1
|
Chandrika KVSM, V P. An in silico molecular docking, ADMET and molecular dynamics simulations studies of azolyl-2H-chroman-4-ones as potential inhibitors against pathogenic fungi and bacteria. J Biomol Struct Dyn 2024; 42:7667-7685. [PMID: 37526222 DOI: 10.1080/07391102.2023.2241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Antimicrobial resistance is a major global threat. In an attempt to discover new compounds with improved efficiency and to overcome drug resistance, a library of 3960 compounds was designed as conformationally rigid analogues of oxiconazole with 2H-chroman-4-one, azole and substituted phenyl fragments. The antifungal and antibacterial activity of the compounds was evaluated using molecular docking studies in the active site of six fungal and four bacterial proteins to establish the binding affinity of the designed ligands. In-silico ADME and Lipinski's rule were used to establish the drug-likeness properties of the compounds. This study revealed that all the designed compounds had a high binding affinity with the target proteins and formed H-bond and π-π interactions. The identified hits have been subjected to molecular dynamics simulations to study protein-ligand complex stability. This study has led to the identification of important compounds that can be developed further as therapeutic agents against pathogenic fungi and bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| | - Prathyusha V
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| |
Collapse
|
2
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
3
|
Stanković M, Skaro Bogojevic S, Kljun J, Milanović Ž, Stevanović NL, Lazic J, Vojnovic S, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes with voriconazole as promising anti-Candida agents. J Inorg Biochem 2024; 256:112572. [PMID: 38691971 DOI: 10.1016/j.jinorgbio.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
4
|
Almeida lima Â, Moreira LC, Gazolla PR, Oliveira MB, Teixeira RR, Queiroz VT, Rocha MR, Moraes WB, dos Santos NA, Romão W, Lacerda V, Bezerra Morais PA, Oliveira OVD, Júnior WCJ, Barbosa LCA, Nascimento C, Junker J, Costa AV. Design and Synthesis of Eugenol Derivatives Bearing a 1,2,3-Triazole Moiety for Papaya Protection against Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12459-12468. [PMID: 38771934 PMCID: PMC11157534 DOI: 10.1021/acs.jafc.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.
Collapse
Affiliation(s)
- Ângela
Maria Almeida lima
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Luíza Carvalheira Moreira
- Departamento
de Química, Universidade Federal
de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil
| | - Poliana Rodrigues Gazolla
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Mariana Belizario Oliveira
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Róbson Ricardo Teixeira
- Departamento
de Química, Universidade Federal
de Viçosa, Av. P.H. Rolfs, s/n, Viçosa 36570-900, Minas Gerais, Brazil
| | - Vagner Tebaldi Queiroz
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Matheus Ricardo Rocha
- Departamento
de Agronomia, Universidade Federal do Espírito
Santo, Alto Universitário,
s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Willian Bucker Moraes
- Departamento
de Agronomia, Universidade Federal do Espírito
Santo, Alto Universitário,
s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | - Nayara Araújo dos Santos
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Wanderson Romão
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Valdemar Lacerda
- Laboratório
de Petroleômica e Forense, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitória 29075-910, Espírito Santo, Brazil
| | - Pedro Alves Bezerra Morais
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| | | | | | - Luiz C. A. Barbosa
- Departamento
de Química, Universidade Federal
de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo
Horizonte 31270-901, Minas Gerais, Brazil
| | - Cláudia
Jorge Nascimento
- Departamento
de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pauster, Rio de Janeiro 22290-240, Rio de Janeiro, Brazil
| | - Jochen Junker
- Centro
de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro 21040-900, Rio de Janeiro, Brazil
| | - Adilson Vidal Costa
- Departamento
de Química e Física, Universidade
Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre 29500-000, Espírito Santo, Brazil
| |
Collapse
|
5
|
Yin X, Liu X, Wu X, Liu X, Tian Q, Luo Q, Li Y. Design, Synthesis, and 3D-QASR of 2-Ar-1,2,3-triazole Derivatives Containing Hydrazide as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12415-12424. [PMID: 38779960 DOI: 10.1021/acs.jafc.3c08951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 μg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 μg/mL) compared to the positive controls hymexazol (EC50 = 12.80 μg/mL) and tebuconazole (EC50 = 0.87 μg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 μg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.
Collapse
Affiliation(s)
- Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaofeng Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xia Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xingyu Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Hargrove T, Lamb DC, Wawrzak Z, Hull M, Kelly SL, Guengerich FP, Lepesheva GI. Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target. J Med Chem 2024; 67:7443-7457. [PMID: 38683753 PMCID: PMC11089504 DOI: 10.1021/acs.jmedchem.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 μM), VT1598 (0.25 μM), and VT1161 (0.20 μM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.
Collapse
Affiliation(s)
- Tatiana
Y. Hargrove
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David C. Lamb
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Zdzislaw Wawrzak
- Synchrotron
Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Marcus Hull
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Steven L. Kelly
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - F. Peter Guengerich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Ramírez RE, Buendia-Corona RE, Pérez-Xochipa I, Scior T. Computational Binding Study Hints at Ecdysone 20-Mono-Oxygenase as the Hitherto Unknown Target for Ring C-Seco Limonoid-Type Insecticides. Molecules 2024; 29:1628. [PMID: 38611907 PMCID: PMC11013123 DOI: 10.3390/molecules29071628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.
Collapse
Affiliation(s)
- Ramsés E. Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ricardo E. Buendia-Corona
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica Alimentos, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico;
| | - Thomas Scior
- Laboratorio de Simulaciones Moleculares Computacionales, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico
| |
Collapse
|
8
|
McCarty KD, Tateishi Y, Hargrove TY, Lepesheva GI, Guengerich FP. Oxygen-18 Labeling Reveals a Mixed Fe-O Mechanism in the Last Step of Cytochrome P450 51 Sterol 14α-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317711. [PMID: 38206808 PMCID: PMC11494732 DOI: 10.1002/anie.202317711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The 14α-demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three-step reaction terminates in a C-C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2 - ) or Compound I (perferryl oxygen, FeO3+ ) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18 O incorporation into formic acid from 18 O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18 O (one atom) into formic acid, consistent with a major but not exclusive FeO2 - mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both mechanisms. An X-ray crystal structure of the human enzyme showed the aldehyde oxygen atom 3.5 Å away from the heme iron atom. Experiments with human P450 51A1 and H2 18 O yielded primarily one 18 O atom but 14 % of the formic acid product with two 18 O atoms, indicative of a minor contribution of a Compound I mechanism. LC-MS evidence for a Compound 0-derived Baeyer-Villiger reaction product (a 14α-formyl ester) was also found.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
9
|
Zhou Y, Reynolds TB. Innovations in Antifungal Drug Discovery among Cell Envelope Synthesis Enzymes through Structural Insights. J Fungi (Basel) 2024; 10:171. [PMID: 38535180 PMCID: PMC10970773 DOI: 10.3390/jof10030171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 11/11/2024] Open
Abstract
Life-threatening systemic fungal infections occur in immunocompromised patients at an alarming rate. Current antifungal therapies face challenges like drug resistance and patient toxicity, emphasizing the need for new treatments. Membrane-bound enzymes account for a large proportion of current and potential antifungal targets, especially ones that contribute to cell wall and cell membrane biosynthesis. Moreover, structural biology has led to a better understanding of the mechanisms by which these enzymes synthesize their products, as well as the mechanism of action for some antifungals. This review summarizes the structures of several current and potential membrane-bound antifungal targets involved in cell wall and cell membrane biosynthesis and their interactions with known inhibitors or drugs. The proposed mechanisms of action for some molecules, gleaned from detailed inhibitor-protein studeis, are also described, which aids in further rational drug design. Furthermore, some potential membrane-bound antifungal targets with known inhibitors that lack solved structures are discussed, as these might be good enzymes for future structure interrogation.
Collapse
Affiliation(s)
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
10
|
Konings M, Gerrits van den Ende B, Raats MWJ, Fahal AH, van de Sande WWJ, Hagen F. Complete Genome Sequence of the Itraconazole Decreased Susceptible Madurella fahalii Type-Strain CBS 129176. Mycopathologia 2024; 189:6. [PMID: 38231295 PMCID: PMC10794591 DOI: 10.1007/s11046-023-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/04/2023] [Indexed: 01/18/2024]
Abstract
Madurella fahalii is a causative agent of the implantation mycosis mycetoma with decreased susceptibility to itraconazole, the preferred therapeutic drug to combat mycetoma. Here, we report the M. fahalii type-strain CBS 129176 genome assembly and annotation to identify a glutamic acid insert near the azole-binding pocket in the Cyp51A protein.
Collapse
Affiliation(s)
- Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | - Mirthe W J Raats
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystems Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Hilmy KMH, Kishk FNM, Shahen EBA, Sobh EA, Hawata MA. New pyrrole derivatives as DNA gyrase and 14α-demethylase inhibitors: Design, synthesis, antimicrobial evaluation, and molecular docking. Drug Dev Res 2023; 84:1204-1230. [PMID: 37165799 DOI: 10.1002/ddr.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023]
Abstract
An efficient one-pot reaction utilizing readily available chemical reagents was used to prepare novel 2-amino-1,5-diaryl-1H-pyrrole-3-carbonitrile derivatives and the structures of these compounds were validated by spectroscopic data and elemental analyses. All the synthetic compounds were evaluated for their antimicrobial activities (MZI assay). The tested compounds proved high activities on Staphylococcus aureus (Gram-positive bacteria) and Candida albicans (Pathogenic fungi). However, they did not show any activity on Escherichia coli (Gram-negative bacteria). The most effective compounds in MZI assay 7c, 9a, 9b, 11a, and 11b were selected to determine their MIC on S. aureus and C. albicans. Furthermore, DNA gyrase and 14-α demethylase inhibitory assays were performed to study the inhibitory activities of 7c, 9a, 9b, 11a, and 11b. The results illustrated that compound 9b was the most DNA gyrase inhibitor (IC50 of 0.0236 ± 0.45 µM, which was 1.3- fold higher than gentamicin reference IC50 values of 0.0323 ± 0.81 µM). In addition, compound 9b demonstrated the highest 14-α demethylase inhibitory effect with IC50 of 0.0013 ± 0.02 µM, compared to ketoconazole (IC50 of 0.0008 ± 0.03 µM) and fluconazole (IC50 of 0.00073 ± 0.01 µM), as antifungal reference drugs. Lastly, docking studies were performed to rationalize the dual inhibitory activities of the highly active compounds on both DNA gyrase and 14-α demethylase enzymes.
Collapse
Affiliation(s)
- Khaled M H Hilmy
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Fawzya N M Kishk
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Esmat B A Shahen
- Depatment of Biochemistry, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shebin El-Kom, Egypt
| | - Mohamed A Hawata
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
12
|
Carvajal SK, Melendres J, Escandón P, Firacative C. Reduced Susceptibility to Azoles in Cryptococcus gattii Correlates with the Substitution R258L in a Substrate Recognition Site of the Lanosterol 14-α-Demethylase. Microbiol Spectr 2023; 11:e0140323. [PMID: 37341584 PMCID: PMC10434158 DOI: 10.1128/spectrum.01403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause cryptococcosis, a life-threatening fungal infection affecting mostly immunocompromised patients. In fact, cryptococcal meningitis accounts for about 19% of AIDS-related deaths in the world. Because of long-term azole therapies to treat this mycosis, resistance to fluconazole leading to treatment failure and poor prognosis has long been reported for both fungal species. Among the mechanisms implicated in resistance to azoles, mutations in the ERG11 gene, encoding the azole target enzyme lanosterol 14-α-demethylase, have been described. This study aimed to establish the amino acid composition of ERG11 of Colombian clinical isolates of C. neoformans and C. gattii and to correlate any possible substitution with the in vitro susceptibility profile of the isolates to fluconazole, voriconazole, and itraconazole. Antifungal susceptibility testing results showed that C. gattii isolates are less susceptible to azoles than C. neoformans isolates, which could correlate with differences in the amino acid composition and structure of ERG11 of each species. In addition, in a C. gattii isolate with high MICs for fluconazole (64 μg/mL) and voriconazole (1 μg/mL), a G973T mutation resulting in the substitution R258L, located in substrate recognition site 3 of ERG11, was identified. This finding suggests the association of the newly reported substitution with the azole resistance phenotype in C. gattii. Further investigations are needed to determine the exact role that R258L plays in the decreased susceptibility to fluconazole and voriconazole, as well as to determine the participation of additional mechanisms of resistance to azole drugs. IMPORTANCE The fungal species Cryptococcus neoformans and C. gattii are human pathogens for which drug resistance or other treatment and management challenges exist. Here, we report differential susceptibility to azoles among both species, with some isolates displaying resistant phenotypes. Azoles are among the most commonly used drugs to treat cryptococcal infections. Our findings underscore the necessity of testing antifungal susceptibility in the clinical setting in order to assist patient management and beneficial outcomes. In addition, we report an amino acid change in the sequence of the target protein of azoles, which suggests that this change might be implicated in resistance to these drugs. Identifying and understanding possible mechanisms that affect drug affinity will eventually aid the design of new drugs that overcome the global growing concern of antifungal resistance.
Collapse
Affiliation(s)
| | - Javier Melendres
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Patricia Escandón
- Group of Microbiology, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Salisbury LJ, Fletcher SJ, Stok JE, Churchman LR, Blanchfield JT, De Voss JJ. Characterization of the cholesterol biosynthetic pathway in Dioscorea transversa. J Biol Chem 2023:104768. [PMID: 37142228 DOI: 10.1016/j.jbc.2023.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1β-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side chain reductase (SSR) as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this SSR reduces Δ24,28 double bonds required for phytosterol biogenesis, as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification and enzymatic reconstitution we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.
Collapse
|
14
|
Bouqellah NA. In silico and in vitro investigation of the antifungal activity of trimetallic Cu-Zn-magnetic nanoparticles against Fusarium oxysporum with stimulation of the tomato plant's drought stress tolerance response. Microb Pathog 2023; 178:106060. [PMID: 36889369 DOI: 10.1016/j.micpath.2023.106060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Fusarium oxysporum is the fungus responsible for Fusarium wilt. Tomatoes and other plants acquire Fusarium wilt through their root systems. Occasionally, fungicides applied to the soil are used to combat the disease; however, some strains have developed resistance. Carboxymethyl cellulose (CMC) trimetallic magnetic zinc and copper nanoparticles CMC-Cu-Zn-FeMNPs are one of the most promising antifungal agents against a wide range of fungi. One of the most important aspects of using magnetic nanoparticles is their ability to target cells, which confirms the drug's potent fungicidal activity. Using a UV-spectrophotometer, the characterization of synthesized CMC-Cu-Zn-FeMNPs revealed four peaks at226,271, 321 and 335 nm, as well as spherical nanoparticles with a mean size of 5.905 nm and a surface potential of -61.7 mv. In this study, CMC-Cu-Zn-FeMNPs were used to inhibit the growth of F. oxysporum by interfering with the ergosterol production metabolic pathway. Molecular docking experiments demonstrated that the nanoparticles were able to bind to sterol 14-alpha demethylase responsible for inhibiting ergosterol biosynthesis. Real-time PCR analysis showed that the nanoparticles upregulated tomato plants and other assessed parameters under drought stress and downregulated the velvet complex and virulence factors of F. oxysporum on plants. The study results indicate that CMC-Cu-Zn-FeMNPs may be a promising and eco-friendly solution with low potential of accumulation and easy to collected alternative to conventional chemical pesticides that can have negative impacts on the environment and human health. Furthermore, it could provide a sustainable solution for managing Fusarium wilt disease, which can significantly reduce tomato yield and quality.
Collapse
Affiliation(s)
- Nahla Alsayd Bouqellah
- Taibah University, Science College, Biology Department, 42317- 8599, Al Madinah Al Munawwarah, Saudi Arabia.
| |
Collapse
|
15
|
Dong Y, Li M, Hao Y, Feng Y, Ren Y, Ma H. Antifungal Activity, Structure-Activity Relationship and Molecular Docking Studies of 1,2,4-Triazole Schiff Base Derivatives. Chem Biodivers 2023; 20:e202201107. [PMID: 36808871 DOI: 10.1002/cbdv.202201107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Fourteen novel Schiff base compounds (AS-1∼AS-14) containing 5-amino-1H-1,2,4-triazole-3-carboxylic acid and substituted benzaldehyde were successfully synthesized, and their structures were verified by melting point, elemental analysis (EA) and spectroscopic techniques (Fourier Transform Infra-Red (FT-IR) and Nuclear Magnetic Resonance (NMR)). In vitro hyphal measurements were used to investigate the antifungal activities of the synthesised compounds against Wheat gibberellic, Maize rough dwarf and Glomerella cingulate. The preliminary studies indicated that all compounds had good inhibitory effect on Wheat gibberellic and Maize rough dwarf, among which the compounds of AS-1 (7.44 mg/L, 7.27 mg/L), AS-4 (6.80 mg/L, 9.57 mg/L) and AS-14 (5.33 mg/L, 6.53 mg/L) showed better antifungal activity than that of the standard drug fluconazole (7.66 mg/L, 6.72 mg/L); while inhibitory effect against Glomerella cingulate was poor, only AS-14 (5.67 mg/L) was superior to that of fluconazole (6.27 mg/L). The research of structure-activity relationship exhibited that the introduction of halogen elements on the benzene ring and electron withdrawing groups at the 2,4,5 positions on the benzene ring was beneficial to the improvement of the activity against Wheat gibberellic, while the large steric hindrance was not conducive to the improvement of the activity. Additionally, except for AS-1, AS-3 and AS-10, the other compounds had one or several ratio systems to achieve synergistic effect after recombination with pyrimethamine, among which AS-7 had significant synergistic effect and was expected to be a combinated agent with application prospects. Finally, the molecular docking results of isocitrate lyase with Wheat gibberellic displayed that the presence of hydrogen bonds enabled stable binding of compounds to receptor proteins, and the residues of ARG A: 252, ASN A: 432, CYS A: 215, SER A: 436 and SER A: 434 were the key residues for their binding. Comparing the docking binding energy and biological activity results, it was revealed that the lower the docking binding energy was, the stronger the inhibitory ability of the Wheat gibberellic, when the same position on the benzene ring was substituted.
Collapse
Affiliation(s)
- Yangming Dong
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Moucui Li
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Yun Hao
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Yunrui Feng
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Yinghui Ren
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| | - Haixia Ma
- Department of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
16
|
Santos AS, Borges Dos Anjos LR, Costa VAF, Freitas VAQ, Zara ALDSA, Costa CR, Neves BJ, Silva MDRR. In silico-chemogenomic repurposing of new chemical scaffolds for histoplasmosis treatment. J Mycol Med 2023; 33:101363. [PMID: 36842411 DOI: 10.1016/j.mycmed.2023.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Histoplasmosis is a systemic form of endemic mycosis to the American continent and may be lethal to people living with HIV/AIDS. The drugs available for treating histoplasmosis are limited, costly, and highly toxic. New drug development is time-consuming and costly; hence, drug repositioning is an advantageous strategy for discovering new therapeutic options. OBJECTIVE This study was conducted to identify drugs that can be repositioned for treating histoplasmosis in immunocompromised patients. METHODS Homologous proteins among Histoplasma capsulatum strains were selected and used to search for homologous targets in the DrugBank and Therapeutic Target Database. Essential genes were selected using Saccharomyces cerevisiae as a model, and functional regions of the therapeutic targets were analyzed. The antifungal activity of the selected drugs was verified, and homology modeling and molecular docking were performed to verify the interactions between the drugs with low inhibitory concentration values and their corresponding targets. RESULTS We selected 149 approved drugs with potential activity against histoplasmosis, among which eight were selected for evaluating their in vitro activity. For drugs with low minimum inhibitory concentration values, such as mebendazole, everolimus, butenafine, and bifonazole, molecular docking studies were performed. A chemogenomic framework revealed lanosterol 14-α-demethylase, squalene monooxygenase, serine/threonine-protein kinase mTOR, and the β-4B tubulin chain of H. capsulatum, respectively, as the protein targets of the drugs. CONCLUSIONS Our strategy can be used to identify promising antifungal targets, and drugs with repositioning potential for treating H. capsulatum.
Collapse
Affiliation(s)
- Andressa Santana Santos
- Institute of Tropical Pathology and Public Health (IPTSP), Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | - Carolina Rodrigues Costa
- Institute of Tropical Pathology and Public Health (IPTSP), Federal University of Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics (LabChem), Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
17
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
18
|
Ni T, Xie F, Hao Y, Li L, Zhu S, Wu H, Chi X, Yan L, Jiang Y, Zhang D. Discovery of Novel Orally Bioavailable Triazoles with Potent and Broad-Spectrum Antifungal Activity In Vitro and In Vivo. J Med Chem 2022; 65:16665-16678. [PMID: 36512715 DOI: 10.1021/acs.jmedchem.2c01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our continuing efforts to discover novel triazoles with improved antifungal activity in vitro and in vivo, a series of 41 novel compounds containing 1,2,3-triazole side chains were designed and synthesized via a click reaction based on our previous work. Most of the compounds showed moderate to excellent broad-spectrum antifungal activity in vitro. Among them, the most promising compound 9A16 displayed excellent antifungal and anti-drug-resistant fungal ability (MIC80 = 0.0156-8 μg/mL). In addition, compound 9A16 showed powerful in vivo efficacy on mice systematically infected with Candida albicans SC5314, Cryptococcus neoformans H99, fluconazole-resistant C. albicans 100, and Aspergillus fumigatus 7544. Moreover, compared to fluconazole, compound 9A16 showed better in vitro anti-biofilm activity and was more difficult to induce drug resistance in a 1 month induction of resistance assay in C. albicans. With favorable pharmacokinetics, an acceptable safety profile, and high potency in vitro and in vivo, compound 9A16 is currently under preclinical investigation.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.,School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaochen Chi
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.,School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
19
|
Patel M, Mazumder R, Mishra R, Kant Kaushik K. Potential of Nanotechnology-based Formulations in Combating Pulmonary Infectious Diseases: A Current Scenario. Curr Pharm Des 2022; 28:3413-3427. [PMID: 36397631 DOI: 10.2174/1381612829666221116143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pulmonary microbial infection is mainly caused by microbes like atypical bacteria, viruses, and fungi, on both the upper and lower respiratory tracts. One of the demands of the present is the use of nanotechnology-based treatments to fight various lung infections. AIM The main aim of the study is to explore all pulmonary infectious diseases and to compare the advanced and novel treatment approaches with the conventional methods which are available to treat infections. METHODS This work sheds light on pulmonary infectious diseases with their conventional and present treatment approaches along with a focus on the advantageous roles of nano-based formulations. In the literature, it has been reported that the respiratory system is the key target of various infectious diseases which gives rise to various challenges in the treatment of pulmonary infections. RESULTS The present review article describes the global situation of pulmonary infections and the different strategies which are available for their management, along with their limitations. The article also highlights the advantages and different examples of nanoformulations currently combating the limitations of conventional therapies. CONCLUSION The content of the present article further reflects on the summary of recently published research and review works on pulmonary infections, conventional methods of treatment with their limitations, and the role of nano-based approaches to combat the existing infectious diseases which will jointly help the researchers to produce effective drug formulations with desired pharmacological activities.
Collapse
Affiliation(s)
- Manisha Patel
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rupa Mazumder
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rakhi Mishra
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Kamal Kant Kaushik
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| |
Collapse
|
20
|
Ji C, Guo D, He R, Zhao M, Fan J. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75978-75988. [PMID: 35665887 DOI: 10.1007/s11356-022-21137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The management of Fusarium head blight relies heavily on triazole fungicides. Most of triazole fungicides are chiral, and their enantioselective effects on metabolic phenotypes are poorly understood. Herein, we analyzed the bioactivity of triticonazole against Fusarium graminearum, and 1H-nuclear magnetic resonance-based metabolomics was used to assess the metabolic disturbances of triticonazole enantiomers in Fusarium graminearum and human hepatocarcinoma cells. Results indicated that the bioactivity of R-triticonazole was 4.28-fold higher than its antipode since it bound stronger with fungal CYP51B and induced more abnormal metabolic processes of Fusarium graminearum, including lipid metabolism, glycolysis, and amino acid metabolism. In human hepatocarcinoma cells, pathways of "alanine, aspartic acid and glutamate metabolism" and "pyruvate metabolism" were disturbed significantly by R-triticonazole; "phenylalanine metabolism" and "taurine-hypotaurine metabolism" were abnormal in the exposure of S-triticonazole. These results suggested that R- and S-triticonazole could affect different metabolic pathways of human hepatocarcinoma cells, and the massively use of inefficient S-triticonazole should be avoided. Our data will help to better understand the enantioselectivity of chiral pesticides and provide a reference for the development of green pesticides.
Collapse
Affiliation(s)
- Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dong Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Rujian He
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Fan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Churchman LR, Salisbury LJ, De Voss JJ. Synthesis of obtusifoliol and analogues as CYP51 substrates. Org Biomol Chem 2022; 20:7316-7324. [PMID: 36069327 DOI: 10.1039/d2ob01307j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterol 14α-demethylases (CYP51s) are a ubiquitous superfamily of cytochrome P450 enzymes that play an essential role in sterol biosynthesis. As fungal CYP51s are the target of azole-based antifungal agents, which are facing the problem of increasing resistance, the substrate specificity of this enzyme subclass has recently garnered significant attention. Herein we report the first chemical synthesis of the final endogenous substrate of this enzyme class, obtusifoliol, in 1.3% yield across ten steps from a commercially available lanosterol mixture. Intermediates along this pathway provide a basis for further derivatisation of the sterol skeleton and future investigation into CYP51 inhibition to overcome pathogens' azole resistance.
Collapse
Affiliation(s)
- Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Lauren J Salisbury
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
22
|
Thakare PP, Dakhane S, Shikh AN, Modak M, Patil A, Bobade VD, Mhaske PC. Design, Synthesis, Antimicrobial and Ergosterol Inhibition Activity of New 4-(Imidazo[1,2-a]Pyridin-2-yl)Quinoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1933107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Prashant P. Thakare
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Sagar Dakhane
- Department of Chemistry, Abasaheb Garware College, Pune, Maharashtra, India
| | - Abdullatif N. Shikh
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, Ahmednagar, Pune, Maharashtra, India
| | - Manisha Modak
- Department of Zoology, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Ashiwini Patil
- Department of Biotechnology, Viva College, Mumbai, Maharashtra, India
| | - Vivek D. Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College, Nashik, Maharashtra, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| |
Collapse
|
23
|
Yang Q, Xie J, Cai Y, Wang N, Wang Y, Zhang L, Li Y, Yu J, Li Y, Wang H, Zhang K. Efficacy and Safety of Combination Antifungals as Empirical, Preemptive, and Targeted Therapies for Invasive Fungal Infections in Intensive-Care Units. Infect Drug Resist 2022; 15:5331-5344. [PMID: 36110125 PMCID: PMC9470118 DOI: 10.2147/idr.s381851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To determine whether combinations of antifungal drugs are effective and safe for patients in intensive-care units. Methods This study compared the efficacy and safety of caspofungin (CAS), voriconazole (VOR), amphotericin B liposome (L-AmB), CAS+VOR, and CAS+L-AmB as empirical, preemptive, and targeted therapies for invasive fungal infection (IFI). Results Comparing the CAS, VOR, and CAS+VOR groups revealed that there were no differences in response rates between all therapy types, IFI-associated death within 90 days was less common in the CAS+VOR group (1.8%) than the VOR group (14.3%), and there were more adverse events in the VOR group than in the CAS group (P < 0.05). For empirical or preemptive therapy, the CAS group had a better response rate (80.0%) than the CAS+VOR group (47.1%), and there were more adverse events in the VOR group than in the CAS group (P < 0.05). For targeted therapy, no differences were found for efficacy and safety. There were no differences among the CAS, L-AmB, and CAS+L-AmB groups in efficacy and safety. Conclusion Patients who received CAS monotherapy as an empirical or preemptive therapy could achieve good outcomes. Patients who received CAS+VOR or CAS+L-AmB achieved almost the same outcomes when compared with those who received CAS, VOR, and L-AmB monotherapy as targeted therapies, but those who received CAS+VOR had a lower IFI mortality rate than did those who received VOR monotherapy.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Cai
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Li Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Youjia Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jingjie Yu
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ya Li
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Haitao Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Kanghuai Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
24
|
Titi A, Touzani R, Moliterni A, Hadda TB, Messali M, Benabbes R, Berredjem M, Bouzina A, Al-Zaqri N, Taleb M, Zarrouk A, Warad I. Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yin M, Li C, Zhang L, Zhang L, Lin J, Jiang N, Wang Q, Xu Q, Zheng H, Gu L, Jia Y, Yu B, Zhao G. Mechanism of antifungal activity and therapeutic action of β-ionone on Aspergillus fumigatus keratitis via suppressing LOX1 and JNK/p38 MAPK activation. Int Immunopharmacol 2022; 110:108992. [PMID: 35810488 DOI: 10.1016/j.intimp.2022.108992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the anti-inflammatory and antifungal role of β-ionone (BI) in fungal keratitis (FK). METHODS In vitro antifungal activity of BI against Aspergillus fumigatus (A. fumigatus) was evaluated by using minimum inhibitory concentration (MIC), crystal violet staining, biofilm biomass measurement, propidium iodide uptake test, and adherence assay. And RT-PCR was carried out to measure the levels of RodA, RodB, Rho, FKs, CshA-D, RlmA, Cyp51A-B and Cdr1B. Network pharmacology analysis was applied to predict the relationship between BI and FK. Cell Count Kit-8 (CCK8) assay was utilized to detect the cytotoxicity of BI to RAW264.7 and immortalized human corneal epithelial cells (HCECs). The underlying mechanism of BI at regulating the level of inflammatory factors in FK was assessed by RT-PCR, ELISA and Western blot in vitro and in vivo. The therapeutic effect of BI has investigated in A. fumigatus keratitis by employing the clinical score, pathological examination, plate count, immunofluorescence and myeloperoxidase (MPO) assay. We also used the slit-lamp microscopy, clinical scores, and HE staining to assess the effect of natamycin compared with BI treatment in vivo. RESULTS BI suppressed the growth of A. fumigatus and had a significant effect on A. fumigatus biofilms and membrane permeability. RT-PCR demonstrated that exposure of A. fumigatus to BI inhibited the expression of genes that function in hydrophobin (RodA, RodB), cell wall integrity (Rho, FKs, CshA-D, RlmA), azole susceptibility (Cyp51A-B, Cdr1B). Network pharmacology showed that the effects of BI in FK implicate with C-type lectin receptor signaling pathway. In vivo, after A. fumigatus infection, BI treatment markedly reduced the severity of FK by decreasing clinical score, neutrophil recruitment, and fungal load. And BI treatment also obviously reduced the expression of inflammatory cytokines, Lectin-like oxidized LDL receptor (LOX-1), phosphorylation of p38MAPK and p-JNK versus the DMSO-treated group. BI and natamycin both significantly increased corneal transparency and decreased inflammatory cell recruitment in the FK in the mice model. CONCLUSION These results indicated that BI had fungicidal activities against A. fumigatus. It also ameliorated FK in mice by reducing inflammation, which was regulated by LOX-1, p-p38MAPK and p-JNK.
Collapse
Affiliation(s)
- Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Leyuan Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qain Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiyi Jia
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
26
|
Ni T, Ding Z, Xie F, Hao Y, Bao J, Zhang J, Yu S, Jiang Y, Zhang D. Design, Synthesis, and In Vitro and In Vivo Antifungal Activity of Novel Triazoles Containing Phenylethynyl Pyrazole Side Chains. Molecules 2022; 27:molecules27113370. [PMID: 35684308 PMCID: PMC9182106 DOI: 10.3390/molecules27113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022] Open
Abstract
A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 μg/mL), C. neoformans (MIC = 0.125, 0.0625 μg/mL), and A. fumigatus (MIC = 8.0, 4.0 μg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
| | - Zichao Ding
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
| | - Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China;
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China;
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, No. 325 Guohe Road, Shanghai 200433, China; (Z.D.); (F.X.); (Y.H.); (J.B.)
- Correspondence: (S.Y.); (Y.J.); (D.Z.)
| |
Collapse
|
27
|
Min LJ, Wang H, Bajsa-Hirschel J, Yu CS, Wang B, Yao MM, Han L, Cantrell CL, Duke SO, Sun NB, Liu XH. Novel Dioxolane Ring Compounds for the Management of Phytopathogen Diseases as Ergosterol Biosynthesis Inhibitors: Synthesis, Biological Activities, and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4303-4315. [PMID: 35357135 DOI: 10.1021/acs.jafc.2c00541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thirty novel dioxolane ring compounds were designed and synthesized. Their chemical structures were confirmed by 1H NMR, HRMS, and single crystal X-ray diffraction analysis. Bioassays indicated that these dioxolane ring derivatives exhibited excellent fungicidal activity against Rhizoctonia solani, Pyricularia oryae, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium oxysporum, Physalospora piricola, Cercospora arachidicola and herbicidal activity against lettuce (Lactuca sativa), bentgrass (Agrostis stolonifera), and duckweed (Lemna pausicostata). Among these compounds, 1-((2-(4-chlorophenyl)-5-methyl-1,3-dioxan-2-yl)methyl)-1H-1,2,4-triazole (D17), 1-(((4R)-2-(4-chlorophenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole (D20), 1-((5-methyl-2-(4-(trifluoromethyl)phenyl)-1,3-dioxan-2-yl)methyl)-1H-1,2,4-triazole (D22), and 1-((2-(4-fluorophenyl)-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole (D26) had broad spectrum fungicidal and herbicidal activity. The IC50 values against duckweed were 20.5 ± 9.0, 14.2 ± 6.7, 24.0 ± 11.0, 8.7 ± 3.5, and 8.0 ± 3.1 μM for D17, D20, D22, and D26 and the positive control difenoconazole, respectively. The EC50 values were 7.31 ± 0.67, 9.74 ± 0.83, 17.32 ± 1.23, 11.96 ± 0.98, and 8.93 ± 0.91 mg/L for D17, D20, D22, and D26 and the positive control difenoconazole against the plant pathogen R. solani, respectively. Germination experiments with Arabidopsis seeds indicated that the target of these dioxolane ring compounds in plants is brassinosteroid biosynthesis. Molecular simulation docking results of compound D26 and difenoconazole with fungal CYP51 P450 confirmed that they both inhibit this enzyme involved in ergosterol biosynthesis. The structure-activity relationships (SAR) are discussed by substituent effect, molecular docking, and density functional theory analysis, which provided useful information for designing more active compounds.
Collapse
Affiliation(s)
- Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Han Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, USDA ARS, University, Mississippi 38677, United States
| | - Chen-Sheng Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Meng-Meng Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, USDA ARS, University, Mississippi 38677, United States
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, Mississippi 38677, United States
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
28
|
Liu L, Wang H, Lin L, Gao Y, Niu X. Mulberrin inhibits Botrytis cinerea for strawberry storage by interfering with the bioactivity of 14α-demethylase (CYP51). Food Funct 2022; 13:4032-4046. [PMID: 35315482 DOI: 10.1039/d2fo00295g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, chemical agents hold great promise in preventing and combating Botrytis cinerea. However, the antifungal mechanism of some agents for B. cinerea remains rather vague, imposing restrictions on the research and development of novel antifungal inhibitors. In this work, we discovered that mulberrin (MBN), a natural compound from the root bark of Ramulus Mori, with an IC50 of 1.38 μM together, demonstrated marked anti-14α-demethylase (CYP51) activity through high throughput virtual screening and in vitro bioactivity assay. The computational biology results demonstrated that MBN and its derivatives were bound to the catalytic activity region of CYP51, but only MBN could form a strong π-cation interaction with the Fe ion of heme in CYP51 via the 2-methylpent-2-ene moiety at atom C9. MBN had a stronger binding free energy than the other three compounds with CYP51, implying that the 2-methylpent-2-ene moiety at atom C9 is a critical pharmacophore for CYP51 inhibitors. Subsequently, through an antifungal test, MBN demonstrated excellent anti-B. cinerea activity by inhibiting CYP51 activity. The EC50 values of MBN toward hyphal growth and spore germination in B. cinerea were 17.27 and 9.56 μg mL-1, respectively. The bioactivity loss of CYP51 by direct interaction with MBN induced the increase of cell membrane permeability, membrane destruction, and cell death. Meanwhile, in the B. cinerea infection model, MBN significantly prolonged the preservation of strawberries by preventing B. cinerea from infecting strawberries and could be used as a potential natural preserving agent for storing fruits.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Li Lin
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
29
|
Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules 2022; 27:molecules27061805. [PMID: 35335169 PMCID: PMC8951313 DOI: 10.3390/molecules27061805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Ziziphus spina-christi L. (ZSC-L) is a tree with thorny branches, belongs to the family Rhamnaceae and grows in the sub-tropics. The purpose of this research is to isolate and partially purify bioactive components from the crude ethanol extract of the stem bark of ZSC-L. Besides, bioassay-guided fractionation of ZSC-L stem bark was conducted using different solvents. The solvents were reutilized to minimize the production cost and environmental harm. In addition, the antimicrobial activities of the fractions were analyzed, followed by metabolic profiling using LC-HRMS. The n-butanol fraction showed the highest antimicrobial efficacy, so it was subjected to further purification. For the first time, two major compounds were isolated from the stem bark of ZSC-L and identified as lupane-type pentacyclic triterpenoids betulinic acid and betulin. Both compounds were used as antibacterial and anticancer agents and considered as a green product as the extraction procedure reduced the use of hazardous chemicals. Metabolic characterization of ZSC-L and its bioactive fractions were performed using LC-HR-ESI-MS and the results revealed the dereplication of 36 compounds belonging to different chemical classes. Flavonoids and triterpenes were the most prominent metabolite classes in the different fractions. The molecular docking results were obtained by studying the interaction of betulin and betulinic acid with antimicrobial receptors (4UYM, 1IYL, 1AJ2, 6J7L, 1AD4, 2VEG) to support the in vitro results. Our study highlights that Ziziphus spina-christi and its phytoconstituents, especially triterpenoids, act as a promising antimicrobial candidate in pharmaceutical and clinical applications.
Collapse
|
30
|
Herrera Cano N, Andujar SA, Theoduloz C, Wunderlin DA, Santiago AN, Schmeda-Hirschmann G, Enriz RD, Feresin GE. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:9. [PMID: 35262798 PMCID: PMC8907375 DOI: 10.1007/s13659-022-00329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Triadimefon (TDM) and cyproconazole (CPZ) are two triazoles widely used as fungicides. Several azoles were synthesised starting from commercial TDM and CPZ. The compounds were evaluated against phytopathogenic filamentous fungi, including Aspergillus fumigatus (AF), A. niger (AN), A. ustus (AU), A. japonicus (AJ), A. terreus (AT), Fusarium oxysporum and Botrytis cinerea isolated from grapevine in the province of San Juan, Argentina. Three of the synthesised compounds (1-(Biphenyl-4-yloxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one, 1; 2-(Biphenyl-4-yl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol, 3; 3-Cyclopropyl-2-(4'-fluorobiphenyl-4-yl)-1-(1H-1,2,4-triazol1-yl)butan-2-ol, 4) presented remarkable in vitro fungicidal properties, with better effects than TDM and CPZ on some of the target fungi. Cytotoxicity was assessed using human lung fibroblasts MRC5. Derivative 1, with IC50 values of 389.4 µM, was less toxic towards MRC-5 human lung fibroblasts than commercial TDM (248.5 µM) and CPZ (267.4 µM). Docking analysis and molecular dynamics simulations suggest that the compounds present the same interaction in the binding pocket of the CYP51B enzyme and with the same amino acids as CPZ. The derivatives investigated could be considered broad-spectrum but with some selectivity towards imperfect fungi.
Collapse
Affiliation(s)
- Natividad Herrera Cano
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, CONICET-CCT San Juan, Av. Libertador General San Martín1109 (O), 5400, San Juan, Argentina.
- ICYTAC, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento, Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000, Córdoba, Argentina.
| | - Sebastian A Andujar
- Facultad de Química, Bioquímica y Farmacia- IMIBIO-SL (CONICET), Universidad Nacional de San Luis, Chacabuco 915, 5700, San Luis, Argentina
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
| | - Daniel A Wunderlin
- ICYTAC, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento, Química Orgánica, Ciudad Universitaria, Bv. Juan Filloy s/n, 5000, Córdoba, Argentina
| | - Ana N Santiago
- INFIQC, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento Química Orgánica, Ciudad Universitaria, Haya de La Torre S/N, 5000, Córdoba, Argentina
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, 3460000, Talca, Chile
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia- IMIBIO-SL (CONICET), Universidad Nacional de San Luis, Chacabuco 915, 5700, San Luis, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, CONICET-CCT San Juan, Av. Libertador General San Martín1109 (O), 5400, San Juan, Argentina
| |
Collapse
|
31
|
Yang X, Gong R, Chu Y, Liu S, Xiang D, Li C. Mechanistic Insights into Stereospecific Antifungal Activity of Chiral Fungicide Prothioconazole against Fusarium oxysporum F. sp. cubense. Int J Mol Sci 2022; 23:2352. [PMID: 35216468 PMCID: PMC8875126 DOI: 10.3390/ijms23042352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a typical triazole fungicide, prothioconazole (Pro) has been used extensively due to its broad spectrum and high efficiency. However, as a racemic mixture of two enantiomers (R-Pro and S-Pro), the enantiomer-specific outcomes on the bioactivity have not been fully elucidated. Here, we investigate how chirality affects the activity and mechanism of action of Pro enantiomers on Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), the notorious virulent strain causing Fusarium wilt of banana (FWB). The Pro enantiomers were evaluated in vivo and in vitro with the aid of three bioassay methods for their fungicidal activities against TR4 and the results suggested that the fungicidal activities of Pro enantiomers are stereoselective in a dose-dependent manner with R-Pro making a major contribution to the treatment outcomes. We found that R-Pro led to more severe morphological changes and impairment in membrane integrity than S-Pro. R-Pro also led to the increase of more MDA contents and the reduction of more SOD and CAT activities compared with the control and S-Pro groups. Furthermore, the expression of Cytochrome P450 14α-sterol demethylases (CYP51), the target for triazole fungicides, was significantly increased upon treatment with R-Pro rather than S-Pro, at both transcriptional and translational levels; so were the activities of the Cytochrome P450 enzymes. In addition, surface plasmon resonance (SPR) and molecular docking illuminated the stereoselective interactions between the Pro enantiomers and CYP51 of TR4 at the target site, and R-Pro showed a better binding affinity with CYP51 than S-Pro. These results suggested an enantioselective mechanism of Pro against TR4, which may rely on the enantioselective damages to the fungal cell membrane and the enantiospecific CYP51 binding affinity. Taken together, our study shed some light on the mechanisms underlying the differential activities of the Pro enantiomers against TR4 and demonstrated that Pro can be used as a potential candidate in the treatment of FWB.
Collapse
Affiliation(s)
- Xiaofang Yang
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yuanqi Chu
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Siwen Liu
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| | - Dandan Xiang
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| | - Chunyu Li
- Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Y.); (Y.C.); (S.L.)
| |
Collapse
|
32
|
Zhao L, Sun Y, Yin W, Tian L, Sun N, Zheng Y, Zhang C, Zhao S, Su X, Zhao D, Cheng M. Design, synthesis, and biological activity evaluation of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives as broad-spectrum antifungal agents. Eur J Med Chem 2022; 228:113987. [PMID: 34801270 DOI: 10.1016/j.ejmech.2021.113987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
To discover antifungal compounds with broad-spectrum and stable metabolism, a series of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives was designed and synthesized. Compounds A30-A34 exhibited excellent broad-spectrum antifungal activity against Candida albicans with MIC values in the range of 0.03-0.5 μg/mL, and against Cryptococcus neoformans and Aspergillus fumigatus with MIC values in the range of 0.25-2 μg/mL. In addition, compounds A31 and A33 showed high metabolic stability in human liver microsomes in vitro, with the half-life of 80.5 min and 69.4 min, respectively. Moreover, compounds A31 and A33 showed weak or almost no inhibitory effect on the CYP3A4 and CYP2D6. The pharmacokinetic evaluation in SD rats showed that compound A31 had suitable pharmacokinetic properties and was worthy of further study.
Collapse
Affiliation(s)
- Liyu Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Linfeng Tian
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Nannan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yang Zheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shizhen Zhao
- Key Laboratory of Receptor-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, 475004, China
| | - Xin Su
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
33
|
Hargrove TY, Wawrzak Z, Rachakonda G, Nes WD, Villalta F, Guengerich FP, Lepesheva GI. Relaxed Substrate Requirements of Sterol 14α-Demethylase from Naegleria fowleri Are Accompanied by Resistance to Inhibition. J Med Chem 2021; 64:17511-17522. [PMID: 34842434 PMCID: PMC8667612 DOI: 10.1021/acs.jmedchem.1c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naegleria fowleri is the protozoan pathogen that causes primary amoebic meningoencephalitis (PAM), with the death rate exceeding 97%. The amoeba makes sterols and can be targeted by sterol biosynthesis inhibitors. Here, we characterized N. fowleri sterol 14-demethylase, including catalytic properties and inhibition by clinical antifungal drugs and experimental substituted azoles with favorable pharmacokinetics and low toxicity. None of them inhibited the enzyme stoichiometrically. The highest potencies were displayed by posaconazole (IC50 = 0.69 μM) and two of our compounds (IC50 = 1.3 and 0.35 μM). Because both these compounds penetrate the brain with concentrations reaching minimal inhibitory concentration (MIC) values in an N. fowleri cellular assay, we report them as potential drug candidates for PAM. The 2.1 Å crystal structure, in complex with the strongest inhibitor, provides an explanation connecting the enzyme weaker substrate specificity with lower sensitivity to inhibition. It also provides insight into the enzyme/ligand molecular recognition process and suggests directions for the design of more potent inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee 37208, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
34
|
Burmester A, Hipler UC, Elsner P, Wiegand C. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses 2021; 65:97-102. [PMID: 34767653 DOI: 10.1111/myc.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The T indotineae population shows a high amount of terbinafine resistant isolates based on different point mutations of squalene epoxidase erg1 (ergosterol) gene. A significant proportion of these isolates also show azole resistance. OBJECTIVES Elucidation of the molecular mechanism for azole resistance, especially the identification of mutations in the sterol 14-α demethylase Erg11 genes, which encode for enzymes interacting with azoles. METHODS Sequencing of putative Erg11 genes and analysis of phenotypic resistance pattern using a microplate-laser-nephelometry-based growth assay. RESULTS Four different types of Erg11B mutants were detected; two double mutants with Ala230Thr/Asp441Gly, respectively, Ala230/Tyr444His and single mutants with Gly443Glu, Tyr444Cys and Tyr444His. All isolates featured the wild type genotype of Erg11A. All strains demonstrated different combinations of Erg1 and Erg11 genotypes. CONCLUSION Resistance against terbinafine and azoles developed several times independently within the T indotineae population. The challenge for fungal treatment is, therefore, that species identification is not enough for prediction of therapeutic efficacy of antifungals. In the future, it will also become important to analyse genes involved in resistance mechanisms.
Collapse
Affiliation(s)
- Anke Burmester
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | - Peter Elsner
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Jena, Germany
| |
Collapse
|
35
|
Structural Insights into the Azole Resistance of the Candida albicans Darlington Strain Using Saccharomyces cerevisiae Lanosterol 14α-Demethylase as a Surrogate. J Fungi (Basel) 2021; 7:jof7110897. [PMID: 34829185 PMCID: PMC8621857 DOI: 10.3390/jof7110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Target-based azole resistance in Candida albicans involves overexpression of the ERG11 gene encoding lanosterol 14α-demethylase (LDM), and/or the presence of single or multiple mutations in this enzyme. Overexpression of Candida albicans LDM (CaLDM) Y132H I471T by the Darlington strain strongly increased resistance to the short-tailed azoles fluconazole and voriconazole, and weakly increased resistance to the longer-tailed azoles VT-1161, itraconazole and posaconazole. We have used, as surrogates, structurally aligned mutations in recombinant hexahistidine-tagged full-length Saccharomyces cerevisiae LDM6×His (ScLDM6×His) to elucidate how differential susceptibility to azole drugs is conferred by LDM of the C. albicans Darlington strain. The mutations Y140H and I471T were introduced, either alone or in combination, into ScLDM6×His via overexpression of the recombinant enzyme from the PDR5 locus of an azole hypersensitive strain of S. cerevisiae. Phenotypes and high-resolution X-ray crystal structures were determined for the surrogate enzymes in complex with representative short-tailed (voriconazole) and long-tailed (itraconazole) triazoles. The preferential high-level resistance to short-tailed azoles conferred by the ScLDM Y140H I471T mutant required both mutations, despite the I471T mutation conferring only a slight increase in resistance. Crystal structures did not detect changes in the position/tilt of the heme co-factor of wild-type ScLDM, I471T and Y140H single mutants, or the Y140H I471T double-mutant. The mutant threonine sidechain in the Darlington strain CaLDM perturbs the environment of the neighboring C-helix, affects the electronic environment of the heme, and may, via differences in closure of the neck of the substrate entry channel, increase preferential competition between lanosterol and short-tailed azole drugs.
Collapse
|
36
|
Ferreira ES, Cordeiro LV, Silva DDEF, Souza HDS, Athayde-Filho PFDE, Barbosa-Filho JM, Scotti L, Lima EO, Castro RDDE. Antifungal activity and mechanism of action of 2-chloro-N -phenylacetamide: a new molecule with activity against strains of Aspergillus flavus. AN ACAD BRAS CIENC 2021; 93:e20200997. [PMID: 34550200 DOI: 10.1590/0001-3765202120200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Aspergillus genus causes many diseases, and the species Aspergillus flavus is highly virulent. Treatment of aspergillosis involves azole derivatives such as voriconazole and polyenes such as amphotericin B. Due to an increase in fungal resistance, treatments are now less effective; the search for new compounds with promising antifungal activity has gained importance. The aims of this study were to evaluate the effects of the synthetic amide 2-chloro-N-phenylacetamide (A1Cl) against strains of Aspergillus flavus and to elucidate its mechanism of action. Thus, the minimum inhibitory concentration, minimum fungicidal concentration, conidial germination, associations with antifungal agents, cell wall activities, membrane activities and molecular docking were evaluated. A1Cl presented antifungal activity against Aspergillus flavus strains with a minimum inhibitory concentration of between 16 and 256 μg/mL and a minimum fungicidal concentration between 32 and 512 μg/mL. The minimum inhibitory concentration of A1Cl also inhibited conidial germination, but when associated with amphotericin B and voriconazole, it promoted antagonistic effects. Binding to ergosterol on the fungal plasma membrane is the likely mechanism of action, along with possible inhibition of DNA synthesis through the inhibition of thymidylate synthase. It is concluded that the amide 2-chloro-N-phenylacetamide has promising antifungal potential.
Collapse
Affiliation(s)
- Elba S Ferreira
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Laísa V Cordeiro
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Daniele DE F Silva
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Helivaldo D S Souza
- Universidade Federal da Paraíba, Departamento de Química, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Petrônio F DE Athayde-Filho
- Universidade Federal da Paraíba, Departamento de Química, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - José Maria Barbosa-Filho
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Luciana Scotti
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Edeltrudes O Lima
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| | - Ricardo D DE Castro
- Universidade Federal da Paraíba, Departamento de Cências Farmacêuticas, Campus I, Loteamento Cidade Universitária, s/n, Castelo Branco, 58051-970 João Pessoa, PB, Brazil
| |
Collapse
|
37
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
38
|
Zhao Y, Chi M, Sun H, Qian H, Yang J, Huang J. The FgCYP51B Y123H Mutation Confers Reduced Sensitivity to Prochloraz and Is Important for Conidiation and Ascospore Development in Fusarium graminearum. PHYTOPATHOLOGY 2021; 111:1420-1427. [PMID: 33399013 DOI: 10.1094/phyto-09-20-0431-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium graminearum is one of the most important causal agents of Fusarium head blight disease and is controlled mainly by chemicals such as demethylation inhibitor (DMI) fungicides. FgCYP51B is one of the DMI targets in F. graminearum, and Tyrosine123 (Y123) is an important amino acid in F. graminearum CYP51B, located in one of predicted substrate binding pockets based on the binding mode between DMIs and CYP51B. Previous studies suggest that resistance to DMI fungicides is attributed primarily to point mutations in the CYP51 gene and that the Y123H mutation in F. verticillioides CYP51 confers prochloraz resistance in the laboratory. To investigate the function of FgCYP51B Y123 residue in the growth and development, pathogenicity, and DMI resistance, we generated and analyzed the FgCYP51B Y123H mutant. Results revealed that the Y123H mutation led to reduced conidial sporulation and affected ascospore development; moreover, the mutation conferred reduced sensitivity to prochloraz. Quantitative PCR and molecular docking were performed to investigate the resistance mechanism. Results indicated that Y123H mutation changed the target gene expression and decreased the binding affinity of FgCYP51 to prochloraz. These results will attract more attention to the potential DMI-resistant mutation of F. graminearum and increase our understanding of the DMI resistance mechanism.
Collapse
Affiliation(s)
- Yanxiang Zhao
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengyu Chi
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hunlin Sun
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hengwei Qian
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jinguang Huang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
39
|
Analysis of the cyp51 genes contribution to azole resistance in Aspergillus section Nigri with the CRISPR-Cas9 technique. Antimicrob Agents Chemother 2021; 65:AAC.01996-20. [PMID: 33685892 PMCID: PMC8092891 DOI: 10.1128/aac.01996-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyp51 contribution to azole resistance has been broadly studied and characterized in Aspergillus fumigatus, whereas it remains poorly investigated in other clinically relevant species of the genus, such as those of section Nigri In this work, we aimed to analyze the impact of cyp51 genes (cyp51A and cyp51B) on the voriconazole (VRC) response and resistance of Aspergillus niger and Aspergillus tubingensis We generated CRISPR-Cas9 cyp51A and cyp51B knock-out mutants from strains with different genetic backgrounds and diverse patterns of azole susceptibility. Single gene deletions of cyp51 genes resulted in 2 to 16-fold decrease of the VRC Minimum Inhibitory Concentration (MIC) values, which were below the VRC Epidemiological Cutoff Value (ECV) established by the Clinical and Laboratory Standards Institute (CLSI) irrespective of their parental strains susceptibilities. Gene expression studies in the tested species confirmed that cyp51A participates more actively than cyp51B in the transcriptional response of azole stress. However, ergosterol quantification revealed that both enzymes comparably impact the total ergosterol content within the cell, as basal and VRC-induced changes to ergosterol content was similar in all cases. These data contribute to our understanding on Aspergillus azole resistance, especially in non-fumigatus species.
Collapse
|
40
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
41
|
Sun SX, Yan JH, Zuo JT, Wang XB, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, antifungal evaluation, and molecular docking of novel 1,2,4-triazole derivatives containing oxime ether and cyclopropyl moieties as potential sterol demethylase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel triazole derivatives containing oxime ether and cyclopropyl moieties were designed and synthesized. Some compounds exhibited remarkable antifungal activities. The molecular docking of compound 5k with FgCYP51 was investigated.
Collapse
Affiliation(s)
- Sheng-Xin Sun
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing-Hua Yan
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jiang-Tao Zuo
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Guo-Hua Li
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
42
|
Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R, Alcazar-Fuoli L, Mellado E. A Cyp51B Mutation Contributes to Azole Resistance in Aspergillus fumigatus. J Fungi (Basel) 2020; 6:jof6040315. [PMID: 33255951 PMCID: PMC7712412 DOI: 10.3390/jof6040315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence and spread of Aspergillus fumigatus azole resistance has been acknowledged worldwide. The main problem of azole resistance is the limited therapeutic options for patients suffering aspergillosis. Azole resistance mechanisms have been mostly linked to the enzyme Cyp51A, a target of azole drugs, with a wide variety of modifications responsible for the different resistance mechanisms described to date. However, there are increasing reports of A. fumigatus strains showing azole resistance without Cyp51A modifications, and thus, novel resistance mechanisms are being explored. Here, we characterized two isogenic A. fumigatus clinical strains isolated two years apart from the same patient. Both strains were resistant to clinical azoles but showed different azole resistance mechanisms. One strain (CM8940) harbored a previously described G54A mutation in Cyp51A while the other strain (CM9640) had a novel G457S mutation in Cyp51B, the other target of azoles. In addition, this second strain had a F390L mutation in Hmg1. CM9640 showed higher levels of gene expression of cyp51A, cyp51B and hmg1 than the CM8940 strain. The role of the novel mutation found in Cyp51B together with the contribution of a mutation in Hmg1 in azole resistance is discussed.
Collapse
Affiliation(s)
- Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK;
| | - Isabel Cuesta
- Bioinformatics Unit, Common Scientific Technical Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain;
| | | | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain; (I.G.-J.); (J.L.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III (ISCIII), Majadahonda, 28222 Madrid, Spain
- Correspondence:
| |
Collapse
|
43
|
History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104:104240. [DOI: 10.1016/j.bioorg.2020.104240] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 01/12/2023]
|
44
|
Aspergillus fumigatus Cyp51A and Cyp51B Proteins Are Compensatory in Function and Localize Differentially in Response to Antifungals and Cell Wall Inhibitors. Antimicrob Agents Chemother 2020; 64:AAC.00735-20. [PMID: 32660997 DOI: 10.1128/aac.00735-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
Triazole antifungals are the primary therapeutic option against invasive aspergillosis. However, resistance to azoles has increased dramatically over the last decade. Azole resistance is known to primarily occur due to point mutations in the azole target protein Cyp51A, one of two paralogous 14-α sterol demethylases found in Aspergillus fumigatus Despite the importance of Cyp51A, little is known about the function of its paralog, Cyp51B, and the behavior of these proteins within the cell or their functional interrelationship. In this study, we addressed two important aspects of the Cyp51 proteins: (i) we characterized their localization patterns under normal growth versus stress conditions, and (ii) we determined how the proteins compensate for each other's absence and respond to azole treatment. Both the Cyp51A and Cyp51B proteins were found to localize in distinct endoplasmic reticulum (ER) domains, including the perinuclear ER and the peripheral ER. Occasionally, the Cyp51 proteins concentrated in the peripheral ER network of tubules along the hyphal septa and at the hyphal tips. Exposure to voriconazole, caspofungin, and Congo red led to significant increases in fluorescence intensity in these alternative localization sites, indicative of Cyp51 protein translocation in response to cell wall stress. Furthermore, deletion of either Cyp51 paralog increased susceptibility to voriconazole, though a greater effect was observed following deletion of cyp51A, indicating a compensatory response to stress conditions.
Collapse
|
45
|
Rybak JM, Fortwendel JR, Rogers PD. Emerging threat of triazole-resistant Aspergillus fumigatus. J Antimicrob Chemother 2020; 74:835-842. [PMID: 30561652 DOI: 10.1093/jac/dky517] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive aspergillosis is a leading cause of morbidity and mortality among immunocompromised populations and is predicted to cause more than 200 000 life-threatening infections each year. Aspergillus fumigatus is the most prevalent pathogen isolated from patients with invasive aspergillosis, accounting for more than 60% of all cases. Currently, the only antifungal agents available with consistent activity against A. fumigatus are the mould-active triazoles and amphotericin B, of which the triazoles commonly represent both front-line and salvage therapeutic options. Unfortunately, the treatment of infections caused by A. fumigatus has recently been further complicated by the global emergence of triazole resistance among both clinical and environmental isolates. Mutations in the A. fumigatus sterol-demethylase gene cyp51A, overexpression of cyp51A and overexpression of efflux pump genes are all known to contribute to resistance, yet much of the triazole resistance among A. fumigatus still remains unexplained. Also lacking is clinical experience with therapeutic options for the treatment of triazole-resistant A. fumigatus infections and mortality associated with these infections remains unacceptably high. Thus, further research is greatly needed to both better understand the emerging threat of triazole-resistant A. fumigatus and to develop novel therapeutic strategies to combat these resistant infections.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
46
|
Carbohydrate hitched imidazoles as agents for the disruption of fungal cell membrane. J Mycol Med 2020; 30:100910. [DOI: 10.1016/j.mycmed.2019.100910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
|
47
|
Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg Med Chem Lett 2020; 30:126951. [DOI: 10.1016/j.bmcl.2020.126951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
|
48
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
49
|
Wu S, Zhang W, Qi L, Ren Y, Ma H. Investigation on 4-amino-5-substituent-1,2,4-triazole-3-thione Schiff bases an antifungal drug by characterization (spectroscopic, XRD), biological activities, molecular docking studies and electrostatic potential (ESP). J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Stravoravdis S, LeBlanc NR, Marra RE, Crouch JA, Hulvey JP. Widespread Occurrence of a CYP51A Pseudogene in Calonectria pseudonaviculata. MYCOBIOLOGY 2019; 48:44-50. [PMID: 32158605 PMCID: PMC7048176 DOI: 10.1080/12298093.2019.1689600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Calonectria pseudonaviculata and C. henricotiae are two closely related fungal species responsible for boxwood blight disease of ornamental shrubs (Buxus spp.) in the U.S. and Europe. A previous study has shown isolates of the latter species, which is restricted to Europe, to be less sensitive to tetraconazole, an azole fungicide. In this study, we have analyzed the CYP51 paralogs for polymorphism in 26 genomes, representing geographically disparate populations of C. pseudonaviculata (n = 19) and C. henricotiae (n = 7), from the U.S., Europe, Asia, and New Zealand. The presence of a CYP51A pseudogene and lack of a functional CYP51A paralog in all C. pseudonaviculata genomes examined is a novel discovery for fungi and could have implications for the evolution of resistance to antifungal chemicals.
Collapse
Affiliation(s)
| | - Nicholas R. LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN, USA
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Jonathan P. Hulvey
- Biology Department, Eastern Connecticut State University, Willimantic, CT, USA
| |
Collapse
|