1
|
Ren Z, Zhao W, Li D, Yu P, Mao L, Zhao Q, Yao L, Zhang X, Liu Y, Zhou B, Wang L. INO80-Dependent Remodeling of Transcriptional Regulatory Network Underlies the Progression of Heart Failure. Circulation 2024; 149:1121-1138. [PMID: 38152931 DOI: 10.1161/circulationaha.123.065440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined. METHODS In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction. RESULTS The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 (Myocyte Enhancer Factor 2) family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function. CONCLUSIONS In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.
Collapse
Affiliation(s)
- Zongna Ren
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
| | - Wanqing Zhao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Luyan Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Yandan Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Bingying Zhou
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China (Z.R., W.Z., B.Z., L.W.)
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L., P.Y., L.M., Q.Z., L.Y., X.Z., Y.L., B.Z., L.W.)
- Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.W.)
| |
Collapse
|
2
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
3
|
Bai J, Lin Y, Zhang J, Chen Z, Wang Y, Li M, Li J. Profiling of Chromatin Accessibility in Pigs across Multiple Tissues and Developmental Stages. Int J Mol Sci 2023; 24:11076. [PMID: 37446255 DOI: 10.3390/ijms241311076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The study of chromatin accessibility across tissues and developmental stages is essential for elucidating the transcriptional regulation of various phenotypes and biological processes. However, the chromatin accessibility profiles of multiple tissues in newborn pigs and across porcine liver development remain poorly investigated. Here, we used ATAC-seq and rRNA-depleted RNA-seq to profile open chromatin maps and transcriptional features of heart, kidney, liver, lung, skeletal muscle, and spleen in newborn pigs and porcine liver tissue in the suckling and adult stages, respectively. Specifically, by analyzing a union set of protein-coding genes (PCGs) and two types of transcripts (lncRNAs and TUCPs), we obtained a comprehensive annotation of consensus ATAC-seq peaks for each tissue and developmental stage. As expected, the PCGs with tissue-specific accessible promoters had active transcription and were relevant to tissue-specific functions. In addition, other non-coding tissue-specific peaks were involved in both physical activity and the morphogenesis of neonatal tissues. We also characterized stage-specific peaks and observed a close association between dynamic chromatin accessibility and hepatic function transition during liver postnatal development. Overall, this study expands our current understanding of epigenetic regulation in mammalian tissues and organ development, which can benefit both economic trait improvement and improve the biomedical usage of pigs.
Collapse
Affiliation(s)
- Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyu Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Carroll MS, Giacca M. CRISPR activation and interference as investigative tools in the cardiovascular system. Int J Biochem Cell Biol 2023; 155:106348. [PMID: 36563996 PMCID: PMC10265131 DOI: 10.1016/j.biocel.2022.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
CRISPR activation and interference (CRISPRa/i) technology offers the unprecedented possibility of achieving regulated gene expression both in vitro and in vivo. The DNA pairing specificity of a nuclease dead Cas9 (dCas9) is exploited to precisely target a transcriptional activator or repressor in proximity to a gene promoter. This permits both the study of phenotypes arising from gene modulation for investigative purposes, and the development of potential therapeutics. As with virtually all other organ systems, the cardiovascular system can deeply benefit from a broader utilisation of CRISPRa/i. However, application of this technology is still in its infancy. Significant areas for improvement include the identification of novel and more effective transcriptional regulators that can be docked to dCas9, and the development of more efficient methods for their delivery and expression in vivo.
Collapse
Affiliation(s)
- Melissa S Carroll
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London UK
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London UK.
| |
Collapse
|
5
|
Guan X, Peng Q, Wang J. Sevoflurane activates MEF2D-mediated Wnt/β-catenin signaling pathway via microRNA-374b-5p to affect renal ischemia/reperfusion injury. Immunopharmacol Immunotoxicol 2022; 44:603-612. [PMID: 35481398 DOI: 10.1080/08923973.2022.2071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The inhaled sevoflurane (Sev) has been demonstrated to protect multiple organs against ischemia/reperfusion injury (IRI). However, the mechanisms of Sev in renal IRI remain largely unknown. This study intends to explore the effect of Sev on renal IRI and the molecular mechanism behind. METHODS Following Sev preconditioning, a mouse model with renal IRI was established. The effects of Sev on IRI in mice were assessed by BUN, Scr, MDA and SOD kits, Western blot, HE staining, and TUNEL. Subsequently, we performed microarray analysis on renal tissues from mice with Sev to identify differentially expressed microRNAs (miRNAs). Then, the mice were treated with agomiR-374b-5p combined with Sev to observe the renal histopathology after IRI. The targeting mRNA of miR-374b-5p was verified using bioinformatics analysis and dual-luciferase assay, followed by KEGG enrichment analysis. Rescue experiments were implemented with simultaneous miR-374b-5p and MEF2D overexpression to detect renal histopathology and Wnt/β-catenin pathway activity in the mice. RESULTS Sev significantly reduced the levels of BUN and Scr in mouse serum, prevented cell apoptosis, decreased MDA content and increased SOD levels in renal tissues. Moreover, Sev downregulated the miR-374b-5p expression in the renal tissues. Overexpression of miR-374b-5p attenuated the protective effects of Sev on mouse renal tissues. miR-374b-5p targeted MEF2D and blocked the Wnt/β-catenin pathway. Overexpression of MEF2D activated the Wnt/β-catenin pathway and attenuated the supporting effects of miR-374b-5p on renal IRI. CONCLUSION Sev promotes MEF2D and activates the Wnt/β-catenin pathway through inhibition of miR-374b-5p expression to affect renal IRI.
Collapse
Affiliation(s)
- Xiaohong Guan
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Qingxiong Peng
- Department of Anesthesiology, The First Hospital of Changsha, Hunan, P.R. China
| | - Jiansong Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, P.R. China
| |
Collapse
|
6
|
Li JM, Pan XC, Ding YY, Tong YF, Chen XH, Liu Y, Zhang HG. Effect of Triptolide on Temporal Expression of Cell Cycle Regulators During Cardiac Hypertrophy. Front Pharmacol 2020; 11:566938. [PMID: 33013405 PMCID: PMC7498627 DOI: 10.3389/fphar.2020.566938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Adult mammalian cardiomyocytes may reenter the cell cycle and cause cardiac hypertrophy. Triptolide (TP) can regulate the expressions of various cell cycle regulators in cancer cells. However, its effects on cell cycle regulators during myocardial hypertrophy and mechanism are unclear. This study was designed to explore the profile of cell cycle of cardiomyocytes and the temporal expression of their regulators during cardiac hypertrophy, as well as the effects of TP. The hypertrophy models employed were neonatal rat ventricular myocytes (NRVMs) stimulated with angiotensin II (Ang II) for scheduled times (from 5 min to 48 h) in vitro and mice treated with isoprenaline (Iso) for from 1 to 21 days, respectively. TP was used in vitro at 1 μg/L and in vivo at 10 μg/kg. NRVMs were analyzed using flow cytometry to detect the cell cycle, and the expression levels of mRNA and protein of various cell cycle regulators were determined using real-time PCR and Western blot. It was found NRVM numbers in phases S and G2 increased, while that in the G1 phase decreased significantly after Ang II stimulation. The mRNA expression levels of p21 and p27 increased soon after stimulation, and thereafter, mRNA expression levels of all cell cycle factors showed a decreasing trend and reached their lowest levels in 1–3 h, except for cyclin-dependent kinase 1 (CDK1) and CDK4 mRNA. The mRNA expression levels of CDK1, p21, and p27 increased markedly after stimulation with Ang II for 24–48 h. In myocardium tissue, CDK and cyclin expression levels peaked in 3–7 days, followed by a decreasing trend, while those of p21 and p27 mRNA remained at a high level on day 21. Expression levels of all protein were consistent with the results of mRNA in NRVMs or mice. The influence of Ang II or Iso on protein expression was more obvious than that on mRNA. TP treatment effectively prevented the imbalance in the expression of cell cycle regulators in the hypertrophy model group. In Conclusion, an imbalance in the expression of cell cycle regulators occurs during cardiac hypertrophy, and triptolide corrects these abnormal expression levels and attenuates cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing-Mei Li
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xi-Chun Pan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Yuan Ding
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang-Fei Tong
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pharmacy, Chongqing Traditional Medicine Hospital, Chongqing, China
| | - Xiao-Hong Chen
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ya Liu
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Wang N, Yang W, Li L, Tian M. MEF2D upregulation protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury by enhancing Nrf2 activation. Brain Res 2020; 1741:146878. [PMID: 32407713 DOI: 10.1016/j.brainres.2020.146878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that myocyte enhancer factor 2D (MEF2D) is a pro-survival factor for neurons. However, whether MEF2D is involved in protecting neurons from cerebral ischemia/reperfusion injury remains unknown. The current study was designed to investigate the exact role and mechanism of MEF2D in regulating oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, an in vitro model used to study cerebral ischemia/reperfusion injury. MEF2D expression was significantly induced in neurons in response to OGD/R injury. Functional analysis demonstrated that MEF2D upregulation significantly rescued the decreased viability of OGD/R-injured neurons and suppressed OGD/R-induced apoptosis and reactive oxygen species (ROS) production. By contrast, MEF2D knockdown increased the sensitivity of neurons to OGD/R-induced injury. Moreover, MEF2D overexpression increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling. However, Nrf2 knockdown partially blocked the MEF2D-mediated neuroprotective effect in OGD/R-exposed neurons. Overall, these results reveal that MEF2D overexpression attenuates OGD/R-induced injury by enhancing Nrf2-mediated antioxidant signaling. These findings suggest that MEF2D may serve as a neuroprotective target with a potential application for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Weiwei Yang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Lan Li
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Ming Tian
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
8
|
Di Giorgio E, Dalla E, Franforte E, Paluvai H, Minisini M, Trevisanut M, Picco R, Brancolini C. Different class IIa HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells. Nucleic Acids Res 2020; 48:646-664. [PMID: 31754707 PMCID: PMC6954409 DOI: 10.1093/nar/gkz1120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transcriptional networks supervising class IIa HDAC expression are poorly defined. Here we demonstrate that MEF2D is the key factor controlling HDAC9 transcription. This control, which is part of a negative feed-back loop during muscle differentiation, is hijacked in cancer. In leiomyosarcomas the MEF2D/HDAC9 vicious circuit sustains proliferation and cell survival, through the repression of the death receptor FAS. Comprehensive genome-wide studies demonstrate that HDAC4 and HDAC9 control different genetic programs and show both specific and common genomic binding sites. Although the number of MEF2-target genes commonly regulated is similar, only HDAC4 represses many additional genes that are not MEF2D targets. As expected, HDAC4-/- and HDAC9-/- cells increase H3K27ac levels around the TSS of the respective repressed genes. However, these genes rarely show binding of the HDACs at their promoters. Frequently HDAC4 and HDAC9 bind intergenic regions. We demonstrate that these regions, recognized by MEF2D/HDAC4/HDAC9 repressive complexes, show the features of active enhancers. In these regions HDAC4 and HDAC9 can differentially influence H3K27 acetylation. Our studies describe new layers of class IIa HDACs regulation, including a dominant positional effect, and can contribute to explain the pleiotropic actions of MEF2 TFs.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Elisa Franforte
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | | | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Matteo Trevisanut
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
9
|
Wan X, Belanger K, Widen SG, Kuyumcu-Martinez MN, Garg NJ. Genes of the cGMP-PKG-Ca 2+ signaling pathway are alternatively spliced in cardiomyopathy: Role of RBFOX2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165620. [PMID: 31778749 PMCID: PMC6954967 DOI: 10.1016/j.bbadis.2019.165620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Aberrations in the cGMP-PKG-Ca2+ pathway are implicated in cardiovascular complications of diverse etiologies, though involved molecular mechanisms are not understood. We performed RNA-Seq analysis to profile global changes in gene expression and exon splicing in Chagas disease (ChD) murine myocardium. Ingenuity-Pathway-Analysis of transcriptome dataset identified 26 differentially expressed genes associated with increased mobilization and cellular levels of Ca2+ in ChD hearts. Mixture-of-isoforms and Enrichr KEGG pathway analyses of the RNA-Seq datasets from ChD (this study) and diabetic (previous study) murine hearts identified alternative splicing (AS) in eleven genes (Arhgef10, Atp2b1, Atp2a3, Cacna1c, Itpr1, Mef2a, Mef2d, Pde2a, Plcb1, Plcb4, and Ppp1r12a) of the cGMP-PKG-Ca2+ pathway in diseased hearts. AS of these genes was validated by an exon exclusion-inclusion assay. Further, Arhgef10, Atp2b1, Mef2a, Mef2d, Plcb1, and Ppp1r12a genes consisted RBFOX2 (RNA-binding protein) binding-site clusters, determined by analyzing the RBFOX2 CLIP-Seq dataset. H9c2 rat heart cells transfected with Rbfox2 (vs. scrambled) siRNA confirmed that expression of Rbfox2 is essential for proper exon splicing of genes of the cGMP-PKG-Ca2+ pathway. We conclude that changes in gene expression may influence the Ca2+ mobilization pathway in ChD, and AS impacts the genes involved in cGMP/PKG/Ca2+ signaling pathway in ChD and diabetes. Our findings suggest that ChD patients with diabetes may be at increased risk of cardiomyopathy and heart failure and provide novel ways to restore cGMP-PKG regulated signaling networks via correcting splicing patterns of key factors using oligonucleotide-based therapies for the treatment of cardiovascular complications.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America
| | - KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| |
Collapse
|
10
|
Pereira AHM, Cardoso AC, Consonni SR, Oliveira RR, Saito A, Vaggione MLB, Matos-Souza JR, Carazzolle MF, Gonçalves A, Fernandes JL, Ribeiro GCA, Lopes MM, Molkentin JD, Franchini KG. MEF2C repressor variant deregulation leads to cell cycle re-entry and development of heart failure. EBioMedicine 2020; 51:102571. [PMID: 31911274 PMCID: PMC6948164 DOI: 10.1016/j.ebiom.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background A pathophysiological link exists between dysregulation of MEF2C transcription factors and heart failure (HF), but the underlying mechanisms remain elusive. Alternative splicing of MEF2C exons α, β and γ provides transcript diversity with gene activation or repression functionalities. Methods Neonatal and adult rat ventricular myocytes were used to overexpress MEF2C splicing variants γ+ (repressor) or γ-, or the inactive MEF2Cγ+23/24 (K23T/R24L). Phenotypic alterations in cardiomyocytes were determined by confocal and electron microscopy, flow cytometry and DNA microarray. We used transgenic mice with cardiac-specific overexpression of MEF2Cγ+ or MEF2Cγ− to explore the impact of MEF2C variants in cardiac phenotype. Samples of non-infarcted areas of the left ventricle from patients and mouse model of myocardial infarction were used to detect the expression of MEF2Cγ+ in failing hearts. Findings We demonstrate a previously unrealized upregulation of the transrepressor MEF2Cγ+ isoform in human and mouse failing hearts. We show that adenovirus-mediated overexpression of MEF2Cγ+ downregulates multiple MEF2-target genes, and drives incomplete cell-cycle reentry, partial dedifferentiation and apoptosis in the neonatal and adult rat. None of these changes was observed in cardiomyocytes overexpressing MEF2Cγ-. Transgenic mice overexpressing MEF2Cγ+, but not the MEF2Cγ-, developed dilated cardiomyopathy, correlated to cell-cycle reentry and apoptosis of cardiomyocytes. Interpretation Our results provide a mechanistic link between MEF2Cγ+ and deleterious abnormalities in cardiomyocytes, supporting the notion that splicing dysregulation in MEF2C towards the selection of the MEF2Cγ+ variant contributes to the pathogenesis of HF by promoting cardiomyocyte dropout. Funding São Paulo Research Foundation (FAPESP); Brazilian National Research Council (CNPq).
Collapse
Affiliation(s)
- Ana Helena M Pereira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Alisson C Cardoso
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Silvio R Consonni
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Renata R Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Maria Luisa B Vaggione
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Jose R Matos-Souza
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | - Anderson Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | | | | | | | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, USA
| | - Kleber G Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil; Department of Internal Medicine, University of Campinas, Campinas, Brazil.
| |
Collapse
|
11
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
12
|
Wang YN, Yang WC, Li PW, Wang HB, Zhang YY, Zan LS. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS One 2018; 13:e0196255. [PMID: 29698438 PMCID: PMC5919640 DOI: 10.1371/journal.pone.0196255] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Wu-Cai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Pei-Wei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Hong-Bao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Ying-Ying Zhang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
- National and Provincial Joint Engineering Research Center of Modern Cattle Biotechnology and Applications, Yangling, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
13
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
14
|
Li K, Pan J, Wang J, Liu F, Wang L. MiR-665 regulates VSMCs proliferation via targeting FGF9 and MEF2D and modulating activities of Wnt/β-catenin signaling. Am J Transl Res 2017; 9:4402-4414. [PMID: 29118903 PMCID: PMC5666050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of cardiovascular diseases. Studies have showed the great impact of microRNAs (miRNAs) on the cell proliferation in VSMCs. This study examined the in vitro functional roles of miR-665 in the VSMCs and explored the underlying molecular mechanisms. The mRNA and protein expression levels were determined by qRT-PCR and western blot assays, respectively. CCK-8, transwell invasion and wound healing assays were performed to measure VSMCs proliferation, invasion and migration, respectively. The miR-665 targeted-3'UTR of fibroblast growth factor 9 (FGF9) and myocyte enhancer factor 2D (MEF2D) was confirmed by luciferase reporter assay. Platelet-derived growth factor-bb (PDGF-bb) and 20% serum promoted cell proliferation and suppressed the expression of miR-665 in VSMCs. In vitro functional assays demonstrated that miR-665 inhibited VSMCs proliferation, invasion and migration. Bioinformatics analysis showed that FGF9 and MEF2D were found to be downstream targets of miR-665. Luciferase report assay confirmed that FGF9 and MEF2D 3'UTRs are direct targets of miR-665, and miR-665 overexpression suppressed both the mRNA and protein expression levels of FGF9 and MEF2D. Furthermore, rescue experiments showed that enforced expression of FGF9 or MEF2D attenuated the inhibitory effects of miR-665 on VSMCs proliferation. More importantly, overexpression of miR-665 also suppressed the mRNA and protein expression levels of β-catenin, c-myc and cyclin D1. In summary, miR-665 suppressed the VSMCs proliferation, invasion and migration via targeting FGF9 and MEF2D, and the in vitro effects of miR-665 on VSMCs may be associated with modulation of Wnt/β-catenin signaling activities.
Collapse
Affiliation(s)
- Kai Li
- Department of Cardiology, The First Affiliated Hospital of Xi’an Medical UniversityXi’an, Shaanxi Province, China
| | - Jin Pan
- Clinical Medical College, Xi’an Medical UniversityXi’an, Shaanxi Province, China
| | - Jianjun Wang
- Department of Cardiology, The First Affiliated Hospital of Xi’an Medical UniversityXi’an, Shaanxi Province, China
| | - Fengrui Liu
- Department of Cardiology, The First Affiliated Hospital of Xi’an Medical UniversityXi’an, Shaanxi Province, China
| | - Li Wang
- Department of Cardiology, The First Affiliated Hospital of Xi’an Medical UniversityXi’an, Shaanxi Province, China
| |
Collapse
|
15
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
16
|
Desjardins CA, Naya FJ. Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors. J Biol Chem 2017; 292:10613-10629. [PMID: 28473466 DOI: 10.1074/jbc.m117.776153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiomyocytes acquire their primary specialized function (contraction) before exiting the cell cycle. In this regard, proliferation and differentiation must be precisely coordinated for proper cardiac morphogenesis. Here, we have investigated the complex transcriptional mechanisms employed by cardiomyocytes to coordinate antagonistic cell-cycle and differentiation gene programs through the molecular dissection of the core cardiac transcription factor, MEF2. Knockdown of individual MEF2 proteins, MEF2A, -C, and -D, in primary neonatal cardiomyocytes resulted in radically distinct and opposite effects on cellular homeostasis and gene regulation. MEF2A and MEF2D were absolutely required for cardiomyocyte survival, whereas MEF2C, despite its major role in cardiac morphogenesis and direct reprogramming, was dispensable for this process. Inhibition of MEF2A or -D also resulted in the activation of cell-cycle genes and down-regulation of markers of terminal differentiation. In striking contrast, the regulation of cell-cycle and differentiation gene programs by MEF2C was antagonistic to that of MEF2A and -D. Computational analysis of regulatory regions from MEF2 isoform-dependent gene sets identified the Notch and Hedgehog signaling pathways as key determinants in coordinating MEF2 isoform-specific control of antagonistic gene programs. These results reveal that mammalian MEF2 family members have distinct transcriptional functions in cardiomyocytes and suggest that these differences are critical for proper development and maturation of the heart. Analysis of MEF2 isoform-specific function in neonatal cardiomyocytes has yielded insight into an unexpected transcriptional regulatory mechanism by which these specialized cells utilize homologous members of a core cardiac transcription factor to coordinate cell-cycle and differentiation gene programs.
Collapse
Affiliation(s)
- Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
17
|
Xiang J, Sun H, Su L, Liu L, Shan J, Shen J, Yang Z, Chen J, Zhong X, Ávila MA, Yan X, Liu C, Qian C. Myocyte enhancer factor 2D promotes colorectal cancer angiogenesis downstream of hypoxia-inducible factor 1α. Cancer Lett 2017; 400:117-126. [PMID: 28478181 DOI: 10.1016/j.canlet.2017.04.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
Myocyte enhancer factor 2D (MEF2D) is involved in many aspects of cancer progression, including cell proliferation, invasion, and migration. However, little is known about the role of MEF2D in tumor angiogenesis. Using clinical specimens, colorectal cancer (CRC) cell lines and a mouse model in the present study, we found that MEF2D expression was positively correlated with CD31-positive microvascular density in CRC tissues. MEF2D promoted tumor angiogenesis in vitro and in vivo and induced the expression of proangiogenic cytokines in CRC cells. MEF2D was found to be a downstream effector of hypoxia-inducible factor (HIF)-1α in the induction of tumor angiogenesis. HIF-1α transactivates MEF2D expression by binding to the MEF2D gene promoter. These results demonstrate that the HIF-1α/MEF2D axis can serve as a therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Junyu Xiang
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hui Sun
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Department of Oncology, Chinese Traditional Medicine Hospital, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xing Zhong
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Matías A Ávila
- Center of Investigation for Applied Medcine, University of Navarra, Pamplona, Spain
| | - Xiaochu Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Chungang Liu
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Qian
- Center of Biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
18
|
Ponnusamy M, Li PF, Wang K. Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 2017; 74:1019-1034. [PMID: 27695872 PMCID: PMC11107761 DOI: 10.1007/s00018-016-2375-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
Cardiomyocyte proliferation and regeneration are key to the functional recovery of myocardial tissue from injury. In the recent years, studies on cardiomyocyte proliferation overturned the traditional belief that adult cardiomyocytes permanently withdraw from the cell cycle activity. Hence, targeting cardiomyocyte proliferation is one of the potential therapeutic strategies for myocardial regeneration and repair. To achieve this, a deep understanding of the fundamental mechanisms involved in cardiomyocyte cell cycle as well as differences between neonatal and adult cardiomyocytes' cell cycle activity is required. This review focuses on the recent progress in understanding of cardiomyocyte cell cycle activity at different life stages viz., gestation, birth, and adulthood. The temporal expression/activities of major cell cycle activators (cyclins and CDKs), inhibitors (p21, p27, p57, p16, and p18), and cell-cycle-associated proteins (Rb, p107, and p130) in cardiomyocytes during gestation and postnatal life are described in this review. The influence of different transcription factors and microRNAs on the expression of cell cycle proteins is demonstrated. This review also deals major pathways (PI3K/AKT, Wnt/β-catenin, and Hippo-YAP) associated with cardiomyocyte cell cycle progression. Furthermore, the postnatal alterations in structure and cellular events responsible for the loss of cell cycle activity are also illustrated.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Center for Developmental Cardiology, Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
19
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
20
|
Desjardins CA, Naya FJ. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming. J Cardiovasc Dev Dis 2016; 3. [PMID: 27630998 PMCID: PMC5019174 DOI: 10.3390/jcdd3030026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.
Collapse
|
21
|
Su L, Luo Y, Yang Z, Yang J, Yao C, Cheng F, Shan J, Chen J, Li F, Liu L, Liu C, Xu Y, Jiang L, Guo D, Prieto J, Ávila MA, Shen J, Qian C. MEF2D Transduces Microenvironment Stimuli to ZEB1 to Promote Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer. Cancer Res 2016; 76:5054-67. [PMID: 27364559 DOI: 10.1158/0008-5472.can-16-0246] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential mechanism of metastasis, including in colorectal cancer. Although EMT processes are often triggered in cancer cells by their surrounding microenvironment, how EMT-relevant genes control these processes is not well understood. In multiple types of cancers, the transcription factor MEF2D has been implicated in cell proliferation, but its contributions to metastasis have not been addressed. Here, we show MEF2D is overexpressed in clinical colorectal cancer tissues where its high expression correlates with metastatic process. Functional investigations showed that MEF2D promoted cancer cell invasion and EMT and that it was essential for certain microenvironment signals to induce EMT and metastasis in vivo Mechanistically, MEF2D directly regulated transcription of the EMT driver gene ZEB1 and facilitated histone acetylation at the ZEB1 promoter. More importantly, MEF2D responded to various tumor microenvironment signals and acted as a central integrator transducing multiple signals to activate ZEB1 transcription. Overall, our results define a critical function for MEF2D in upregulating EMT and the metastatic capacity of colorectal cancer cells. Further, they offer new insights into how microenvironment signals activate EMT-relevant genes and deepen the pathophysiologic significance of MEF2D, with potential implications for the prevention and treatment of metastatic colorectal cancer. Cancer Res; 76(17); 5054-67. ©2016 AACR.
Collapse
Affiliation(s)
- Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongli Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feifei Cheng
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangfang Li
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Deyu Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jesus Prieto
- Center of Investigation for Applied Medicine, University of Navarra, Pamplona, Spain
| | - Matías A Ávila
- Center of Investigation for Applied Medicine, University of Navarra, Pamplona, Spain
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|