de Transplantation rénale, Strasbourg, France
| | - Christophe Legendre
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie et de Transplantation rénale, Hôpital Necker, Paris, France
| | - Véronique Frémeaux-Bacchi
- Team Complement and Diseases Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1138, Paris, France; .,Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Moglie Le Quintrec
- Team Complement and Diseases Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1138, Paris, France; .,Service de Néphrologie et Transplantation rénale, Hopital Foch, Paris, France; and
| |
Collapse
|
38
|
The Impact of T Cell Vaccination in Alleviating and Regulating Systemic Lupus Erythematosus Manifestation. J Immunol Res 2016; 2016:5183686. [PMID: 28044142 PMCID: PMC5164883 DOI: 10.1155/2016/5183686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
Abstract
Objective. Systemic lupus erythematosus (SLE) is an autoimmune disease identified by a plethora of production of autoantibodies. Autoreactive T cells may play an important role in the process. Attenuated T cell vaccination (TCV) has proven to benefit some autoimmune diseases by deleting or suppressing pathogenic T cells. However, clinical evidence for TCV in SLE is still limited. Therefore, this self-controlled study concentrates on the clinical effects of TCV on SLE patients. Methods. 16 patients were enrolled in the study; they accepted TCV regularly. SLEDAI, clinical symptoms, blood parameters including complements 3 and 4 levels, ANA, and anti-ds-DNA antibodies were tested. In addition, the side effects and drug usage were observed during the patients' treatment and follow-up. Results. Remissions in clinical symptoms such as facial rash, vasculitis, and proteinuria were noted in most patients. There are also evident reductions in SLEDAI, anti-ds-DNA antibodies, and GC dose and increases in C3 and C4 levels, with no pathogenic side effects during treatment and follow-up. Conclusions. T cell vaccination is helpful in alleviating and regulating systemic lupus erythematosus manifestation.
Collapse
|
39
|
Hsieh SC, Tsai CY, Yu CL. Potential serum and urine biomarkers in patients with lupus nephritis and the unsolved problems. Open Access Rheumatol 2016; 8:81-91. [PMID: 27843374 PMCID: PMC5098719 DOI: 10.2147/oarrr.s112829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lupus nephritis (LN) is one of the most frequent and serious complications in the patients with systemic lupus erythematosus. Autoimmune-mediated inflammation in both renal glomerular and tubulointerstitial tissues is the major pathological finding of LN. In clinical practice, the elevated anti-dsDNA antibody titer concomitant with reduced complement C3 and C4 levels has become the predictive and disease-activity surrogate biomarkers in LN. However, more and more evidences suggest that autoantibodies other than anti-dsDNA antibodies, such as anti-nucleosome, anti-C1q, anti-C3b, anti-cardiolipin, anti-endothelial cell, anti-ribonuclear proteins, and anti-glomerular matrix (anti-actinin) antibodies, may also involve in LN. Researchers have demonstrated that the circulating preformed and in situ-formed immune complexes as well as the direct cytotoxic effects by those cross-reactive autoantibodies mediated kidney damage. On the other hand, many efforts had been made to find useful urine biomarkers for LN activity via measurement of immune-related mediators, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic signature, and assessment of mRNA and exosomal-derived microRNA from urine sediment cell. Our group had also devoted to this field with some novel findings. In this review, we briefly discuss the possible mechanisms of LN and try to figure out the potential serum and urine biomarkers in LN. Finally, some of the unsolved problems in this field are discussed.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine
| | - Chang-Youh Tsai
- Section of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital
| | - Chia-Li Yu
- Department of Internal Medicine, Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
40
|
Chen A, Chen HT, Hwang YH, Chen YT, Hsiao CH, Chen HC. Severity of dry eye syndrome is related to anti-dsDNA autoantibody in systemic lupus erythematosus patients without secondary Sjogren syndrome: A cross-sectional analysis. Medicine (Baltimore) 2016; 95:e4218. [PMID: 27428227 PMCID: PMC4956821 DOI: 10.1097/md.0000000000004218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are as many as one-third of the systemic lupus erythematosus (SLE) patients who suffer from dry eye syndrome. To this date, dry eye syndrome in SLE patients is believed to be caused by secondary Sjogren syndrome (sSS). However, there is increasing evidence for possible independency of dry eye syndrome and sSS in patients suffering from autoimmune diseases. The purpose of this retrospective observational case series was to identify SLE patients without sSS who had dry eye syndrome, examine the correlation of different autoantibodies and dry eye severity, and determine the cause of dry eye in these patients.We included 49 consecutive SLE patients with dry eye who visited our dry eye clinic. In order to rule out sSS, these patients were all negative for anti-Sjogren's-syndrome-related antigen A and B (anti-SSA/SSB) and had no oral symptoms. Each patient's lupus activity was determined by serological tests including antidouble-stranded DNA antibody (anti-dsDNA), complement levels (C3, C4), erythrocyte sedimentation rate (ESR), and antinuclear antibody (ANA). Severity of dry eye syndrome was determined by corneal sensation (KSen), superficial punctuate keratopathy (SPK), Schirmer-I test (Schirmer), and tear film break-up time (TBUT). The autoantibodies and the dry eye parameters in each group were tested using the χ test or the Mann-Whitney U test for normally distributed or skewed data, respectively.The anti-dsDNA showed significant correlations with KSen (P < 0.001), SPK (P < 0.001), and Schirmer (P = 0.042) but not TBUT. The C3 showed significant correlations with KSen (P < 0.001), SPK (P < 0.001), and Schirmer (P = 0.014) but not TBUT. No correlations of dry eye parameters were observed between C4, ESR, and ANA.The major finding of this study was that the severity of dry eye syndrome in SLE patients without sSS was strongly correlated with anti-dsDNA and C3 but not with C4, ESR, and ANA.
Collapse
Affiliation(s)
- Alexander Chen
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou
| | - Hung-Ta Chen
- Department of Internal Medicine, Taipei City Hospital-Heping Branch
| | - Yih-Hsiou Hwang
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou
| | - Yi-Tsun Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei
| | - Ching-Hsi Hsiao
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou
| | - Hung-Chi Chen
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan
- Correspondence: Hung-Chi Chen, Department of Ophthalmology, Chang Gung Memorial Hospital, Guishan District, Taoyuan, Taiwan (e-mail: )
| |
Collapse
|
41
|
Frazer-Abel A, Sepiashvili L, Mbughuni MM, Willrich MAV. Overview of Laboratory Testing and Clinical Presentations of Complement Deficiencies and Dysregulation. Adv Clin Chem 2016; 77:1-75. [PMID: 27717414 DOI: 10.1016/bs.acc.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Historically, complement disorders have been attributed to immunodeficiency associated with severe or frequent infection. More recently, however, complement has been recognized for its role in inflammation, autoimmune disorders, and vision loss. This paradigm shift requires a fundamental change in how complement testing is performed and interpreted. Here, we provide an overview of the complement pathways and summarize recent literature related to hereditary and acquired angioedema, infectious diseases, autoimmunity, and age-related macular degeneration. The impact of complement dysregulation in atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, and C3 glomerulopathies is also described. The advent of therapeutics such as eculizumab and other complement inhibitors has driven the need to more fully understand complement to facilitate diagnosis and monitoring. In this report, we review analytical methods and discuss challenges for the clinical laboratory in measuring this complex biochemical system.
Collapse
|